
Datenstrukturen und Algorithmen

Exercise 7

FS 2018

1

Program of today

1 Feedback of last exercise(s)

2 Repetition theory

2

Feedback

Open hashing:

h′(k) = dln(k + 1)e mod q

→ not suitable: (k = 0) 7→ 0
s(j, k) = kj mod p → not suitable: (k = 0) 7→ 0, (k = 1) 7→ 1
s(j, k) = ((k · j) mod q) + 1 → not suitable: 1 if k is multiple of
q, and range p− q is not covered

3

Feedback

Open hashing:

h′(k) = dln(k + 1)e mod q → not suitable: (k = 0) 7→ 0

s(j, k) = kj mod p → not suitable: (k = 0) 7→ 0, (k = 1) 7→ 1
s(j, k) = ((k · j) mod q) + 1 → not suitable: 1 if k is multiple of
q, and range p− q is not covered

3

Feedback

Open hashing:

h′(k) = dln(k + 1)e mod q → not suitable: (k = 0) 7→ 0
s(j, k) = kj mod p

→ not suitable: (k = 0) 7→ 0, (k = 1) 7→ 1
s(j, k) = ((k · j) mod q) + 1 → not suitable: 1 if k is multiple of
q, and range p− q is not covered

3

Feedback

Open hashing:

h′(k) = dln(k + 1)e mod q → not suitable: (k = 0) 7→ 0
s(j, k) = kj mod p → not suitable: (k = 0) 7→ 0, (k = 1) 7→ 1

s(j, k) = ((k · j) mod q) + 1 → not suitable: 1 if k is multiple of
q, and range p− q is not covered

3

Feedback

Open hashing:

h′(k) = dln(k + 1)e mod q → not suitable: (k = 0) 7→ 0
s(j, k) = kj mod p → not suitable: (k = 0) 7→ 0, (k = 1) 7→ 1
s(j, k) = ((k · j) mod q) + 1

→ not suitable: 1 if k is multiple of
q, and range p− q is not covered

3

Feedback

Open hashing:

h′(k) = dln(k + 1)e mod q → not suitable: (k = 0) 7→ 0
s(j, k) = kj mod p → not suitable: (k = 0) 7→ 0, (k = 1) 7→ 1
s(j, k) = ((k · j) mod q) + 1 → not suitable: 1 if k is multiple of
q, and range p− q is not covered

3

Feedback

Coocoo hashing

h1(k) = k mod 5, h2(k) = bk/5c mod 5
add 27, 2, 32

T_1: __, __, 27, __, __ T_2: __, __, __, __, __

T_1: __, __, 2, __, __ T_2: 27, __, __, __, __

T_1: __, __, 27, __, __ T_2: 2, 32, __, __, __

4

Feedback

Coocoo hashing

h1(k) = k mod 5, h2(k) = bk/5c mod 5
add 7: infinite loop

T_1: __, __, 27, __, __ T_2: 2, 32, __, __, __
7: T_1: __, __, 7, __, __ T_2: 27, 32, __, __, __
2: T_1: __, __, 2, __, __ T_2: 27, 7, __, __, __

32: T_1: __, __, 32, __, __ T_2: 2, 7, __, __, __
27: T_1: __, __, 27, __, __ T_2: 2, 32, __, __, __
7: ...

5

Feedback

Finding a Sub-Array
// calculating hash_a, hash_b, c_to_k
It1 window_end = from;
for(It2 current = begin; current != end;

++current, ++window_end) {
if(window_end == to) return to;
hash_b = (C * hash_b % M + *current) % M;
hash_a = (C * hash_a % M + *window_end) % M;
c_to_k = c_to_k * C % M;

}

6

Feedback
Finding a Sub-Array
// looking for b and updating hash_a
for(It1 window_begin = from;

; ++window_begin, ++window_end) {
if(hash_a == hash_b)

if(std::equal(window_begin, window_end, begin, end))
return window_begin;

if(window_end == to) return to;
hash_a = (C * hash_a % M + *window_end

+ (M - c_to_k) * *window_begin % M) % M;
}

7

AVL insertion

Given an AVL tree, is there an order that produces the same tree
and does not cause any rotations

8

AVL insertion

Given an AVL tree, is there an order that produces the same tree
and does not cause any rotations

8

AVL insertion - sketch of proof

Any sequence that keeps the height order intact is fine
Proof?
By induction over the height of the tree.

