Datenstrukturen und Algorithmen

Exercise 7

FS 2018

Program of today

1 Feedback of last exercise(s)

2 Repetition theory

•
$$h'(k) = \lceil \ln(k+1) \rceil \mod q$$

•
$$h'(k) = \lceil \ln(k+1) \rceil \mod q \rightarrow \text{not suitable:} \ (k=0) \mapsto 0$$

•
$$h'(k) = \lceil \ln(k+1) \rceil \mod q \rightarrow \text{not suitable:} \ (k=0) \mapsto 0$$

• $s(j,k) = k^j \mod p$

•
$$h'(k) = \lceil \ln(k+1) \rceil \mod q \rightarrow \text{not suitable:} (k=0) \mapsto 0$$

• $s(j,k) = k^j \mod p \rightarrow \text{not suitable:} (k=0) \mapsto 0, (k=1) \mapsto 1$

•
$$h'(k) = \lceil \ln(k+1) \rceil \mod q \rightarrow \text{not suitable:} (k=0) \mapsto 0$$

• $s(j,k) = k^j \mod p \rightarrow \text{not suitable:} (k=0) \mapsto 0, (k=1) \mapsto 1$
• $s(j,k) = ((k \cdot j) \mod q) + 1$

Coocoo hashing

 T_1:
 ..., 27, ..., T_2:
 ..., ..., ..., ..., ..., ...

 T_1:
 ..., 2, ..., ..., T_2:
 27, ..., ..., ..., ..., ...

 T_1:
 ..., 27, ..., ..., T_2:
 2, 32, ..., ..., ..., ...

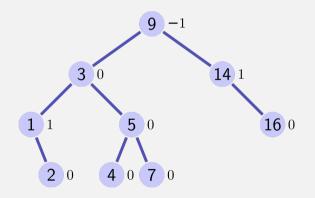
Coocoo hashing

```
Finding a Sub-Array
// calculating hash a, hash b, c to k
It1 window end = from;
for(It2 current = begin; current != end;
   ++current, ++window end) {
  if (window end == to) return to;
 hash b = (C * hash b \% M + *current) \% M;
 hash a = (C * hash a \% M + *window end) \% M;
 c to k = c to k * C % M:
}
```

```
Finding a Sub-Array
// looking for b and updating hash a
for(It1 window_begin = from;
       ; ++window begin, ++window end) {
 if(hash a == hash b)
   if(std::equal(window_begin, window_end, begin, end))
     return window begin:
 if (window end == to) return to;
 hash_a = (C * hash_a % M + *window_end
          + (M - c to k) * *window_begin % M) % M;
ጉ
```

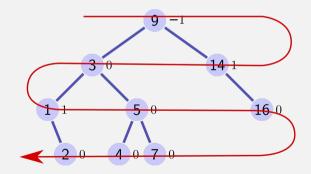
AVL insertion

Given an AVL tree, is there an order that produces the same tree and does not cause any rotations



AVL insertion

Given an AVL tree, is there an order that produces the same tree and does not cause any rotations



AVL insertion - sketch of proof

- Any sequence that keeps the height order intact is fine
- Proof?
- By induction over the height of the tree.

AVL insertion - sketch of proof

- Any sequence that keeps the height order intact is fine
- Proof?
- By induction over the height of the tree.
- Hypothesis: Keys at height h and lower are placed in the same place and do not cause insertion.

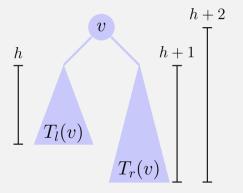
AVL insertion - sketch of proof

- Any sequence that keeps the height order intact is fine
- Proof?
- By induction over the height of the tree.
- Hypothesis: Keys at height h and lower are placed in the same place and do not cause insertion.
- Step: Show that the traversal is the same as in the original tree, yields same position. Use AVL property of T to show that there will not be a height difference bigger than 1, and therefore no rotation.

2. Repetition theory

AVL Condition

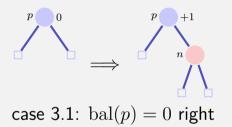
AVL Condition: for each node v of a tree $bal(v) \in \{-1, 0, 1\}$

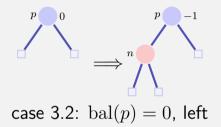


Balance at Insertion Point

Finished in both cases because the subtree height did not change

Balance at Insertion Point





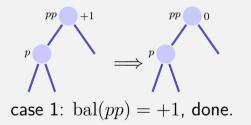
Not finished in both case. Call of upin(p)

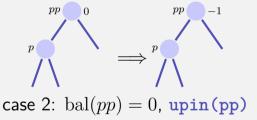
When upin(p) is called it holds that

• the subtree from p has grown and • $bal(p) \in \{-1, +1\}$

upin(p)

