Data Structures and Algorithms

Course at D-MATH (CSE) of ETH Zurich

22

24

 Felix Friedrich
 Algorithms and Data Structures, Three Examples

 FS 2018
 1

Goals of the course	Goals of the course
Understand the design and analysis of fundamental algorithms	On the one hand
and data structures.	Essential basic knowlegde from computer science.
An advanced insight into a modern programming model (with C++).	Andererseits
 Knowledge about chances, problems and limits of the parallel and concurrent computing. 	Preparation for your further course of studies and practical considerations.

Contents

data structures / algorithms

The notion invariant, cost model, Landau notation algorithms design, induction searching, selection and sorting dictionaries: hashing and search trees

sorting networks, parallel algorithms Randomized algorithms (Gibbs/SA), multiscale approach geometric algorithms, high peformance LA dynamic programming graphs, shortest paths, backtracking, flow

prorgamming with C++

RAII, Move Konstruktion, Smart Pointers, Constexpr, user defined literals promises and futures Templates and generic programming threads, mutex and monitors Exceptions functors and lambdas

parallel programming

parallelism vs. concurrency, speedup (Amdahl/-Gustavson), races, memory reordering, atomir registers, RMW (CAS,TAS), deadlock/starvation

1.2 Algorithms

[Cormen et al, Kap. 1;Ottman/Widmayer, Kap. 1.1]

26

Algorithm

example problem

Algorithm: well defined computing procedure to compute output data from *input* data

Input :	A sequence of n numbers (a_1, a_2, \ldots, a_n)
Output :	Permutation $(a'_1, a'_2, \ldots, a'_n)$ of the sequence $(a_i)_{1 \leq i \leq n}$, such that
	$a_1' \le a_2' \le \dots \le a_n'$

Possible input

 $(1, 7, 3), (15, 13, 12, -0.5), (1) \dots$

Every example represents a problem instance

Examples for algorithmic problems

- Tables and statistis: sorting, selection and searching
- routing: shortest path algorithm, heap data structure
- DNA matching: Dynamic Programming
- fabrication pipeline: Topological Sorting
- autocomletion and spell-checking: Dictionaries / Trees
- Symboltables (compiler) : Hash-Tables
- The travelling Salesman: Dynamic Programming, Minimum Spanning Tree, Simulated Annealing
- Drawing at the computer: Digitizing lines and circles, filling polygons
- Page-Rank: (Markov-Chain) Monte Carlo ...

Characteristics

- Extremely large number of potential solutions
- Practical applicability

Very hard problems.

Darta Structures

Organisation of the data tailored towards the algorithms that operate on the data.

Programs = algorithms + data structures.

NP-complete problems: no known efficient solution (but the non-existence of such a solution is not proven yet!) 30

32

Example: travelling salesman problem

A dream

The reality

- If computers were infinitely fast and had an infinite amount of memory ...
- ... then we would still need the theory of algorithms (only) for statements about correctness (and termination).

Resources are bounded and not free:

- $\blacksquare Computing time \rightarrow Efficiency$
- $\blacksquare Storage space \rightarrow Efficiency$

Ancient Egyptian Multiplication¹

1.3 Ancient Egyptian Multiplication

Ancient Egyptian Multiplication

Compute $11 \cdot 9$

- Double left, integer division by 2 on the right
- 2 Even number on the right \Rightarrow eliminate row.
- Add remaining rows on the left.

33

¹Also known as russian multiplication

Advantages

Questions

- Short description, easy to grasp
- Efficient to implement on a computer: double = left shift, divide by 2 = right shift

Beispiel

 $\begin{array}{ll} \textit{left shift} & 9 = 01001_2 \rightarrow 10010_2 = 18 \\ \textit{right shift} & 9 = 01001_2 \rightarrow 00100_2 = 4 \end{array}$

- Does this always work (negative numbers?)?
- If not, when does it work?
- How do you prove correctness?
- Is it better than the school method?
- What does "good" mean at all?
- How to write this down precisely?

Observation Termination

37

If b > 1, $a \in \mathbb{Z}$, then:

$$a \cdot b = \begin{cases} 2a \cdot \frac{b}{2} & \text{falls } b \text{ gerade,} \\ a + 2a \cdot \frac{b-1}{2} & \text{falls } b \text{ ungerade} \end{cases}$$

$$a \cdot b = \begin{cases} a & \text{falls } b = 1, \\ 2a \cdot \frac{b}{2} & \text{falls } b \text{ gerade,} \\ a + 2a \cdot \frac{b-1}{2} & \text{falls } b \text{ ungerade.} \end{cases}$$

38

Recursively, Functional

Implemented

$$f(a,b) = \begin{cases} a & \text{falls } b = 1, \\ f(2a, \frac{b}{2}) & \text{falls } b \text{ gerade,} \\ a + f(2a, \frac{b-1}{2}) & \text{falls } b \text{ ungerade.} \end{cases}$$

// pre: b>0
// post: return a*b
int f(int a, int b){
 if(b==1)
 return a;
 else if (b%2 == 0)
 return f(2*a, b/2);
 else
 return a + f(2*a, (b-1)/2);
}

Correctnes

$$f(a,b) = \begin{cases} a & \text{if } b = 1, \\ f(2a, \frac{b}{2}) & \text{if } b \text{ even}, \\ a + f(2a \cdot \frac{b-1}{2}) & \text{if } b \text{ odd}. \end{cases}$$

Remaining to show: $f(a, b) = a \cdot b$ for $a \in \mathbb{Z}$, $b \in \mathbb{N}^+$.

