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Program of today

1 Feedback of last exercise

2 Repetition theory
Self Ordering
Skiplisten

3 Programming Task
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Heapsort structure

Which functions to implement for heapsort?
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Heapsort structure

void sink(...);
void heapify(...);
void heapsort(...);

heapify can be done inline
Signature of the functions (for std::vector)?
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Heapsort structure

void sink(vector<int>& A, size_t index, size_t size);
void heapify(vector<int>& A);
void heapsort(vector<int>& A);

Generic (e.g., for MyVector)?
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Heapsort structure

template <typename X>
void sink(X& A, size_t index, size_t size);

template <typename X>
void heapify(X& A);

template <typename X>
void heapsort(X& A);
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2. Repetition theory
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Amortized Analysis
Let ti denote the real costs of the operation i.
Potential function Φi ≥ 0 for the “account balance” after i operations.
Amortized costs of the ith operation:

ai := ti + Φi − Φi−1.

It holds
n∑

i=1
ai =

n∑
i=1

(ti + Φi − Φi−1) =
 n∑

i=1
ti

 + Φn − Φ0 ≥
n∑

i=1
ti.

Goal: find potential function that evens out expensive operations.
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Self Ordered Lists

Problematic with the adoption of a linked list: linear search time
Idea: Try to order the list elements such that accesses over time are
possible in a faster way
For example

Transpose: For each access to a key, the key is moved one position
closer to the front.
Move-to-Front (MTF): For each access to a key, the key is moved
to the front of the list.
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Transpose

Transpose:

k1 k2 k3 k4 k5 · · · kn−1 kn

kn kn−1kn−1 kn

Worst case: Alternating sequence of n accesses to kn−1 and kn.

Runtime: Θ(n2)
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Move-to-Front
Move-to-Front:

k1 k2 k3 k4 k5 · · · kn−1 kn

kn−1 k1 k2 k3 k4 kn−2 knkn kn−1 k1 k2 k3 kn−3 kn−2

Alternating sequence of n accesses to kn−1 and kn.

Runtime: Θ(n)
Also here we can provide a sequence of accesses with quadratic
runtime, e.g. access to the last element. But there is no obvious
strategy to counteract much better than MTF..
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Randomized Skip List

Idea: insert a key with random height H with P(H = i) = 1
2i+1 .

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3
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Randomized Skip List: finding element

x1 x2 x3 x4 x5 x6 x7 x8 ∞

0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.

Example: search for a key x with x5 < x < x6.
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Skip Lists Interface

template<typename T> class SkipList {
public:

SkipList();
~SkipList();

void insert(const T& value);
void erase(const T& value);

// iterator implementation ...
};
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Partially implemented:

A class Node saves an element value of type T and a
std::vector called forward with pointers to successive nodes.
First Node (without value): head.
forward[0] points to the following element in the list.
We use this in an already implemented iterator.
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Implementing insert and erase

insert(const T& value)
create new node
choose random number of
levels
for each level, find the
first smaller node
set pointers from previous
nodes and new node

erase(const T& value)
find first smaller node
check if next node has the
according value
set pointers accordingly
delete node if necessary

Warning: The same value can
appear multiple times.
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Recap dynamic allocated memory

Important: Every new needs its delete and only one!

Therefore “Rule of three”:
constructor
copy constructor
destructor

being lazy “ Rule of two”:
never copy (unsure)
make copy constructor
private (save)
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Questions?

Let’s get to work.
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