
Data Structures and Algorithms

Course at D-MATH (CSE) of ETH Zurich

Felix Friedrich

FS 2018

1

1. Introduction

Algorithms and Data Structures, Three Examples

22

Goals of the course

Understand the design and analysis of fundamental algorithms
and data structures.
An advanced insight into a modern programming model (with
C++).
Knowledge about chances, problems and limits of the parallel and
concurrent computing.

23

Goals of the course

On the one hand

Essential basic knowlegde from computer science.

Andererseits

Preparation for your further course of studies and practical
considerations.

24

Contents
data structures / algorithms
The notion invariant, cost model, Landau notation

algorithms design, induction
searching, selection and sorting

dynamic programming
dictionaries: hashing and search trees

graphs, shortest paths, backtracking, flow
geometric algorithms, high peformance LA
Randomized algorithms (Gibbs/SA), multiscale approach

sorting networks, parallel algorithms

prorgamming with C++
RAII, Move Konstruktion, Smart Pointers,

Templates and generic programming
Exceptions

Constexpr, user defined literals

functors and lambdas
threads, mutex and monitors

promises and futures

parallel programming
parallelism vs. concurrency, speedup (Amdahl/-
Gustavson), races, memory reordering, atomir reg-
isters, RMW (CAS,TAS), deadlock/starvation

25

1.2 Algorithms

[Cormen et al, Kap. 1;Ottman/Widmayer, Kap. 1.1]

26

Algorithm

Algorithm: well defined computing procedure to compute output data
from input data

27

example problem

Input : A sequence of n numbers (a1, a2, . . . , an)
Output : Permutation (a′1, a

′
2, . . . , a

′
n) of the sequence (ai)1≤i≤n, such that

a′1 ≤ a′2 ≤ · · · ≤ a′n

Possible input
(1, 7, 3), (15, 13, 12,−0.5), (1) . . .

Every example represents a problem instance

28

Examples for algorithmic problems

Tables and statistis: sorting, selection and searching
routing: shortest path algorithm, heap data structure
DNA matching: Dynamic Programming
fabrication pipeline: Topological Sorting
autocomletion and spell-checking: Dictionaries / Trees
Symboltables (compiler) : Hash-Tables
The travelling Salesman: Dynamic Programming, Minimum
Spanning Tree, Simulated Annealing
Drawing at the computer: Digitizing lines and circles, filling
polygons
Page-Rank: (Markov-Chain) Monte Carlo ...

29

Characteristics

Extremely large number of potential solutions
Practical applicability

30

Darta Structures

Organisation of the data tailored towards the algorithms that
operate on the data.
Programs = algorithms + data structures.

31

Very hard problems.

NP-compleete problems: no known efficient solution (but the
non-existence of such a solution is not proven yet!)
Example: travelling salesman problem

32

A dream

If computers were infinitely fast and had an infinite amount of
memory ...
... then we would still need the theory of algorithms (only) for
statements about correctness (and termination).

33

The reality

Resources are bounded and not free:

Computing time→ Efficiency
Storage space→ Efficiency

34

1.3 Ancient Egyptian Multiplication

Ancient Egyptian Multiplication

35

Ancient Egyptian Multiplication1

Compute 11 · 9

11 9
22 4
44 2
88 1
99 −

9 11
18 5
36 2
72 1
99

1 Double left, integer division
by 2 on the right

2 Even number on the right⇒
eliminate row.

3 Add remaining rows on the
left.

1Also known as russian multiplication
36

Advantages

Short description, easy to grasp
Efficient to implement on a computer: double = left shift, divide by
2 = right shift

Beispiel

left shift 9 = 010012 → 100102 = 18
right shift 9 = 010012 → 001002 = 4

37

Questions

Does this always work (negative numbers?)?
If not, when does it work?
How do you prove correctness?
Is it better than the school method?
What does “good” mean at all?
How to write this down precisely?

38

Observation

If b > 1, a ∈ Z, then:

a · b =
{
2a · b2 falls b gerade,
a+ 2a · b−12 falls b ungerade.

39

Termination

a · b =





a falls b = 1,
2a · b2 falls b gerade,
a+ 2a · b−12 falls b ungerade.

40

Recursively, Functional

f(a, b) =





a falls b = 1,
f(2a, b2) falls b gerade,
a+ f(2a, b−12) falls b ungerade.

