Datenstrukturen und Algorithmen

Exercise 4

FS 2018

Program of today

- 1 Feedback of last exercise
- 2 Repetition theory
 - Self Ordering
 - Skiplisten

3 Programming Task

Which functions to implement for heapsort?

```
void sink(...);
void heapify(...);
void heapsort(...);
```

- heapify can be done inline
- Signature of the functions (for std::vector)?

void sink(vector<int>& A, size_t index, size_t size void heapify(vector<int>& A); void heapsort(vector<int>& A);

Generic (e.g., for MyVector)?

```
template <typename X>
void sink(X& A, size_t index, size_t size);
```

template <typename X>
void heapify(X& A);

template <typename X>
void heapsort(X& A);

2. Repetition theory

Amortized Analysis

Let t_i denote the real costs of the operation i.

Potential function $\Phi_i \ge 0$ for the "account balance" after *i* operations. Amortized costs of the *i*th operation:

$$a_i := t_i + \Phi_i - \Phi_{i-1}.$$

It holds

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} (t_i + \Phi_i - \Phi_{i-1}) = \left(\sum_{i=1}^{n} t_i\right) + \Phi_n - \Phi_0 \ge \sum_{i=1}^{n} t_i.$$

Goal: find potential function that evens out expensive operations.

Problematic with the adoption of a linked list: linear search time

Idea: Try to order the list elements such that accesses over time are possible in a faster way

For example

- Transpose: For each access to a key, the key is moved one position closer to the front.
- Move-to-Front (MTF): For each access to a key, the key is moved to the front of the list.

$$k_1$$
 k_2 k_3 k_4 k_5 \cdots k_{n-1} k_n

Worst case: Alternating sequence of n accesses to k_{n-1} and k_n .

$$k_1$$
 k_2 k_3 k_4 k_5 \cdots k_n k_{n-1}

Worst case: Alternating sequence of n accesses to k_{n-1} and k_n .

$$k_1$$
 k_2 k_3 k_4 k_5 \cdots k_{n-1} k_n

Worst case: Alternating sequence of n accesses to k_{n-1} and k_n .

$$k_1$$
 k_2 k_3 k_4 k_5 \cdots k_{n-1} k_n

Worst case: Alternating sequence of n accesses to k_{n-1} and k_n . Runtime: $\Theta(n^2)$

Move-to-Front:

$$k_1$$
 k_2 k_3 k_4 k_5 \cdots k_{n-1} k_n

Alternating sequence of n accesses to k_{n-1} and k_n .

Move-to-Front:

$$k_{n-1}$$
 k_1 k_2 k_3 k_4 \cdots k_{n-2} k_n

Alternating sequence of n accesses to k_{n-1} and k_n .

Move-to-Front:

Alternating sequence of n accesses to k_{n-1} and k_n .

Move-to-Front:

Alternating sequence of n accesses to k_{n-1} and k_n . Runtime: $\Theta(n)$

Move-to-Front:

Alternating sequence of n accesses to k_{n-1} and k_n . Runtime: $\Theta(n)$ Also here we can provide a sequence of accesses with quadratic runtime, e.g. access to the last element. But there is no obvious strategy to counteract much better than MTF..

Randomized Skip List

Idea: insert a key with random height H with $\mathbb{P}(H = i) = \frac{1}{2^{i+1}}$.

Skip Lists Interface

```
template<typename T> class SkipList {
public:
   SkipList();
   ~SkipList();
```

```
void insert(const T& value);
void erase(const T& value);
```

```
// iterator implementation ...
};
```

- A class Node saves an element value of type T and a std::vector called forward with pointers to successive nodes.
- First Node (without value): head.
- forward[0] points to the following element in the list.
- We use this in an already implemented iterator.

Implementing insert and erase

insert(const T& value)

- create new node
- choose random number of levels
- for each level, find the first smaller node
- set pointers from previous nodes and new node

Implementing insert and erase

insert(const T& value)

- create new node
- choose random number of levels
- for each level, find the first smaller node
- set pointers from previous nodes and new node

erase(const T& value)

- find first smaller node
- check if next node has the according value
- set pointers accordingly
- delete node if necessary

Implementing insert and erase

insert(const T& value)

- create new node
- choose random number of levels
- for each level, find the first smaller node
- set pointers from previous nodes and new node

erase(const T& value)

- find first smaller node
- check if next node has the according value
- set pointers accordingly
- delete node if necessary

Warning: The same value can appear multiple times.

Recap dynamic allocated memory

Important: Every new needs its delete and only one!

Recap dynamic allocated memory

Important: Every new needs its delete and only one!

Therefore "Rule of three":

constructor

copy constructor

destructor

Important: Every new needs its delete and only one!

Therefore "Rule of three":

- constructor
- copy constructor

destructor

being lazy "Rule of two":
never copy (unsure)
make copy constructor private (save)

Questions?

Questions?

Let's get to work.