Datenstrukturen und Algorithmen

Exercise 9

FS 2018

Program of today

Feedback of last exercise
Repetition theory

Programming Task

1. Feedback of last exercise

Topological Sorting

9 @ m Graph with cycles

7N

C

Topological Sorting

@ @ m Graph with cycles

m Two minimal cycles sharing an

/\@

C

Topological Sorting

9 @ m Graph with cycles
m Two minimal cycles sharing an

edge
@\ m Remove edge —> cycle-free

Topological Sorting

m Graph with cycles

m Two minimal cycles sharing an
edge

m Remove edge —> cycle-free

m Topological Sorting by
“removing” elements with
in-degree 0

Topological Sorting

m Graph with cycles

m Two minimal cycles sharing an
edge

m Remove edge —> cycle-free

m Topological Sorting by
“removing” elements with
in-degree 0

Topological Sorting

/'

()

T

~®)

m Graph with cycles

m Two minimal cycles sharing an
edge

m Remove edge —> cycle-free

m Topological Sorting by
“removing” elements with
in-degree 0

Topological Sorting

@)

\@

m Graph with cycles

m Two minimal cycles sharing an
edge

m Remove edge —> cycle-free

m Topological Sorting by
“removing” elements with
in-degree 0

Topological Sorting

m Graph with cycles

m Two minimal cycles sharing an
edge

m Remove edge —> cycle-free

m Topological Sorting by
“removing” elements with
in-degree 0

Depth-first-search and Breadth-first-search

Starting at A
DFS: A,B,C,D,E,F,.H,G
BFS: A,B,F,C,H,D,G, E

Depth-first-search and Breadth-first-search

Starting at A
DFS: A,B,C,D,E. F,H,G

BFS: A,B,F,C,H,D,G,E

There is no starting vertex where the DFS ordering equals the BFS
ordering.

Depth-first-search and Breadth-first-search

Star: DFS ordering equals BFS ordering

AR

S & (&)

Starting at A
DFS: A,B,C,D, E
BFS: A.B,C,D,E

Depth-first-search and Breadth-first-search

Star: DFS ordering equals BFS ordering

AR

S & (&)

Starting at A Starting at C'
DFS: A,B,C.D,E DFS: C,A,B,D,E
BFS: A,B,C,D,E BFS: C,A,B,D, E

Huffman Node

using SharedNode=std: :shared_ptr<Node>;
struct Node{

char value;

int frequency;

SharedNode left;

SharedNode right;

// constructor for leafs

Node(char v, int f): value{v}, frequency{f},
left{nullptr}, right{nullptr} {}

// constructor for inner nodes

Node (SharedNode 1, SharedNode r): value{O},
frequency{l->frequency + r->frequency}, left{l},

right{r} {};

-

Huffman Code- Frequencies

std: :map<char, int> m;

char x; int n = 0;

while (in.get(x)){
++m[x]; ++n;

}

std::cout << "n = " << n << " characters" << std::endl;

Huffman Code - Heap

struct comparator {

bool operator() (const SharedNode a, const SharedNode b) const {
return a->frequency > b->frequency;

}

};

// build heap
std: :priority_queue<SharedNode, std::vector<SharedNode>, comparat
for (auto y: m){
q.push(std: :make_shared<Node>(y.first, y.second));
}

Huffman Code - Tree

// build code tree
SharedNode left;
while (!q.empty()){
left = q.top();q.pop(Q);
if (1q.empty)){
auto right = q.top();q.popQ);
q.push(std: :make_shared<Node>(left, right));

2. Repetition theory

Dijkstra ShortestPath Basic Idea

Set V' of nodes is partitioned into

m the set)/ of nodes for which a shortest
path from s is already known,

m the set R = Uyens V7 (v) \ M of nodes
where a shortest path is not yet known
but that are accessible directly from M,

m the set of nodes that
have not yet been considered.

Algorithm Dijkstra

Initial: PL(n) < oo fiir alle Knoten.

m Set PL(s) «+ 0

m Start with M = {s}. Set k + s.
m While a new node k is added and this is not the target node

For each neighbour node n of k:

B compute path length x to n via k
B If PL(n) = oo, than add n to R
B If 2 < PL(n) < oo, then set PL(n) < = and adapt R .

Choose as new node k the node with smallest path length in R.

General Weighted Graphs

Relaxing Step as with Dijkstra:

Relax(u, v) (u,v € V, (u,v) € E) ds ()
if ds(v) > ds(u) + c(u,v) then " a
ds(v) < ds(u) + c(u,v) !

return true @
return false

~ -

Problem: cycles with negative weights can shorten the path, a
shortest path is not guaranteed to exist.