Hypothesis: Keys at height h and lower are placed in the same
place and do not cause insertion.
Step: Show that the traversal is the same as in the original tree,
yields same position. Use AVL property of T to show that there will
not be a height difference bigger than 1, and therefore no rotation.

9

AVL insertion - sketch of proof

Any sequence that keeps the height order intact is fine
Proof?
By induction over the height of the tree.
Hypothesis: Keys at height h and lower are placed in the same
place and do not cause insertion.

Step: Show that the traversal is the same as in the original tree,
yields same position. Use AVL property of T to show that there will
not be a height difference bigger than 1, and therefore no rotation.

9

AVL insertion - sketch of proof

Any sequence that keeps the height order intact is fine
Proof?
By induction over the height of the tree.
Hypothesis: Keys at height h and lower are placed in the same
place and do not cause insertion.
Step: Show that the traversal is the same as in the original tree,
yields same position. Use AVL property of T to show that there will
not be a height difference bigger than 1, and therefore no rotation.

9

2. Repetition theory

10

AVL Condition

AVL Condition: for each node v of a
tree bal(v) ∈ {−1, 0, 1}

v

Tl(v)

Tr(v)

h h+ 1

h+ 2

11

Balance at Insertion Point

=⇒

+1 0p p

n

case 1: bal(p) = +1

=⇒

−1 0p p

n

case 2: bal(p) = −1

Finished in both cases because the subtree height did not change

12

Balance at Insertion Point

=⇒

0 +1p p

n

case 3.1: bal(p) = 0 right

=⇒

0 −1p p

n

case 3.2: bal(p) = 0, left

Not finished in both case. Call of upin(p)

13

upin(p) - invariant

When upin(p) is called it holds that

the subtree from p has grown and
bal(p) ∈ {−1,+1}

14

upin(p)

Assumption: p is left son of pp1

=⇒

pp +1 pp 0

p p

case 1: bal(pp) = +1, done.

=⇒

pp 0 pp −1

p p

case 2: bal(pp) = 0, upin(pp)

In both cases the AVL-Condition holds for the subtree from pp

1If p is a right son: symmetric cases with exchange of +1 and −1
15

upin(p)
Assumption: p is left son of pp

pp −1

p

case 3: bal(pp) = −1,

This case is problematic: adding n to the subtree from pp has violated
the AVL-condition. Re-balance!
Two cases bal(p) = −1, bal(p) = +1

16

Rotationen

case 1.1 bal(p) = −1. 2

y

x

t1

t2

t3

pp −1

p −1

h

h− 1

h− 1

=⇒
rotation
right

x

y

t1 t2 t3

pp 0

p 0

h h− 1 h− 1

2p right son: bal(pp) = bal(p) = +1, left rotation
17

Rotationen
case 1.2 bal(p) = +1. 3

z

x

y

t1

t2
t3

t4

pp −1

p +1

h

h− 1
h− 1
h− 2

h− 2
h− 1

h− 1

=⇒
double
rotation
left-right

y

x z

t1 t2
t3

t4

pp 0

h− 1 h− 1
h− 2

h− 2
h− 1 h− 1

3p right son: bal(pp) = +1, bal(p) = −1, double rotation right left
18

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution: How can the final solution be
extracted once the table has been filled?

19

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table:

What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution: How can the final solution be
extracted once the table has been filled?

19

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?

Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution: How can the final solution be
extracted once the table has been filled?