Proof by induction

Base clause: $b = 1 \Rightarrow f(a, b) = a = a \cdot 1$. Hypothesis: $f(a, b') = a \cdot b'$ für $0 < b' \le b$ Step: $f(a, b + 1) \stackrel{!}{=} a \cdot (b + 1)$

$$f(a, b+1) = \begin{cases} f(2a, \underbrace{\frac{b+1}{2}}) = a \cdot (b+1) & \text{if } b \text{ odd,} \\ a + f(2a, \underbrace{\frac{b}{2}}_{\leq b}) = a + a \cdot b & \text{if } b \text{ even}. \end{cases}$$

42

44

End Recursion

The recursion can be writen as end recursion

	// pre: b>0
// pre: b>0	// post: return a*b
// post: return a*b	<pre>int f(int a, int b){</pre>
<pre>int f(int a, int b){</pre>	if(b==1)
if(b==1)	return a;
return a;	int $z=0;$
else if $(b\%2 == 0)$	\longrightarrow if (b%2 != 0){
return f(2*a, b/2);	——b;
else	z=a;
return a + $f(2*a, (b-1)/2);$	}
}	return z + f(2*a, k
	}

End-Recursion \Rightarrow **Iteration**

46

48

Simplify		Invariants!	
<pre>int f(int a, int b) { int res = 0; while (b != 1) { int z = 0; if (b % 2 != 0){ b; \longrightarrow Teil der Division z = a; \longrightarrow Direkt in res } res += z; a *= 2; b /= 2; } res += a; \longrightarrow in den Loop return res; }</pre>	<pre>// pre: b>0 // post: return a*b int f(int a, int b) { int res = 0; while (b > 0) { if (b % 2 != 0) res += a; a *= 2; b /= 2; } return res; }</pre>	<pre>// pre: b>0 // post: return a*b int f(int a, int b) { int res = 0; while (b > 0) { if (b % 2 != 0){ res += a;</pre>	Sei $x := a \cdot b$. here: $x = \boxed{a \cdot b + res}$ if here $x = a \cdot b + res$ then also here $x = a \cdot b + res$ b even here: $x = a \cdot b + res$ here: $x = a \cdot b + res$ und $b = 0$ Also $res = x$.

45

b/2);

Conclusion

The expression $a \cdot b + res$ is an *invariant*

- Values of *a*, *b*, *res* change but the invariant remains basically unchanged
- The invariant is only temporarily discarded by some statement but then re-established
- If such short statement sequences are considered atomiv, the value remains indeed invariant
- In particular the loop contains an invariant, called *loop invariant* and operates there like the induction step in induction proofs.
- Invariants are obviously powerful tools for proofs!

Further simplification

Analysis

// pre: b>0
// post: return a*b
int f(int a, int b) {
 int res = 0;
 while (b > 0) {
 res += a * (b%2);
 a *= 2;
 b /= 2;
 }
 return res;
}

Ancient Egyptian Multiplication corresponds to the school method with radix 2.

	1	1	0	1	\times	1	0	0	1
(9)	1	0	0	1					
(18)		1	0	0	1				
	1	1	0	1	1				
(72)				1	0	0	1		
(99)	1	1	0	0	0	1	1		
	1 1 1	0 1 1	0 0 0	1 0 1 1 0	1 1 0 0	0	1		

Efficiency

Question: how long does a multiplication of *a* and *b* take?

- Measure for efficiency
 - Total number of fundamental operations: double, divide by 2, shift, test for "even", addition

50

52

- In the recursive and recursive code: maximally 6 operations per call or iteration, respectively
- Essential criterion:
 - Number of recursion calls or
 - Number iterations (in the iterative case)
- $\frac{b}{2^n} \leq 1$ holds for $n \geq \log_2 b$. Consequently not more than $6\lceil \log_2 b \rceil$ fundamental operations.

Example 2: Multiplication of large Numbers

Primary school:

	a	b		С	d	
	6	2	•	3	7	
				1	4	$d \cdot b$
			4	2		$d \cdot a$
				6		$c \cdot b$
		1	8			$c \cdot a$
=		2	2	9	4	

 $2 \cdot 2 = 4$ single-digit multiplications. \Rightarrow Multiplication of two *n*-digit numbers: n^2 single-digit multiplications

54

56

Observation	Improvement?
$ab \cdot cd = (10 \cdot a + b) \cdot (10 \cdot c + d)$ = 100 \cdot a \cdot c + 10 \cdot a \cdot c + 10 \cdot b \cdot d + b \cdot d + 10 \cdot (a - b) \cdot (d - c)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	- 2294

53

 \rightarrow 3 single-digit multiplications.

