Datenstrukturen und Algorithmen

Exercise 3

FS 2018

Program of today

1 Feedback of last exercise

2 Repetition theory

3 Programming Task

What would be your strategy if you would have an arbitrary number of eggs?

What would be your strategy if you would have an arbitrary number of eggs?

Binary search. Worst case: $\log_2 n$ tries.

- What would be your strategy if you would have an arbitrary number of eggs?
 - **Binary search**. Worst case: $\log_2 n$ tries.
- What would you do if you only had one egg?

- What would be your strategy if you would have an arbitrary number of eggs?
 - **Binary search**. Worst case: $\log_2 n$ tries.
- What would you do if you only had one egg?
 - Start from the bottom. *n* tries.

- What would be your strategy if you would have an arbitrary number of eggs?
 - **Binary search**. Worst case: $\log_2 n$ tries.
- What would you do if you only had one egg?
 - Start from the bottom. *n* tries.
- What would be your strategy if you only had two eggs?

- What would be your strategy if you would have an arbitrary number of eggs?
 - Binary search. Worst case: $\log_2 n$ tries.
- What would you do if you only had one egg?
 - Start from the bottom. *n* tries.
- What would be your strategy if you only had two eggs?
 - Use s tries.
 - Use decreasing interval size

•
$$s + (s - 1) + (s - 2) + \dots + 2 + 1 = \sum_{i=1}^{n} i = \frac{s(s+1)}{2} \ge 100$$
. Therefore $s = 14$.

- What would be your strategy if you would have an arbitrary number of eggs?
 - Binary search. Worst case: $\log_2 n$ tries.
- What would you do if you only had one egg?
 - Start from the bottom. *n* tries.
- What would be your strategy if you only had two eggs?
 - Use s tries.
 - Use decreasing interval size

■
$$s + (s - 1) + (s - 2) + \dots + 2 + 1 = \sum_{i=1}^{n} i = \frac{s(s+1)}{2} \ge 100$$
. Therefore $s = 14$.
■ \sqrt{n}

- What happens if many elements are equal?
- $99, 99, \ldots, 99$, Pivot 99, smaller partition is empty, larger n-1 times 99
- \blacksquare May degrade runtime to n^2
- Solutions?

Selection algorithm

• On equality with pivot, alternate between partitions

On equality with pivot, alternate between partitions
Modify algorithm to return number of elements equal to pivot

2. Repetition theory

Heap and Array

Tree \rightarrow Array: • children $(i) = \{2i, 2i+1\}$ **parent** $(i) = \lfloor i/2 \rfloor$ Vater 22 18 16 12 15 17 3 20 8 14 2 2 8 9 10 11 12 Kinder

Depends on the starting index¹

¹For array that start at 0: $\{2i, 2i+1\} \rightarrow \{2i+1, 2i+2\}, \lfloor i/2 \rfloor \rightarrow \lfloor (i-1)/2 \rfloor$

Algorithm Sink(A, i, m)

Input : Array A with heap structure for the children of i. Last element m. **Output** : Array A with heap structure for i with last element m. while 2i < m do $j \leftarrow 2i; //j$ left child if j < m and A[j] < A[j+1] then $j \leftarrow j + 1$; // j right child with greater key if A[i] < A[j] then swap(A[i], A[j]) $i \leftarrow j$; // keep sinking else $i \leftarrow m; // \text{ sinking finished}$

Algorithm HeapSort(A, n)

```
Input : Array A with length n.
Output : A sorted.
for i \leftarrow n/2 downto 1 do
    Sink(A, i, n);
// Now A is a heap.
for i \leftarrow n downto 2 do
   swap(A[1], A[i])
    Sink(A, 1, i-1)
// Now A is sorted.
```

Mergesort

Split Split Split Merge Merge Merge

Algorithm recursive 2-way Mergesort(A, l, r)

Merge(A, l, m, r)

// Merge subsequences

Algorithm NaturalMergesort(*A***)**

```
Array A with length n > 0
Input :
          Array A sorted
Output :
repeat
    r \leftarrow 0
    while r < n do
        l \leftarrow r+1
        m \leftarrow l; while m < n and A[m+1] > A[m] do m \leftarrow m+1
        if m < n then
             r \leftarrow m+1; while r < n and A[r+1] > A[r] do r \leftarrow r+1
            Merge(A, l, m, r):
        else
          \_ r \leftarrow n
until l = 1
```

Quicksort (arbitrary pivot)

Choose pivot $p \in A[l, ..., r]$ $k \leftarrow \text{Partition}(A[l, ..., r], p)$ Quicksort(A[l, ..., k - 1])Quicksort(A[k + 1, ..., r])

Quicksort with logarithmic memory consumption

```
Input :
        Array A with length n. 1 < l < r < n.
Output : Array A, sorted between l and r.
while l < r do
    Choose pivot p \in A[l, \ldots, r]
    k \leftarrow \mathsf{Partition}(A[l, \ldots, r], p)
    if k - l < r - k then
        Quicksort(A[l, \ldots, k-1])
         l \leftarrow k+1
    else
    Quicksort(A[k+1,\ldots,r])
r \leftarrow k-1
```

The call of Quicksort(A[l,...,r]) in the original algorithm has moved to iteration (tail recursion!): the if-statement became a while-statement.

Stable and in-situ sorting algorithms

 Stabe sorting algorithms don't change the relative position of two elements.

not stable

Stable and in-situ sorting algorithms

 Stabe sorting algorithms don't change the relative position of two elements.

Stable and in-situ sorting algorithms

 Stabe sorting algorithms don't change the relative position of two elements.

 In-situ algorithms require only a constant amount of additional memory.

3. Programming Task

Types as Template Parameters

```
template <typename ElementType>
class vector{
       size t size;
       T* elem:
public:
        . . .
       vector(size t s):
       size{s}.
       elem{new ElementType[s]}{}
        . . .
       ElementType& operator[](size_t pos){
               return elem[pos];
        }
        . . .
}
```

Function Templates

```
template <typename T> // square number
T sq(T x){
       return x*x;
}
template <typename Container, typename F>
void apply(Container& c, F f){ // x <- f(x) forall x in c</pre>
       for(auto& x: c)
       x = f(x);
}
int main(){
       std::vector<int> v={1,2,3};
       apply(v,sq<int>);
       output(v); // 1 4 9
```

Questions?

Questions?

Let's get to work.