19

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry:

How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution: How can the final solution be
extracted once the table has been filled?

19

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?

Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution: How can the final solution be
extracted once the table has been filled?

19

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Calculation order:

In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution: How can the final solution be
extracted once the table has been filled?

19

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?

Extracting the solution: How can the final solution be
extracted once the table has been filled?

19

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution:

How can the final solution be
extracted once the table has been filled?

19

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution: How can the final solution be
extracted once the table has been filled?

19

Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?
Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?
Extracting the solution: How can the final solution be
extracted once the table has been filled?

19

Longest ascending Sequence in matrix

Given n×m matrix A:

9 27 42 41 48
35 39 8 3 5
12 49 2 38 4
15 47 29 28 6
19 1 25 33 10

20

Longest ascending Sequence in matrix

Given n×m matrix A:

9 27 42 41 48
35 39 8 3 5
12 49 2 38 4
15 47 29 28 6
19 1 25 33 10

Wanted longest ascending sequence:

4, 6, 28, 29, 47, 49
20

Definition of the DP table

What are the dimensions of the table?

n×m(×2)

What is the meaning of each entry?
In T [x][y] is the length of the longest ascending sequence
that ends in A[x][y]
In S[x][y] are the coordinates of the predecessor in ascending
sequence (if exists)

21

Definition of the DP table

What are the dimensions of the table?
n×m

(×2)

What is the meaning of each entry?
In T [x][y] is the length of the longest ascending sequence
that ends in A[x][y]
In S[x][y] are the coordinates of the predecessor in ascending
sequence (if exists)

21

Definition of the DP table

What are the dimensions of the table?
n×m(×2)

What is the meaning of each entry?
In T [x][y] is the length of the longest ascending sequence
that ends in A[x][y]
In S[x][y] are the coordinates of the predecessor in ascending
sequence (if exists)

21

Definition of the DP table

What are the dimensions of the table?
n×m(×2)

What is the meaning of each entry?

In T [x][y] is the length of the longest ascending sequence
that ends in A[x][y]
In S[x][y] are the coordinates of the predecessor in ascending
sequence (if exists)

21

Definition of the DP table

What are the dimensions of the table?
n×m(×2)

What is the meaning of each entry?
In T [x][y] is the length of the longest ascending sequence
that ends in A[x][y]
In S[x][y] are the coordinates of the predecessor in ascending
sequence (if exists)

21

Computation of an entry

How can an entry be computed from the values of other entries?
Which entries do not depend on others?

Consider neighbors with smaller entry in A
From the smaller entries choose entry with the largest entry
in T
Update T and S. (S gets coordinate from selected neighbor,
T gets value from selected neighbor increased by one)

22

Computation of an entry

How can an entry be computed from the values of other entries?
Which entries do not depend on others?

Consider neighbors with smaller entry in A

From the smaller entries choose entry with the largest entry
in T
Update T and S. (S gets coordinate from selected neighbor,
T gets value from selected neighbor increased by one)

22

Computation of an entry

How can an entry be computed from the values of other entries?
Which entries do not depend on others?

Consider neighbors with smaller entry in A
From the smaller entries choose entry with the largest entry
in T

Update T and S. (S gets coordinate from selected neighbor,
T gets value from selected neighbor increased by one)

22

Computation of an entry

How can an entry be computed from the values of other entries?
Which entries do not depend on others?

Consider neighbors with smaller entry in A
From the smaller entries choose entry with the largest entry
in T
Update T and S. (S gets coordinate from selected neighbor,
T gets value from selected neighbor increased by one)

22

Computation of an entry

How can an entry be computed from the values of other entries?
Which entries do not depend on others?

Consider neighbors with smaller entry in A
From the smaller entries choose entry with the largest entry
in T
Update T and S. (S gets coordinate from selected neighbor,
T gets value from selected neighbor increased by one)

22

Calculation order

In which order can entries be computed so that values needed for
each entry have been determined in previous steps?