Assumption: p is left son of pp^1



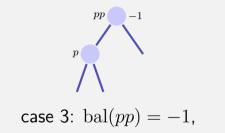


In both cases the AVL-Condition holds for the subtree from pp

 $^{^1\}mathrm{lf}\ p$ is a right son: symmetric cases with exchange of +1 and -1

upin(p)

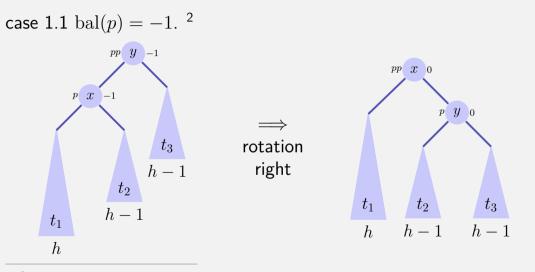
Assumption: p is left son of pp



This case is problematic: adding n to the subtree from pp has violated the AVL-condition. Re-balance!

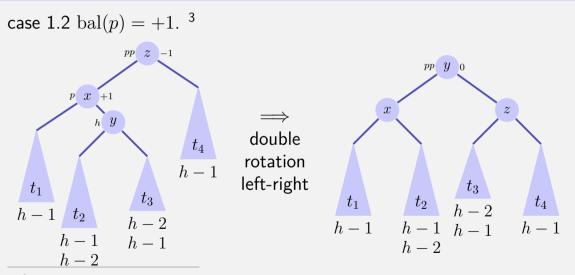
Two cases $\operatorname{bal}(p) = -1$, $\operatorname{bal}(p) = +1$

Rotationen



²p right son: bal(pp) = bal(p) = +1, left rotation

Rotationen



 ${}^{3}p$ right son: $\operatorname{bal}(pp) = +1$, $\operatorname{bal}(p) = -1$, double rotation right left

A complete description of a dynamic program **always** consists of the following aspects:

Definition of the DP table:

A complete description of a dynamic program **always** consists of the following aspects:

Definition of the DP table: What are the dimensions of the table? What is the meaning of each entry?

- Definition of the DP table: What are the dimensions of the table? What is the meaning of each entry?
- **Computation of an entry**:

- Definition of the DP table: What are the dimensions of the table? What is the meaning of each entry?
- Computation of an entry: How can an entry be computed from the values of other entries? Which entries do not depend on others?

- Definition of the DP table: What are the dimensions of the table? What is the meaning of each entry?
- Computation of an entry: How can an entry be computed from the values of other entries? Which entries do not depend on others?
- Calculation order:

- Definition of the DP table: What are the dimensions of the table? What is the meaning of each entry?
- Computation of an entry: How can an entry be computed from the values of other entries? Which entries do not depend on others?
- Calculation order: In which order can entries be computed so that values needed for each entry have been determined in previous steps?

- Definition of the DP table: What are the dimensions of the table? What is the meaning of each entry?
- Computation of an entry: How can an entry be computed from the values of other entries? Which entries do not depend on others?
- Calculation order: In which order can entries be computed so that values needed for each entry have been determined in previous steps?
- Extracting the solution:

- Definition of the DP table: What are the dimensions of the table? What is the meaning of each entry?
- Computation of an entry: How can an entry be computed from the values of other entries? Which entries do not depend on others?
- Calculation order: In which order can entries be computed so that values needed for each entry have been determined in previous steps?
- Extracting the solution: How can the final solution be extracted once the table has been filled?

- Definition of the DP table: What are the dimensions of the table? What is the meaning of each entry?
- Computation of an entry: How can an entry be computed from the values of other entries? Which entries do not depend on others?
- Calculation order: In which order can entries be computed so that values needed for each entry have been determined in previous steps?
- Extracting the solution: How can the final solution be extracted once the table has been filled?

Longest ascending Sequence in matrix

Given $n \times m$ matrix A:

9	27	42	41	48
35	39	8	3	5
12	49	2	38	4
15	47	29	28	6
19	1	25	33	10

Longest ascending Sequence in matrix

Given $n \times m$ matrix A:

9	27	42	41	48
35	39	8	3	5
12	49	2	38	4
15	47	29	28	6
19	1	25	33	10

Wanted longest ascending sequence:

4, 6, 28, 29, 47, 49

• What are the dimensions of the table?

- What are the dimensions of the table?
 - \blacksquare $n \times m$

- What are the dimensions of the table?
 - $\bullet \ n \times m(\times 2)$

- What are the dimensions of the table?
 - $n \times m(\times 2)$
- What is the meaning of each entry?

What are the dimensions of the table?

• $n \times m(\times 2)$

• What is the meaning of each entry?

- In T[x][y] is the length of the longest ascending sequence that ends in A[x][y]
- In S[x][y] are the coordinates of the predecessor in ascending sequence (if exists)

Computation of an entry

How can an entry be computed from the values of other entries? Which entries do not depend on others?