1.4 Fast Integer Multiplication

[Ottman/Widmayer, Kap. 1.2.3]

Large Numbers

$$6237 \cdot 5898 = \underbrace{62}_{a'} \underbrace{37}_{b'} \cdot \underbrace{58}_{c'} \underbrace{98}_{d'}$$

Recursive / inductive application: compute $a' \cdot c'$, $a' \cdot d'$, $b' \cdot c'$ and $c' \cdot d'$ as shown above.

Recursive application of the algorithm from above \Rightarrow recursion

 $M(2^{k}) = \begin{cases} 1 & \text{if } k = 0, \\ 3 \cdot M(2^{k-1}) & \text{if } k > 0. \end{cases}$

 $\rightarrow 3 \cdot 3 = 9$ instead of 16 single-digit multiplications.

M(n): Number of single-digit multiplications.

Generalization

Assumption: two numbers with *n* digits each, $n = 2^k$ for some *k*.

$$(10^{n/2}a + b) \cdot (10^{n/2}c + d) = 10^n \cdot a \cdot c + 10^{n/2} \cdot a \cdot c + 10^{n/2} \cdot b \cdot d + b \cdot d + 10^{n/2} \cdot (a - b) \cdot (d - c)$$

Recursive application of this formula: algorithm by Karatsuba and Ofman (1962).

58

60

Analysis

equality:

Iterative Substition

Iterative substition of the recursion formula in order to guess a solution of the recursion formula:

$$M(2^{k}) = 3 \cdot M(2^{k-1}) = 3 \cdot 3 \cdot M(2^{k-2}) = 3^{2} \cdot M(2^{k-2})$$

= ...
$$\stackrel{!}{=} 3^{k} \cdot M(2^{0}) = 3^{k}.$$

Proof: induction

Hypothesis H:

$$M(2^k) = 3^k.$$

Base clause (k = 0):

$$M(2^0) = 3^0 = 1.$$
 \checkmark

Induction step ($k \rightarrow k + 1$):

$$M(2^{k+1}) \stackrel{\mathrm{def}}{=} 3 \cdot M(2^k) \stackrel{\mathrm{H}}{=} 3 \cdot 3^k = 3^{k+1}$$

Comparison

Traditionally n^2 single-digit multiplications. Karatsuba/Ofman:

$$M(n) = 3^{\log_2 n} = (2^{\log_2 3})^{\log_2 n} = 2^{\log_2 3 \log_2 n} = n^{\log_2 3} \approx n^{1.58}.$$

62

64

Example: number with 1000 digits: $1000^2/1000^{1.58} \approx 18$.

Best possible algorithm?

We only know the upper bound $n^{\log_2 3}$.

There are (for large n) practically relevant algorithms that are faster. The best upper bound is not known.

Lower bound: n/2 (each digit has to be considered at at least once)

1.5 Finde den Star

Is this constructive?

Exercise: find a faster multiplication algorithm. Unsystematic search for a solution \Rightarrow $\textcircled{\circlet}$. Let us consider a more constructive example.

Example 3: find the star!

Room with n > 1 people.

- Star: Person that does not know anyone but is known by everyone.
- Fundamental operation: Only allowed question to a person A: "Do you know B?" (B ≠ A)

66

68

Problemeigenschaften

- Possible: no star present
- Possible: one star present
- More than one star possible?

Assumption: two stars S_1 , S_2 . S_1 knows $S_2 \Rightarrow S_1$ no star. S_1 does not know $S_2 \Rightarrow S_2$ no star. \perp

Naive solution

Ask everyone about everyone

٦e	S	u	I	ι	•	

	1	2	3	4
1	-	yes	no	no
2	no	-	no	no
3	yes	yes	-	no
4	yes	yes	yes	-

Star is 2.

Numer operations (questions): $n \cdot (n-1)$.

Better approach?

Induction: partition the problem into smaller pieces.

- n = 2: Two questions suffice
- n > 2: Send one person out. Find the star within n 1 people. Then check A with $2 \cdot (n - 1)$ questions.

Overal

$$F(n) = 2(n-1) + F(n-1) = 2(n-1) + 2(n-2) + \dots + 2 = n(n-1).$$

No benefit. 😕

Improvement

Idea: avoid to send the star out.

- Ask an arbitrary person A if she knows B.
- If yes: *A* is no star.
- If no: *B* is no star.
- At the end 2 people remain that might contain a star. We check the potential star *X* with any person that is out.

70

72

Analyse Moral

69

$$F(n) = \begin{cases} 2 & \text{for } n = 2, \\ 1 + F(n-1) + 2 & \text{for } n > 2. \end{cases}$$

Iterative substitution:

$$F(n) = 3 + F(n-1) = 2 \cdot 3 + F(n-2) = \dots = 3 \cdot (n-2) + 2 = 3n - 4.$$

Proof: exercise!

With many problems an inductive or recursive pattern can be developed that is based on the piecewise simplification of the problem. Next example in the next lecture.