
Datenstrukturen und Algorithmen

Exercise 4

FS 2018

1



Program of today

1 Feedback of last exercise

2 Repetition theory
Self Ordering
Skiplisten

3 Programming Task

2



Heapsort structure

Which functions to implement for heapsort?

3



Heapsort structure

void sink(...);
void heapify(...);
void heapsort(...);

heapify can be done inline
Signature of the functions (for std::vector)?

4



Heapsort structure

void sink(vector<int>& A, size_t index, size_t size);
void heapify(vector<int>& A);
void heapsort(vector<int>& A);

Generic (e.g., for MyVector)?

5



Heapsort structure

template <typename X>
void sink(X& A, size_t index, size_t size);

template <typename X>
void heapify(X& A);

template <typename X>
void heapsort(X& A);

6



2. Repetition theory

7



Amortized Analysis
Let ti denote the real costs of the operation i.
Potential function Φi ≥ 0 for the “account balance” after i operations.
Amortized costs of the ith operation:

ai := ti + Φi − Φi−1.

It holds
n∑

i=1
ai =

n∑
i=1

(ti + Φi − Φi−1) =
 n∑

i=1
ti

 + Φn − Φ0 ≥
n∑

i=1
ti.

Goal: find potential function that evens out expensive operations.
8



Self Ordered Lists

Problematic with the adoption of a linked list: linear search time
Idea: Try to order the list elements such that accesses over time are
possible in a faster way
For example

Transpose: For each access to a key, the key is moved one position
closer to the front.
Move-to-Front (MTF): For each access to a key, the key is moved
to the front of the list.

9



Transpose

Transpose:

k1 k2 k3 k4 k5 · · · kn−1 kn

kn kn−1kn−1 kn

Worst case: Alternating sequence of n accesses to kn−1 and kn.

Runtime: Θ(n2)

10



Transpose

Transpose:

k1 k2 k3 k4 k5 · · · kn−1 knkn kn−1

kn−1 kn

Worst case: Alternating sequence of n accesses to kn−1 and kn.

Runtime: Θ(n2)

10



Transpose

Transpose:

k1 k2 k3 k4 k5 · · · kn−1 kn

kn kn−1

kn−1 kn

Worst case: Alternating sequence of n accesses to kn−1 and kn.

Runtime: Θ(n2)

10



Transpose

Transpose:

k1 k2 k3 k4 k5 · · · kn−1 kn

kn kn−1

kn−1 kn

Worst case: Alternating sequence of n accesses to kn−1 and kn.
Runtime: Θ(n2)

10



Move-to-Front
Move-to-Front:

k1 k2 k3 k4 k5 · · · kn−1 kn

kn−1 k1 k2 k3 k4 kn−2 knkn kn−1 k1 k2 k3 kn−3 kn−2

Alternating sequence of n accesses to kn−1 and kn.

Runtime: Θ(n)
Also here we can provide a sequence of accesses with quadratic
runtime, e.g. access to the last element. But there is no obvious
strategy to counteract much better than MTF..

11



Move-to-Front
Move-to-Front:

k1 k2 k3 k4 k5 · · · kn−1 knkn−1 k1 k2 k3 k4 kn−2 kn

kn kn−1 k1 k2 k3 kn−3 kn−2

Alternating sequence of n accesses to kn−1 and kn.

Runtime: Θ(n)
Also here we can provide a sequence of accesses with quadratic
runtime, e.g. access to the last element. But there is no obvious
strategy to counteract much better than MTF..

11



Move-to-Front
Move-to-Front:

k1 k2 k3 k4 k5 · · · kn−1 knkn−1 k1 k2 k3 k4 kn−2 knkn kn−1 k1 k2 k3 kn−3 kn−2

Alternating sequence of n accesses to kn−1 and kn.

Runtime: Θ(n)
Also here we can provide a sequence of accesses with quadratic
runtime, e.g. access to the last element. But there is no obvious
strategy to counteract much better than MTF..

11



Move-to-Front
Move-to-Front:

k1 k2 k3 k4 k5 · · · kn−1 knkn−1 k1 k2 k3 k4 kn−2 knkn kn−1 k1 k2 k3 kn−3 kn−2

Alternating sequence of n accesses to kn−1 and kn. Runtime: Θ(n)

Also here we can provide a sequence of accesses with quadratic
runtime, e.g. access to the last element. But there is no obvious
strategy to counteract much better than MTF..

11



Move-to-Front
Move-to-Front:

k1 k2 k3 k4 k5 · · · kn−1 knkn−1 k1 k2 k3 k4 kn−2 knkn kn−1 k1 k2 k3 kn−3 kn−2

Alternating sequence of n accesses to kn−1 and kn. Runtime: Θ(n)
Also here we can provide a sequence of accesses with quadratic
runtime, e.g. access to the last element. But there is no obvious
strategy to counteract much better than MTF..

11



Randomized Skip List

Idea: insert a key with random height H with P(H = i) = 1
2i+1 .

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

12



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞

0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.

Example: search for a key x with x5 < x < x6.

13



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0

1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.

Example: search for a key x with x5 < x < x6.

13



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1

2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.

Example: search for a key x with x5 < x < x6.

13



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2

3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.

Example: search for a key x with x5 < x < x6.

13



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

13



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

13



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

13



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

13



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

13



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

13



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

13



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

13



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

13



Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

13



Skip Lists Interface

template<typename T> class SkipList {
public:

SkipList();
~SkipList();

void insert(const T& value);
void erase(const T& value);

// iterator implementation ...
};

14



Partially implemented:

A class Node saves an element value of type T and a
std::vector called forward with pointers to successive nodes.
First Node (without value): head.
forward[0] points to the following element in the list.
We use this in an already implemented iterator.

15



Implementing insert and erase

insert(const T& value)
create new node
choose random number of
levels
for each level, find the
first smaller node
set pointers from previous
nodes and new node

erase(const T& value)
find first smaller node
check if next node has the
according value
set pointers accordingly
delete node if necessary

Warning: The same value can
appear multiple times.

16



Implementing insert and erase

insert(const T& value)
create new node
choose random number of
levels
for each level, find the
first smaller node
set pointers from previous
nodes and new node

erase(const T& value)
find first smaller node
check if next node has the
according value
set pointers accordingly
delete node if necessary

Warning: The same value can
appear multiple times.

16



Implementing insert and erase

insert(const T& value)
create new node
choose random number of
levels
for each level, find the
first smaller node
set pointers from previous
nodes and new node

erase(const T& value)
find first smaller node
check if next node has the
according value
set pointers accordingly
delete node if necessary

Warning: The same value can
appear multiple times.

16



Recap dynamic allocated memory

Important: Every new needs its delete and only one!

Therefore “Rule of three”:
constructor
copy constructor
destructor

being lazy “ Rule of two”:
never copy (unsure)
make copy constructor
private (save)

17



Recap dynamic allocated memory

Important: Every new needs its delete and only one!

Therefore “Rule of three”:
constructor
copy constructor
destructor

being lazy “ Rule of two”:
never copy (unsure)
make copy constructor
private (save)

17



Recap dynamic allocated memory

Important: Every new needs its delete and only one!

Therefore “Rule of three”:
constructor
copy constructor
destructor

being lazy “ Rule of two”:
never copy (unsure)
make copy constructor
private (save)

17



Questions?

Let’s get to work.

18



Questions?

Let’s get to work.
18


	Feedback of last exercise
	Repetition theory
	Self Ordering
	Skiplisten

	Programming Task