- How can an entry be computed from the values of other entries? Which entries do not depend on others?
 - $\hfill \hfill \hfill$

- How can an entry be computed from the values of other entries? Which entries do not depend on others?
 - Consider neighbors with smaller entry in A
 - $\hfill \hfill \hfill$

- How can an entry be computed from the values of other entries? Which entries do not depend on others?
 - Consider neighbors with smaller entry in A
 - From the smaller entries choose entry with the largest entry in T
 - Update T and S. (S gets coordinate from selected neighbor, T gets value from selected neighbor increased by one)

- How can an entry be computed from the values of other entries? Which entries do not depend on others?
 - Consider neighbors with smaller entry in A
 - From the smaller entries choose entry with the largest entry in T
 - Update T and S. (S gets coordinate from selected neighbor, T gets value from selected neighbor increased by one)

In which order can entries be computed so that values needed for each entry have been determined in previous steps?

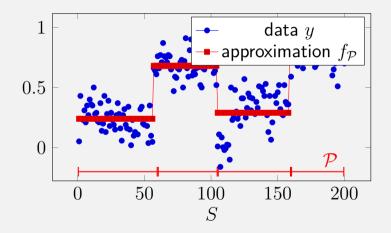
- In which order can entries be computed so that values needed for each entry have been determined in previous steps?
- Start with smallest element in A and so on. (Means that one has to sort A)

- In which order can entries be computed so that values needed for each entry have been determined in previous steps?
- Start with smallest element in A and so on. (Means that one has to sort A)
- Arbitrary order, if entry is already computed skip it otherwise compute for smaller neighbor recursively.

Extracting the solution

How can the final solution be extracted once the table has been filled?

- How can the final solution be extracted once the table has been filled?
 - Consider all entries to find one with a longest sequence.
 From there, we can reconstruct the solution by following the corresponding predecessors.



$$H_{\gamma,y}: \mathcal{P} \mapsto \gamma |\mathcal{P}| + \sum_{I \in \mathcal{P}} \sum_{i \in I} (y_i - \mu_I)^2$$

$$H_{\gamma,y}: \mathcal{P} \mapsto \gamma |\mathcal{P}| + \sum_{I \in \mathcal{P}} \sum_{i \in I} (y_i - \mu_I)^2$$

- \mathcal{P} : (set of intervals I_i , such that $\cup_i I_i = S$).
- Goal: find the partition P̂ such that H_{γ,y}(P̂) is minimal
 Utilize: efficient computation of the mean using prefix sums (exercise 1): μ_I = 1/|Γ| Σ_{i∈I} y_i

$$H_{\gamma,y}: \mathcal{P} \mapsto \gamma |\mathcal{P}| + \sum_{I \in \mathcal{P}} \sum_{i \in I} (y_i - \mu_I)^2$$

- \mathcal{P} : (set of intervals I_i , such that $\bigcup_i I_i = S$).
- Goal: find the partition P̂ such that H_{γ,y}(P̂) is minimal
 Utilize: efficient computation of the mean using prefix sums (exercise 1): μ_I = 1/|Γ| Σ_{i∈I} y_i

• Utilize: Efficient computation of $e_{[l,r)} = \sum_{i=l}^{r-1} (y_i - \mu_{[l,r)})^2$

$$H_{\gamma,y}: \mathcal{P} \mapsto \gamma |\mathcal{P}| + \sum_{I \in \mathcal{P}} \sum_{i \in I} (y_i - \mu_I)^2$$

- \mathcal{P} : (set of intervals I_i , such that $\bigcup_i I_i = S$).
- Goal: find the partition P̂ such that H_{γ,y}(P̂) is minimal
 Utilize: efficient computation of the mean using prefix sums (exercise 1): μ_I = 1/|Γ| Σ_{i∈I} y_i

• Utilize: Efficient computation of $e_{[l,r)} = \sum_{i=l}^{r-1} (y_i - \mu_{[l,r)})^2$

$$H_{\gamma,y}: \mathcal{P} \mapsto \gamma |\mathcal{P}| + \sum_{I \in \mathcal{P}} \sum_{i \in I} (y_i - \mu_I)^2$$

- **Goal:** find the partition $\hat{\mathcal{P}}$ such that $H_{\gamma,y}(\hat{\mathcal{P}})$ is minimal
- Dynamic programming: definition of the table, computation of an entry, calculation order, extracting solution

• Utilize[§]:
$$H_{\gamma,y}(\mathcal{P} \cup \{[l,r)\}) = H_{\gamma,y}(\mathcal{P}) + \gamma + e_{[l,r)}$$

[§]Assumption: $\mathcal{P} \cup \{[l,r)\}$ is a partition

Questions?