Datenstrukturen und Algorithmen

Exercise 8

FS 2018

Program of today

1 Feedback of last exercise

2 Repetition theory

3 Programming Task

$$H_{\gamma,y}: \mathcal{P} \mapsto \gamma |\mathcal{P}| + \sum_{I \in \mathcal{P}} \sum_{i \in I} (y_i - \mu_I)^2$$

$$H_{\gamma,y}: \mathcal{P} \mapsto \gamma |\mathcal{P}| + \sum_{I \in \mathcal{P}} \sum_{i \in I} (y_i - \mu_I)^2$$

• As in exercise 1 efficient computation of mean: $\mu_I = \frac{1}{|I|} \sum_{i \in I} y_i$

$$H_{\gamma,y}: \mathcal{P} \mapsto \gamma |\mathcal{P}| + \sum_{I \in \mathcal{P}} \sum_{i \in I} (y_i - \mu_I)^2$$

As in exercise 1 efficient computation of mean: $\mu_I = \frac{1}{|I|} \sum_{i \in I} y_i$ \Rightarrow prefixsum \checkmark

$$H_{\gamma,y}: \mathcal{P} \mapsto \gamma |\mathcal{P}| + \sum_{I \in \mathcal{P}} \sum_{i \in I} (y_i - \mu_I)^2$$

- As in exercise 1 efficient computation of mean: $\mu_I = \frac{1}{|I|} \sum_{i \in I} y_i$ \Rightarrow prefixsum \checkmark
- Efficient computing $e_{[l,r)} = \sum_{i=l}^{r-1} (y_i \mu_{[l,r)})^2$

$$H_{\gamma,y}: \mathcal{P} \mapsto \gamma |\mathcal{P}| + \sum_{I \in \mathcal{P}} \sum_{i \in I} (y_i - \mu_I)^2$$

- As in exercise 1 efficient computation of mean: $\mu_I = \frac{1}{|I|} \sum_{i \in I} y_i$ \Rightarrow prefixsum \checkmark
- Efficient computing $e_{[l,r)} = \sum_{i=l}^{r-1} (y_i \mu_{[l,r)})^2$ $\Rightarrow e_{[l,r)} = \sum_{i=l}^{r-1} y_i^2 \frac{1}{r-l} \left(\sum_{i=l}^{r-1} y_i\right)^2$ ✓

$$H_{\gamma,y}: \mathcal{P} \mapsto \gamma |\mathcal{P}| + \sum_{I \in \mathcal{P}} \sum_{i \in I} (y_i - \mu_I)^2$$

- As in exercise 1 efficient computation of mean: $\mu_I = \frac{1}{|I|} \sum_{i \in I} y_i$ \Rightarrow prefixsum \checkmark
- Efficient computing $e_{[l,r)} = \sum_{i=l}^{r-1} (y_i \mu_{[l,r)})^2$ $\Rightarrow e_{[l,r)} = \sum_{i=l}^{r-1} y_i^2 \frac{1}{r-l} \left(\sum_{i=l}^{r-1} y_i\right)^2 \checkmark$
- **Dynamic programming**: definition of the table, computation of an entry, calculation order, extracting solution

$$H_{\gamma,y}: \mathcal{P} \mapsto \gamma |\mathcal{P}| + \sum_{I \in \mathcal{P}} \sum_{i \in I} (y_i - \mu_I)^2$$

- As in exercise 1 efficient computation of mean: $\mu_I = \frac{1}{|I|} \sum_{i \in I} y_i$ \Rightarrow prefixsum \checkmark
- Efficient computing $e_{[l,r)} = \sum_{i=l}^{r-1} (y_i \mu_{[l,r)})^2$ $\Rightarrow e_{[l,r)} = \sum_{i=l}^{r-1} y_i^2 \frac{1}{r-l} \left(\sum_{i=l}^{r-1} y_i\right)^2 \checkmark$
- **Dynamic programming**: definition of the table, computation of an entry, calculation order, extracting solution \Rightarrow ?

