Datenstrukturen und Algorithmen

Exercise 4

FS 2018

Program of today

Feedback of last exercise

Repetition theory
m Self Ordering
m Skiplisten

Programming Task

Heapsort structure

m Which functions to implement for heapsort?

Heapsort structure

void sink(...);
void heapify(...);
void heapsort(...);

m heapify can be done inline
m Signature of the functions (for std::vector)?

Heapsort structure

void sink(vector<int>& A, size_t index, size_t siz
void heapify(vector<int>& A);
void heapsort(vector<int>& A);

m Generic (e.g., for MyVector)?

Heapsort structure

template <typename X>
void sink(X& A, size_t index, size_t size);

template <typename X>
void heapify(X& A);

template <typename X>
void heapsort(X& A);

2. Repetition theory

Amortized Analysis

Let ¢; denote the real costs of the operation .

Potential function ®; > 0 for the “account balance” after ¢ operations.

Amortized costs of the ith operation:
a; ‘= tl' + (I)z - (I)ifl-

It holds

Yai=) (ti+®—d) = (th) +®p — P9 > Dt
i=1 1=1 =1

=1 0

Goal: find potential function that evens out expensive operations.

Self Ordered Lists

Problematic with the adoption of a linked list: linear search time
Idea: Try to order the list elements such that accesses over time are
possible in a faster way

For example

m Transpose: For each access to a key, the key is moved one position
closer to the front.

m Move-to-Front (MTF): For each access to a key, the key is moved
to the front of the list.

Transpose

Transpose:

ki ke ks ks ks SR S R %

Worst case: Alternating sequence of n accesses to k,_1 and k,.

Transpose

Transpose:

kv ko k3 kg ks e kn ka1

Worst case: Alternating sequence of n accesses to k,_1 and k,.

Transpose

Transpose:

Worst case: Alternating sequence of n accesses to k,_1 and k,.

Transpose

Transpose:

Worst case: Alternating sequence of n accesses to k,_1 and k,.
Runtime: ©(n?)

Move-to-Front

Move-to-Front:

kq ko ks k4 ks e kno1 Ky

Alternating sequence of n accesses to k,,_1 and k.

Move-to-Front

Move-to-Front:

[1 ko ks k4 Ak kn—o ky

Alternating sequence of n accesses to k,,_1 and k.

Move-to-Front

Move-to-Front:

Alternating sequence of n accesses to k, 1 and k,,.

Move-to-Front

Move-to-Front:

Alternating sequence of n accesses to k,,_1 and k,. Runtime: ©(n)

Move-to-Front

Move-to-Front:

Alternating sequence of n accesses to k, 1 and k,. Runtime: ©O(n)

Also here we can provide a sequence of accesses with quadratic
runtime, e.g. access to the last element. But there is no obvious
strategy to counteract much better than MTF..

Randomized Skip List

|dea: insert a key with random height H with P(H = i)

- 21+1 a
3 e ®
2 e L °
1 ® ® @ ® @
0 ® @ ® ® @ @ ® ® @
I i) s T4 Ty i Ty Ts

Randomized Skip List: finding element

X7

s

Randomized Skip List: finding element

Randomized Skip List: finding element

Randomized Skip List: finding element

2 e [O
1 e ° ° ° °
0 e ° ° ° ° ° ° ° °

Randomized Skip List: finding element

3 ® @
2 e [.
1 ® ® @ ® @
0 @ @ @ @ @ @ @ @ @

i i) s T4 Ty i T Ts

x1 S we S a3 < - < .
Example: search for a key x with x5 < < x4.

Randomized Skip List: finding element

3 © L
2 e [.
1 ® ® @ ® @
0 @ @ @ @ @ @ @ @ @

i i) s Ty Ty i T Ts

x1 S we S a3 < - < .
Example: search for a key x with x5 < < x4.

Randomized Skip List: finding element

3 I »
2 [[
1 ® ® @ ® @
0 ® ([® ® ([([® ® ([

i i) s Ty Ty i T Ts

x1 S we S a3 < - < .
Example: search for a key x with x5 < < x4.

Randomized Skip List: finding element

3 I »
2 59 [
1 ® ® @ ® @
0 ® ([® ® ([([® ® ([

i i) s T4 Ty i T Ts

x1 S we S a3 < - < .
Example: search for a key x with x5 < < x4.

Randomized Skip List: finding element

3 I 9
2 > -9
1 ® ® @ ® @
0 @ @ @ @ @ @ @ @ @

i i) s T4 Ty i T Ts

x1 S we S a3 < - < .
Example: search for a key x with x5 < < x4.

Randomized Skip List: finding element

3 I 9
2)I -9
1 ® ® ® @
0 @ @ @ @ @ @ @ @ @

i i) s T4 Ty i T Ts

x1 S we S a3 < - < .
Example: search for a key x with x5 < < x4.

Randomized Skip List: finding element

3 I 9
2)I -9
1 ® ® > @
0 @ @ @ @ @ @ @ @ @

i i) s T4 Ty i T Ts

x1 S we S a3 < - < .
Example: search for a key x with x5 < < x4.

Randomized Skip List: finding element

3 I 9
2 -9
1 ® ® } -9 @
0 @ @ @ @ @ @ @ @

i i) s T4 Ty i T Ts

x1 S we S a3 < - < .
Example: search for a key x with x5 < < x4.

Randomized Skip List: finding element

3 I »
2 ->®
1 ® ® } -9 @
0 ® ([® ® 3@ ® ® ([

i i) s T4 Ty i T Ts

x1 S we S a3 < - < .
Example: search for a key x with x5 < < x4.

Randomized Skip List: finding element

3 I 9
2 -9
1 ® ® } -9 @
0 @ @ @ @ ol -9 @ @
i i) s T4 Ty i T Ts ©.9)

x1 S we S a3 < - < .
Example: search for a key x with x5 < < x4.

Skip Lists Interface

template<typename T> class SkipList {
public:

SkipList () ;

~SkipList () ;

void insert(const T& value) ;
void erase(const T& value);

// iterator implementation ...

Partially implemented:

m A class Node saves an element value of type T and a
std: :vector called forward with pointers to successive nodes.

m First Node (without value): head.
m forward[0] points to the following element in the list.
m We use this in an already implemented iterator.

Implementing insert and erase

insert(const T& value)
m create new node

m choose random number of
levels

m for each level, find the
first smaller node

m set pointers from previous
nodes and new node

Implementing insert and erase

insert(const T& value) erase(const T& value)
m create new node m find first smaller node
m choose random number of m check if next node has the
levels according value
m for each level, find the m set pointers accordingly
first smaller node m delete node if necessary

m set pointers from previous
nodes and new node

Implementing insert and erase

insert(const T& value) erase(const T& value)
m create new node m find first smaller node
m choose random number of m check if next node has the
levels according value
m for each level, find the m set pointers accordingly
first smaller node m delete node if necessary
m set pointers from previous Warning: The same value can

nodes and new node appear multiple times.

Recap dynamic allocated memory

Important: Every new needs its delete and only onel!

Recap dynamic allocated memory

Important: Every new needs its delete and only onel!

Therefore “Rule of three”:
m constructor
m copy constructor

m destructor

Recap dynamic allocated memory

Important: Every new needs its delete and only onel!

Therefore “Rule of three": being lazy “ Rule of two":
m constructor m never copy (unsure)
m copy constructor m make copy constructor

m destructor private (save)

Questions?

Questions?

Let's get to work.

	Feedback of last exercise
	Repetition theory
	Self Ordering
	Skiplisten

	Programming Task