41

Implemented

// pre: b>0
// post: return a∗b
int f(int a, int b){

if(b==1)
return a;

else if (b%2 == 0)
return f(2∗a, b/2);

else
return a + f(2∗a, (b−1)/2);

}

42

Correctnes

f(a, b) =





a if b = 1,
f(2a, b2) if b even,
a+ f(2a · b−12) if b odd.

Remaining to show: f(a, b) = a · b for a ∈ Z, b ∈ N+.

43

Proof by induction

Base clause: b = 1⇒ f(a, b) = a = a · 1.
Hypothesis: f(a, b′) = a · b′ für 0 < b′ ≤ b

Step: f(a, b+ 1)
!
= a · (b+ 1)

f(a, b+ 1) =





f(2a,

≤b︷ ︸︸ ︷
b+ 1

2
) = a · (b+ 1) if b odd,

a+ f(2a,
b

2︸︷︷︸
≤b

) = a+ a · b if b even.

�
44

End Recursion
The recursion can be writen as end recursion

// pre: b>0
// post: return a∗b
int f(int a, int b){

if (b==1)
return a;

else if (b%2 == 0)
return f(2∗a, b/2);

else
return a + f(2∗a, (b−1)/2);

}

// pre: b>0
// post: return a∗b
int f(int a, int b){

if (b==1)
return a;

int z=0;
if (b%2 != 0){
−−b;
z=a;

}
return z + f(2∗a, b/2);

}

45

End-Recursion⇒ Iteration

// pre: b>0
// post: return a∗b
int f(int a, int b){

if (b==1)
return a;

int z=0;
if (b%2 != 0){
−−b;
z=a;

}
return z + f(2∗a, b/2);

}

int f(int a, int b) {
int res = 0;
while (b != 1) {

int z = 0;
if (b % 2 != 0){
−−b;
z = a;

}
res += z;
a ∗= 2; // neues a
b /= 2; // neues b

}
res += a; // Basisfall b=1
return res ;

}
46

Simplify
int f(int a, int b) {

int res = 0;
while (b != 1) {

int z = 0;
if (b % 2 != 0){
−−b;
z = a;

}
res += z;
a ∗= 2;
b /= 2;

}
res += a;
return res ;

}

Direkt in res
Teil der Division

in den Loop

// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0)
res += a;

a ∗= 2;
b /= 2;

}
return res ;

}

47

Invariants!
// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0){
res += a;
−−b;

}
a ∗= 2;
b /= 2;

}
return res;

}

Sei x := a · b.
here: x = a · b+ res

if here x = a · b+ res ...

... then also here x = a · b+ res

b even

here: x = a · b+ res

here: x = a · b+ res und b = 0

Also res = x.

48

Conclusion

The expression a · b+ res is an invariant

Values of a, b, res change but the invariant remains basically
unchanged
The invariant is only temporarily discarded by some statement
but then re-established
If such short statement sequences are considered atomiv, the
value remains indeed invariant
In particular the loop contains an invariant, called loop invariant
and operates there like the induction step in induction proofs.
Invariants are obviously powerful tools for proofs!

49

Further simplification
// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0){
res += a;
−−b;

}
a ∗= 2;
b /= 2;

}
return res ;

}

// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

res += a ∗ (b%2);
a ∗= 2;
b /= 2;

}
return res ;

}

50

Analysis

// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

res += a ∗ (b%2);
a ∗= 2;
b /= 2;

}
return res ;

}

Ancient Egyptian Multiplication corre-
sponds to the school method with
radix 2.

1 0 0 1 × 1 0 1 1
1 0 0 1 (9)

1 0 0 1 (18)
1 1 0 1 1

1 0 0 1 (72)
1 1 0 0 0 1 1 (99)

51

Efficiency
Question: how long does a multiplication of a and b take?

Measure for efficiency
Total number of fundamental operations: double, divide by 2, shift, test for
“even”, addition
In the recursive and recursive code: maximally 6 operations per call or
iteration, respectively

Essential criterion:
Number of recursion calls or
Number iterations (in the iterative case)

b
2n ≤ 1 holds for n ≥ log2 b. Consequently not more than 6dlog2 be
fundamental operations.