Dynamic programming

- **Definition of the DP table**: two tables: B and V with each $n+1\times 1$ entries, B[k] contains the pointer to the end of the best previous interval, V[k] contains the corresponding attainable minimum of H_{γ} .
- **Computation of an entry**: for computing new entry in B[k+1] compute H for all partitions from 0 to k+1.
- **Calculation order**: from left to right
- **Extracting the solution**: construct intervals with B[n] going from right to left, Minimum is given by V[n]

Sums

Given a data vector of length $n \in \mathbb{N}$: $(y_i)_{i=1...n} \in \mathbb{R}^n$

Sum
$$m_n := \sum_{i=1}^n y_i \Rightarrow \mu_n = m_n/n$$

Sum of Squares $s_n := \sum_{i=1}^n y_i^2$

$$e_n := \sum_{i=1}^n (y_i - \mu_n)^2 = \sum_{i=1}^n y_i^2 - 2\mu_n y_i + \mu_n^2$$

$$= s_n - 2\mu_n \left(\sum_{i=1}^n y_i\right) + n \cdot \mu_n^2 = s_n - 2\mu_n \cdot n\mu_n + n \cdot \mu_n^2$$

$$= s_n - n \cdot \mu_n^2 = s_n - m_n^2/n$$

Į

Statistics

```
// post: return mean of data[from,to)
double mean(unsigned int from, unsigned int to) const{
    assert (from < to \&\& to <= n);
    return getsum(vsum,from,to) / (to-from);
// post: return err of constant approximation in interval [from,to)
double err(unsigned int from, unsigned int to) const{
    assert (from < to \&\& to <= n):
    double m = getsum(vsum,from,to);
    return getsum(vssq,from,to) - m*m / (to-from);
```

(

DP – Setup and Base Case

```
double MinimizeH(double gamma, const Statistics& s,
                  std:: vector<double>& result){
    int n = s. size();
    // B[k] contains the pointer to the end of the best previous interval
    // i.e. best possible approximation is given by
    // best possible approximation of [0,B[k]), [B[k],k)
    std:: vector < int > B(n+1):
    // V(k) contains the corresponsing attainable minimum of H gamma
    std:: vector<double> V(n+1):
    // base case: empty interval
    B[0] = 0:
    V[0] = 0:
```

DP – Construct Table

```
// now consider all combinations of Partition ([0, left )) + [left , right)
for (int right=1; right <= n; ++right){</pre>
    // interval [0, right)
    int best = 0:
    double min = gamma + s.err(0,right);
    // intervals [left, right), left > 0
    for (int left = 1; left < right; ++left){
        double h = V[left] + gamma + s.err(left,right);
        if (h < min){
            min = h: best = left:
    B[right] = best;
    V[right] = min;
```

DP – Reconstruct Solution

```
// reconstruct solution
unsigned int right=n;
while (right != 0){
    unsigned int left = B[right];
     fill (result, s. mean(left, right), left, right);
    right = left:
return V[n]:
```

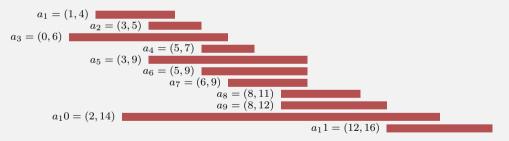
(

2. Repetition theory

A Different Example of a Successful Greedy Strategy, Graphs

Activity Selection

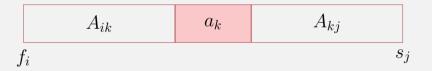
Coordination of activities that use a common resource exclusively. Activities $S = \{a_1, a_2, \dots, a_n\}$ with start- and finishing times $0 \le s_i \le f_i < \infty$, increasingly sorted by finishing times.



Activity Selection Problem: Find a maximal subset of compatible (non-intersecting) activities.

Dynamic Programming Approach?

Let $S_{ij} = \{a_k : f_i \leq s_k \land f_k \leq s_j\}$. Let A_{ij} be a maximal subset of compatible activities from S_{ij} . Moreover, let $a_k \in A_{ij}$ and $A_{ik} = S_{ik} \cap A_{ij}$, $A_{ki} = S_{kj} \cap A_{ij}$, thus $A_{ij} = A_{ik} + \{a_k\} + A_{kj}$.



Straightforward: A_{ik} and A_{kj} must be maximal, otherwise $A_{ij} = A_{ik} + \{a_k\} + A_{kj}$ would not be maximal.

Dynamic Programming Approach?