Dynamic Programming Approach (Bellman)

Induction over number of edges ds[i, v]: Shortest path from s to v via
maximally 7 edges.

ds[i,v] = min{ds[i — 1,v], min (ds[i — 1, u] + c(u,v))

(uw)EE

ds[0, s] = 0,d,[0,v] = oo Vv # s.

DP Induction for all shortest paths

d*(u,v) = Minimal weight of a path u ~ v with intermediate nodes
in V¥
Induktion

d*(u,v) = min{d" " (u,v),d" " (u, k) + " (k,v)}(k > 1)

d(u,v) = c(u,v)

DP Algorithm Floyd-Warshall(()

Input : Acyclic Graph G = (V, E, ¢)
Output : Minimal weights of all paths d
d’ + ¢
for k< 1to |V]| do
for i + 1 to |V| do
for j < 1to |V]| do
d*(v;, v;) = min{d* ! (v;, v;), d*(v;, vg) + d* vy, v;) }

Runtime: O(|V?)

Remark: Algorithm can be executed with a single matrix d (in place).

Algorithm Johnson(()

Input : Weighted Graph G = (V, E, ¢)
Output : Minimal weights of all paths D.

New node s. Compute G' = (V', E', /)
if BellmanFord(G’, s) = false then return “graph has negative cycles'

foreach v € V' do
h(v) < d(s,v) // d aus BellmanFord Algorithmus

foreach (u,v) € £’ do
- e(u,v) < c(u,v) + h(u) — h(v)
foreach u € V do
d(u,-) + Dijkstra(G", u)
foreach v € V do
‘ D(u,v) < d(u,v) + h(v) — h(u)

Comparison of the approaches

Algorithm Runtime

Dijkstra (Heap) c, >0 1in O(|E|log|V]|)

Dijkstra (Fibonacci-Heap) ¢, >0 1:n O(|E|+ |V]log|V]) *
Bellman-Ford In O(E|-|V])
Floyd-Warshall nn OV

Johnson nn O(V|-|E|-log|V])
Johnson (Fibonacci-Heap) nn O(|VPlog|V|+ V|- |E|)"

* amortized

Algorithm MST-Kruskal((G)

Input : Weighted Graph G = (V, E, ¢)
Output : Minimum spanning tree with edges A.

Sort edges by weight c(e;) < ... < ¢(en)
A0
for k. =1 tom do
if (V, AU {e}) acyclic then
A<+ E'U{e}

return (V, A, ¢)

3. Programming Task

Closeness Centrality

m Given: an adjacency matrix for an undirected graph on n vertices.
m Output: the closeness centrality C(v) of every vertex v.

Cv)= > d(v,u)

ueV\{v}

Closeness Centrality

m Given: an adjacency matrix for an undirected graph on n vertices.
m Output: the closeness centrality C(v) of every vertex v.

Clo)= > d(v,u)

ueV\{v}

m Intuition: If many connected vertices are close to v, then C(v) is
small.

m ‘How central is the vertex in its connected component?”

All Pairs Shortest Paths

m We require d(u,v) for all vertex pairs (u,v).
m —> compute all shortest paths using Floyd-Warshall.

template<typename Matrix>
void allPairsShortestPaths(unsigned n, Matrix& m)

{

// your code here

m Simply overwrite m with the distance values.
m Attention: initially O means “no edge".
m Undirected graph: m[i] [j] == m[j] [i]

23

Closeness Centrality

vector<vector<unsigned> > adjacencies(n,
vector<unsigned>(n, 0));

vector<string> names(n);
//
allPairsShortestPaths(n, adjacencies);
for(unsigned i = 0; i < n; ++i) {

cout << names[i] << ": ";

unsigned centrality = O;

// your code here

cout << centrality << endl;

}

Closeness Centrality: Input Data

m A graph that stems from collaborations on scientific papers.

m The vertices of the graph are the co-authors of the
mathematician Paul Erdos.

m There is an edge between them if the authors have jointly
published a paper.

m Source: https://oakland.edu/enp/thedata/

https://oakland.edu/enp/thedata/

Closeness Centrality: Output

vertices: 511

ABBOTT, HARVEY LESLIE : 1625
ACZEL, JANOS D. : 1681
AGOH, TAKASHI : 2132
AHARONI, RON : 1578
AIGNER, MARTIN S. : 1589
AJTAI, MIKLOS : 1492
ALAOGLU, LEONIDAS* : 0

ALAVI, YOUSEF : 1561

Where does the 0 come from?

Questions?

	Feedback of last exercise
	Repetition theory
	Programming Task