52

1.4 Fast Integer Multiplication

[Ottman/Widmayer, Kap. 1.2.3]

53

Example 2: Multiplication of large Numbers

Primary school:
a b c d
6 2 · 3 7

1 4 d · b
4 2 d · a

6 c · b
1 8 c · a

= 2 2 9 4

2 · 2 = 4 single-digit multiplications. ⇒ Multiplication of two n-digit
numbers: n2 single-digit multiplications

54

Observation

ab · cd = (10 · a+ b) · (10 · c+ d)

= 100 · a · c+ 10 · a · c
+ 10 · b · d+ b · d
+ 10 · (a− b) · (d− c)

55

Improvement?

a b c d
6 2 · 3 7

1 4 d · b
1 4 d · b
1 6 (a− b) · (d− c)
1 8 c · a

1 8 c · a
= 2 2 9 4

→ 3 single-digit multiplications.

56

Large Numbers

6237 · 5898 = 62︸︷︷︸
a′

37︸︷︷︸
b′

· 58︸︷︷︸
c′

98︸︷︷︸
d′

Recursive / inductive application: compute a′ · c′, a′ · d′, b′ · c′ and
c′ · d′ as shown above.

→ 3 · 3 = 9 instead of 16 single-digit multiplications.

57

Generalization

Assumption: two numbers with n digits each, n = 2k for some k.

(10n/2a+ b) · (10n/2c+ d) = 10n · a · c+ 10n/2 · a · c
+ 10n/2 · b · d+ b · d
+ 10n/2 · (a− b) · (d− c)

Recursive application of this formula: algorithm by Karatsuba and Ofman (1962).

58

Analysis

M(n): Number of single-digit multiplications.

Recursive application of the algorithm from above⇒ recursion
equality:

M(2k) =

{
1 if k = 0,

3 ·M(2k−1) if k > 0.

59

Iterative Substition

Iterative substition of the recursion formula in order to guess a
solution of the recursion formula:

M(2k) = 3 ·M(2k−1) = 3 · 3 ·M(2k−2) = 32 ·M(2k−2)

= . . .
!
= 3k ·M(20) = 3k.

60

Proof: induction
Hypothesis H:

M(2k) = 3k.

Base clause (k = 0):

M(20) = 30 = 1. X

Induction step (k → k + 1):

M(2k+1)
def
= 3 ·M(2k)

H
= 3 · 3k = 3k+1.

�
61

Comparison

Traditionally n2 single-digit multiplications.

Karatsuba/Ofman:

M(n) = 3log2 n = (2log2 3)log2 n = 2log2 3 log2 n = nlog2 3 ≈ n1.58.

Example: number with 1000 digits: 10002/10001.58 ≈ 18.

62

Best possible algorithm?

We only know the upper bound nlog2 3.

There are (for large n) practically relevant algorithms that are faster.
The best upper bound is not known.

Lower bound: n/2 (each digit has to be considered at at least once)

63

1.5 Finde den Star

64

Is this constructive?

Exercise: find a faster multiplication algorithm.
Unsystematic search for a solution⇒ .

Let us consider a more constructive example.

65

Example 3: find the star!

Room with n > 1 people.
Star: Person that does not
know anyone but is known by
everyone.
Fundamental operation: Only
allowed question to a person A:
”Do you know B?” (B 6= A)

known?

66

Problemeigenschaften

Possible: no star present
Possible: one star present
More than one star possible?

Assumption: two stars S1, S2.
S1 knows S2⇒ S1 no star.
S1 does not know S2 ⇒ S2 no
star. ⊥

Nein!

Nein!

67

Naive solution

Ask everyone about everyone

Result:

1 2 3 4
1 - yes no no
2 no - no no
3 yes yes - no
4 yes yes yes -

Star is 2.

Numer operations (questions): n · (n− 1).
68

Better approach?

Induction: partition the problem into smaller pieces.

n = 2: Two questions suffice
n > 2: Send one person out. Find the star within n− 1 people.
Then check A with 2 · (n− 1) questions.

Overal
F (n) = 2(n−1)+F (n−1) = 2(n−1)+2(n−2)+ · · ·+2 = n(n−1).

No benefit.

69

Improvement

Idea: avoid to send the star out.

Ask an arbitrary person A if she knows B.
If yes: A is no star.
If no: B is no star.
At the end 2 people remain that might contain a star. We check
the potential star X with any person that is out.

70

Analyse

F (n) =

{
2 for n = 2,

1 + F (n− 1) + 2 for n > 2.

Iterative substitution:

F (n) = 3+F (n−1) = 2 ·3+F (n−2) = · · · = 3 ·(n−2)+2 = 3n−4.

Proof: exercise!

71

Moral

With many problems an inductive or recursive pattern can be
developed that is based on the piecewise simplification of the
problem. Next example in the next lecture.

72