Let $c_{ij} = |A_{ij}|$. Then the following recursion holds $c_{ij} = c_{ik} + c_{kj} + 1$, therefore

$$c_{ij} = \begin{cases} 0 & \text{falls } S_{ij} = \emptyset, \\ \max_{a_k \in S_{ij}} \{c_{ik} + c_{kj} + 1\} & \text{falls } S_{ij} \neq \emptyset. \end{cases}$$

Could now try dynamic programming.

Greedy

Intuition: choose the activity that provides the earliest end time (a_1) . That leaves maximal space for other activities.

Remaining problem: activities that start after a_1 ends. (There are no activites that can end before a_1 starts.)

Greedy

Theorem

Given: Subproblem S_k , a_m an activity from S_k with earliest end time. Then a_m is contained in a maximal subset of compatible activities from S_k .

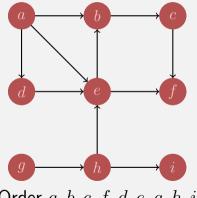
Let A_k be a maximal subset with compatible activities from S_K and a_j be an activity from A_k with earliest end time. If $a_j = a_m \Rightarrow$ done. If $a_j \neq a_m$. Then consider $A_k' = A_k - \{a_j\} \cup \{a_m\}$. A_k' conists of compatible activities and is also maximal because $|A_k'| = |A_k|$.

Algorithm Recursive Activity Select (s, f, k, n)

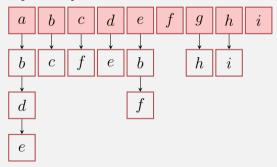
```
Input:
                   Sequence of start and end points (s_i, f_i), 1 \le i \le n, s_i \le f_i,
                   f_i \leq f_{i+1} for all i. 1 \leq k \leq n
                   Set of all compatible activitivies.
Output:
m \leftarrow k + 1
while m \le n and s_m \le f_k do
    m \leftarrow m + 1
if m \le n then
    return \{a_m\} \cup \text{RecursiveActivitySelect}(s, f, m, n)
else
     return 0
```

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

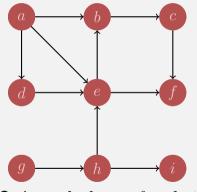


Order a, b, c, f, d, e, q, h, i

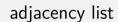


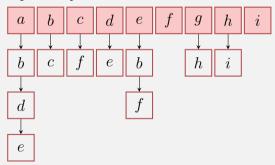
Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.



Order a, b, d, e, c, f, g, h, i





Iterative DFS-Visit(G, v)

```
Input: graph G = (V, E)
Stack S \leftarrow \emptyset; push(S, v)
while S \neq \emptyset do
     w \leftarrow \mathsf{pop}(S)
     if \neg(w \text{ visited}) then
           mark w visited
           foreach (w,c) \in E do // (in reverse order, potentially)
                if \neg(c \text{ visited}) then
           igcup_{\mathsf{push}}(S,c)
```

Stack size up to |E|, for each node an extra of $\Theta(\deg^+(w)+1)$ operations. Overall: $\mathcal{O}(|V|+|E|)$

Including all calls from the above main program: $\Theta(|V| + |E|)$

Iterative BFS-Visit(G, v)

```
Input: graph G = (V, E)
Queue Q \leftarrow \emptyset
Mark v as active
enqueue(Q, v)
while Q \neq \emptyset do
     w \leftarrow \mathsf{dequeue}(Q)
     mark w visited
     foreach (w,c) \in E do
          if \neg (c \text{ visited} \lor c \text{ active}) then
                Mark c as active
              enqueue(Q, c)
```

- Algorithm requires extra space of $\mathcal{O}(|V|)$. (Why does that simple approach not work with DFS?)
- Running time including main program: $\Theta(|V| + |E|)$.

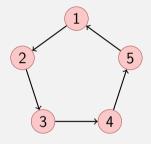
Topological Sorting

Topological Sorting of an acyclic directed graph G=(V,E): Bijective mapping

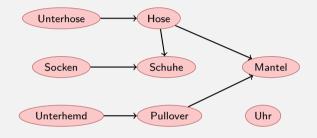
$$\operatorname{ord}: V \to \{1, \dots, |V|\} \quad | \quad \operatorname{ord}(v) < \operatorname{ord}(w) \ \forall \ (v, w) \in E.$$

We can identify i with v_i . Topological sorting $= \langle v_1, \dots, v_{|V|} \rangle$.

