Datenstrukturen und Algorithmen

Exercise 7

FS 2018



Program of today

Feedback of last exercise(s)

Repetition theory



Feedback

Open hashing:
m h/(k) = [In(k+1)] mod ¢



Feedback

Open hashing:
m 1/(k) = [In(k + 1)] mod ¢ — not suitable: (k= 0) — 0



Feedback

Open hashing:

m 1/(k) = [In(k + 1)] mod ¢ — not suitable: (k= 0) — 0
m s(j,k) =k mod p



Feedback

Open hashing:

m 1/(k) = [In(k + 1)] mod ¢ — not suitable: (k= 0) — 0
m s(j,k) = K/ mod p — not suitable: (k=0)+—0,(k=1)—1



Feedback

Open hashing:
m 1/(k) = [In(k + 1)] mod ¢ — not suitable: (k= 0) — 0
m s(j,k) = K/ mod p — not suitable: (k=0)+—0,(k=1)—1
m s(j,k) = ((k-j) mod q) +1



Feedback

Open hashing:

m 1/(k) = [In(k + 1)] mod ¢ — not suitable: (k= 0) — 0

m s(j,k) = K/ mod p — not suitable: (k=0)+—0,(k=1)—1

m s(j,k) = ((k-j) mod q) + 1 — not suitable: 1 if k is multiple of
¢, and range p — q is not covered



Feedback

Coocoo hashing

m hi(k) =k mod 5, ho(k) = |k/5] mod 5
m add 27, 2, 32

T 1: ., ., 27, ., T 2: .,
T 1: ., ., 2, ., T 2: 27, __,
T 1 ., 27, T 2: 2, 32,



Feedback

Coocoo hashing

m hi(k) =k mod 5, ho(k) = |k/5] mod 5
m add 7: infinite loop

T1. ., ,27, _, _ T 2:
T T 1. ., ., T, ., __ T 2:
2: T 1. , ., 2, , T 2:
32: T 1: , , 32, , __ T 2:
27: T 1 , , 27, R T 2:



Feedback

Finding a Sub-Array

// calculating hash_a, hash_b, c_to_k
Itl window_end = from;

for(It2 current = begin; current != end;
++current, ++window_end) {
if (window_end == to) return to;

hash_b = (C * hash_b % M + *current) % M;
hash_a = (C * hash_a % M + *window_end) % M;
c_tok =c tok *x C Y M;



Feedback

Finding a Sub-Array

// looking for b and updating hash_a
for(Itl window_begin = from;
; ++window_begin, ++window_end) {
if (hash_a == hash_b)
if(std::equal(window_begin, window_end, begin, end))
return window_begin;
if (window_end == to) return to;
hash_a = (C * hash_a % M + *window_end
+ (M - c_to_k) * *window_begin % M) % M;



AVL insertion

m Given an AVL tree, is there an order that produces the same tree
and does not cause any rotations

30/9\141
/" \ N\



AVL insertion

m Given an AVL tree, is there an order that produces the same tree
and does not cause any rotations

(/\/\1)

S D




AVL insertion - sketch of proof

m Any sequence that keeps the height order intact is fine
m Proof?
m By induction over the height of the tree.



AVL insertion - sketch of proof

Any sequence that keeps the height order intact is fine
Proof?
By induction over the height of the tree.

Hypothesis: Keys at height / and lower are placed in the same
place and do not cause insertion.



AVL insertion - sketch of proof

Any sequence that keeps the height order intact is fine
Proof?
By induction over the height of the tree.

Hypothesis: Keys at height / and lower are placed in the same
place and do not cause insertion.

Step: Show that the traversal is the same as in the original tree,
yields same position. Use AVL property of 1" to show that there will
not be a height difference bigger than 1, and therefore no rotation.



2. Repetition theory



AVL Condition

AVL Condition: for each node v of a
tree bal(v) € {—1,0, 1}




Balance at Insertion Point

/N /N /NN
ANANA ANEEERA /\
case 1: bal(p) = +1 case 2: bal(p) =

Finished in both cases because the subtree height did not change



Balance at Insertion Point

/N N ANVAN
— /\ —/\
case 3.1: bal(p) = 0 right case 3.2: bal(p) = 0, left

Not finished in both case. Call of upin(p)



upin(p) - invariant

When upin(p) is called it holds that

m the subtree from p has grown and
m bal(p) € {-1,+1}



upin(p)

Assumption: p is left son of pp?
p I;< P 70\ P [;0\ p 7\1
ANEEREA ANEEREA

case 1: bal(pp) = +1, done. case 2: bal(pp) = 0, upin(pp)

In both cases the AVL-Condition holds for the subtree from pp

LIf p is a right son: symmetric cases with exchange of +1 and —1



upin(p)

Assumption: p is left son of pp

AN
\

case 3: bal(pp) = —1,

This case is problematic: adding n to the subtree from pp has violated
the AVL-condition. Re-balance!

Two cases bal(p) = —1, bal(p) = +1



Rotationen

case 1.1 bal(p) = —1. 2

pp Y -1

pp T 0O

) N
RN

7N\ —

t3 rotation
h—1 right

il

2p right son: bal(pp) = bal(p) = +1, left rotation



Rotationen

case 1.2 bal(p) = +1. 3

pp Z -1

pp Y 0

N

DN W N aN

rotation
¢ left-right
! ¢ l3 t1
=1 1
h—2

3p right son: bal(pp) = +1, bal(p) = —1, double rotation right left

t3
2. p_o
h—1 h—1
h—2



Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:



Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table:



Dynamic programming
A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?



Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?
m Computation of an entry:



Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?

m Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on

others?



Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?

m Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?

m Calculation order:



Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?

m Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?

m Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?



Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?

m Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?

m Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?

m Extracting the solution:



Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?

m Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?

m Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?

m Extracting the solution: How can the final solution be
extracted once the table has been filled?



Dynamic programming

A complete description of a dynamic program always consists of the
following aspects:

m Definition of the DP table: What are the dimensions of the
table? What is the meaning of each entry?

m Computation of an entry: How can an entry be computed
from the values of other entries? Which entries do not depend on
others?

m Calculation order: In which order can entries be computed so
that values needed for each entry have been determined in
previous steps?

m Extracting the solution: How can the final solution be
extracted once the table has been filled?



Longest ascending Sequence in matrix

Given n X m matrix A:

9 |27 42|41 48
35/39| 8 | 3
12149 | 2 | 38
15|47 29|28
191 1125|3310

o1

IS

(@)




Longest ascending Sequence in matrix

Given . X m matrix A:

9 | 27|42 |41 | 48
35139 8|3 |5
12149 | 2 | 38| 4
15147 129|128 | 6
191 1125|3310

Wanted longest ascending sequence:

4,6,28,29, 47,49



Definition of the DP table

m What are the dimensions of the table?



Definition of the DP table

m What are the dimensions of the table?

ENXMm



Definition of the DP table

m What are the dimensions of the table?

BN X m(><2)



Definition of the DP table

m What are the dimensions of the table?
mn X m(><2)

m What is the meaning of each entry?



Definition of the DP table

m What are the dimensions of the table?
mn X m(><2)

m What is the meaning of each entry?

= In T[z][y] is the length of the longest ascending sequence

that ends in Alz||y]
= In S[z][y] are the coordinates of the predecessor in ascending

sequence (if exists)



Computation of an entry

m How can an entry be computed from the values of other entries?
Which entries do not depend on others?



Computation of an entry

m How can an entry be computed from the values of other entries?
Which entries do not depend on others?

m Consider neighbors with smaller entry in A



Computation of an entry

m How can an entry be computed from the values of other entries?
Which entries do not depend on others?

m Consider neighbors with smaller entry in A
m From the smaller entries choose entry with the largest entry
in T’



Computation of an entry

m How can an entry be computed from the values of other entries?
Which entries do not depend on others?

m Consider neighbors with smaller entry in A

m From the smaller entries choose entry with the largest entry
in T’

m Update 7" and S. (S gets coordinate from selected neighbor,
T gets value from selected neighbor increased by one)



Computation of an entry

m How can an entry be computed from the values of other entries?
Which entries do not depend on others?

m Consider neighbors with smaller entry in A

m From the smaller entries choose entry with the largest entry
in T’

m Update 7" and S. (S gets coordinate from selected neighbor,
T gets value from selected neighbor increased by one)



Calculation order

m In which order can entries be computed so that values needed for
each entry have been determined in previous steps?



Calculation order

m In which order can entries be computed so that values needed for
each entry have been determined in previous steps?

m Start with smallest element
in A and so on. (Means that
one has to sort A)



Calculation order

m In which order can entries be computed so that values needed for
each entry have been determined in previous steps?

m Start with smallest element m Arbitrary order, if entry is
in A and so on. (Means that already computed skip it
one has to sort A) otherwise compute for

smaller neighbor recursively.



Extracting the solution

m How can the final solution be extracted once the table has been
filled?



Extracting the solution

m How can the final solution be extracted once the table has been
filled?

m Consider all entries to find one with a longest sequence.
From there, we can reconstruct the solution by following the
corresponding predecessors.



Piecewise Constant Approximation

1r —o

data y

—=— approximation fp

0.5 E
[ [ :
O | (] o @ 9 L
1 1 . I 7) |
! | T 1 | T |
0 50 100 150 200

S




Piecewise Constant Approximation

H’y,y P ’7|P| + Z Z(yz - /~LI)2

IePicl



Piecewise Constant Approximation

H,y:P =P+ > > (y— MI)2

IePicl

m P: (set of intervals [;, such that U; I; = 5).
m Goal: find the partition P such that H. ,(P) is minimal

m Utilize: efficient computation of the mean using prefix sums
(exercise 1): py = ﬁziel Vi



Piecewise Constant Approximation

H,y:P =P+ > > (y— MI)2

IePicl

m P: (set of intervals [;, such that U; I; = 5).
m Goal: find the partition P such that H. ,(P) is minimal

m Utilize: efficient computation of the mean using prefix sums
(exercise 1): py = ﬁ Siel Ui

m Utilize: Efficient computation of ¢, = Sy — M[z,r))Q



Piecewise Constant Approximation

H,y:P =P+ > > (y— MI)2

IePicl

m P: (set of intervals [;, such that U; I; = 5).
m Goal: find the partition P such that H. ,(P) is minimal

m Utilize: efficient computation of the mean using prefix sums
(exercise 1): py = ﬁ Siel Ui

m Utilize: Efficient computation of ¢, = Sy — M[z,r))Q



Piecewise Constant Approximation

H,y: PP+ > > (y— MI)2

IePicl

= Goal: find the partition P such that H%y(ﬁ) is minimal

m Dynamic programming: definition of the table, computation of
an entry, calculation order, extracting solution

m Utilized: H, ,(PU{[l,r)}) = H,,(P) + v+ ey



Questions?



	Feedback of last exercise(s)
	Repetition theory