Start with smallest element
in A and so on. (Means that
one has to sort A)

Arbitrary order, if entry is
already computed skip it
otherwise compute for
smaller neighbor recursively.

23

Calculation order

In which order can entries be computed so that values needed for
each entry have been determined in previous steps?

Start with smallest element
in A and so on. (Means that
one has to sort A)

Arbitrary order, if entry is
already computed skip it
otherwise compute for
smaller neighbor recursively.

23

Calculation order

In which order can entries be computed so that values needed for
each entry have been determined in previous steps?

Start with smallest element
in A and so on. (Means that
one has to sort A)

Arbitrary order, if entry is
already computed skip it
otherwise compute for
smaller neighbor recursively.

23

Extracting the solution

How can the final solution be extracted once the table has been
filled?

Consider all entries to find one with a longest sequence.
From there, we can reconstruct the solution by following the
corresponding predecessors.

24

Extracting the solution

How can the final solution be extracted once the table has been
filled?

Consider all entries to find one with a longest sequence.
From there, we can reconstruct the solution by following the
corresponding predecessors.

24

Piecewise Constant Approximation

0 50 100 150 200

0

0.5

1

P

S

data y
approximation fP

25

Piecewise Constant Approximation

Hγ,y : P 7→ γ|P|+
∑
I∈P

∑
i∈I

(yi − µI)2

P : (set of intervals Ii, such that ⋃
i Ii = S).

Goal: find the partition P̂ such that Hγ,y(P̂) is minimal
Utilize: efficient computation of the mean using prefix sums
(exercise 1): µI = 1

|I|
∑
i∈I yi

Utilize: Efficient computation of e[l,r) = ∑r−1
i=l (yi − µ[l,r))2

26

Piecewise Constant Approximation

Hγ,y : P 7→ γ|P|+
∑
I∈P

∑
i∈I

(yi − µI)2

P : (set of intervals Ii, such that ⋃
i Ii = S).

Goal: find the partition P̂ such that Hγ,y(P̂) is minimal
Utilize: efficient computation of the mean using prefix sums
(exercise 1): µI = 1

|I|
∑
i∈I yi

Utilize: Efficient computation of e[l,r) = ∑r−1
i=l (yi − µ[l,r))2

26

Piecewise Constant Approximation

Hγ,y : P 7→ γ|P|+
∑
I∈P

∑
i∈I

(yi − µI)2

P : (set of intervals Ii, such that ⋃
i Ii = S).

Goal: find the partition P̂ such that Hγ,y(P̂) is minimal
Utilize: efficient computation of the mean using prefix sums
(exercise 1): µI = 1

|I|
∑
i∈I yi

Utilize: Efficient computation of e[l,r) = ∑r−1
i=l (yi − µ[l,r))2

26

Piecewise Constant Approximation

Hγ,y : P 7→ γ|P|+
∑
I∈P

∑
i∈I

(yi − µI)2

P : (set of intervals Ii, such that ⋃
i Ii = S).

Goal: find the partition P̂ such that Hγ,y(P̂) is minimal
Utilize: efficient computation of the mean using prefix sums
(exercise 1): µI = 1

|I|
∑
i∈I yi

Utilize: Efficient computation of e[l,r) = ∑r−1
i=l (yi − µ[l,r))2

26

Piecewise Constant Approximation

Hγ,y : P 7→ γ|P|+
∑
I∈P

∑
i∈I

(yi − µI)2

Goal: find the partition P̂ such that Hγ,y(P̂) is minimal
Dynamic programming: definition of the table, computation of
an entry, calculation order, extracting solution
Utilize§: Hγ,y(P ∪ {[l, r)}) = Hγ,y(P) + γ + e[l,r)

§Assumption: P ∪ {[l, r)} is a partition
27

Questions?

28

	Feedback of last exercise(s)
	Repetition theory