(Counter-)Examples



Cyclic graph: cannot be sorted topologically.



A possible toplogical sorting of the graph: Unterhemd,Pullover,Unterhose,Uhr,Hose,Mantel,Socken,Schuhe

Observation

Theorem

A directed graph G=(V,E) permits a topological sorting if and only if it is acyclic.

Algorithm Topological-Sort(G)

```
Input: graph G = (V, E).
Output: Topological sorting ord
Stack S \leftarrow \emptyset
foreach v \in V do A[v] \leftarrow 0
foreach (v, w) \in E do A[w] \leftarrow A[w] + 1 // Compute in-degrees
foreach v \in V with A[v] = 0 do push(S, v) // Memorize nodes with in-degree 0
i \leftarrow 1
while S \neq \emptyset do
    v \leftarrow \mathsf{pop}(S); ord[v] \leftarrow i; i \leftarrow i+1 // Choose node with in-degree 0
    foreach (v, w) \in E do // Decrease in-degree of successors
         A[w] \leftarrow A[w] - 1
      if A[w] = 0 then push(S, w)
```

if i = |V| + 1 then return ord else return "Cycle Detected"

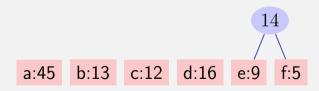
3. Programming Task

Brilliantly Simple Algorithm

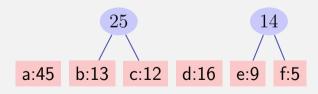
- Start with the set *C* of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.

a:45 b:13 c:12 d:16 e:9 f:5

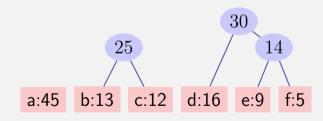
- Start with the set *C* of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.



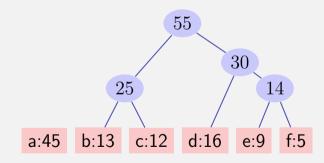
- Start with the set *C* of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.



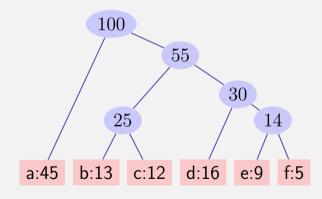
- Start with the set *C* of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.



- Start with the set *C* of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.



- Start with the set *C* of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.



Algorithm Huffman(C)

```
Input:
                    code words c \in C
Output:
                    Root of an optimal code tree
n \leftarrow |C|
Q \leftarrow C
for i=1 to n-1 do
     allocate a new node z
     z.left \leftarrow \mathsf{ExtractMin}(Q)
                                                           extract word with minimal frequency.
     z.right \leftarrow \mathsf{ExtractMin}(Q)
     z.\mathsf{freq} \leftarrow z.\mathsf{left.freq} + z.\mathsf{right.freq}
     Insert(Q, z)
return ExtractMin(Q)
```

Hints for the Implementation

```
Use std::map (#include <map>)
std::map<std::string,int> observations;
// simple access to elements
++observations["cat"];
++observations["mouse"];
++observations["mouse"]:
// a map is a collection of std::pair
// show all entries
for (auto x:observations){
       std::cout << "observations of " << x.first << ":" << x.second
```

Hints for the Implementation

```
Use std::priority_queue (#include <queue>)
struct MvClass {
   int x;
   MyClass(int X): x{X} {};
};
struct compare{
   bool operator() (const MyClass& a, const MyClass& b){
       return a.x < b.x:
};
std::priority_queue<MyClass, std::vector<MyClass>. compare> q;
g.push(MvClass(10)):
```

Hints for the Implementation

```
Use Smart Pointers std::shared_ptr (#include <memory>)
struct List {
   int value:
   std::shared ptr<List> next;
   List(std::shared ptr<List> n, int v): value{v}, next{n} {};
};
// automatic memory management, we do not need to care
std::shared_ptr<List> 1 = std::make_shared<List>(nullptr, 10);
1 = std::make shared<List>(1, 20);
while (1 != nullptr){ // output: 20 10
       std::cout << 1->value << std::endl:</pre>
       1 = 1 - \text{next}:
```

Questions?