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Throwing eggs
What would be your strategy if you would have an arbitrary number
of eggs?

Binary search. Worst case: log2 n tries.

What would you do if you only had one egg?

Start from the bottom. n tries.

What would be your strategy if you only had two eggs?

Use s tries.
Use decreasing interval size
s + (s− 1) + (s− 2) + · · ·+ 2 + 1 = ∑n

i=1 i = s(s+1)
2 ≥ 100. Therefore

s = 14.√
n
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Selection algorithm

What happens if many elements are equal?
99, 99, . . . , 99, Pivot 99, smaller partition is empty, larger n− 1
times 99
May degrade runtime to n2

Solutions?
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Selection algorithm

On equality with pivot, alternate between partitions

Modify algorithm to return number of elements equal to pivot

5



Selection algorithm

On equality with pivot, alternate between partitions
Modify algorithm to return number of elements equal to pivot

5



2. Repetition theory
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Heap and Array

Tree → Array:
children(i) = {2i, 2i + 1}
parent(i) = bi/2c

22

1

20

2

18

3

16

4

12

5

15

6

17

7

3

8

2

9

8

10

11

11

14

12

Vater

Kinder

22

20

16

3 2

12

8 11

18

15

14

17

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10] [11] [12]

Depends on the starting index1

1For array that start at 0: {2i, 2i + 1} → {2i + 1, 2i + 2}, bi/2c → b(i− 1)/2c
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Algorithm Sink(A, i, m)

Input : Array A with heap structure for the children of i. Last element m.
Output : Array A with heap structure for i with last element m.
while 2i ≤ m do

j ← 2i; // j left child
if j < m and A[j] < A[j + 1] then

j ← j + 1; // j right child with greater key

if A[i] < A[j] then
swap(A[i], A[j])
i← j; // keep sinking

else
i← m; // sinking finished
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Algorithm HeapSort(A, n)

Input : Array A with length n.
Output : A sorted.
for i← n/2 downto 1 do

Sink(A, i, n);

// Now A is a heap.
for i← n downto 2 do

swap(A[1], A[i])
Sink(A, 1, i− 1)

// Now A is sorted.
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Mergesort

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Merge

2 5 1 6 4 8 3 9
Merge

1 2 5 6 3 4 8 9
Merge

1 2 3 4 5 6 8 9
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Algorithm recursive 2-way Mergesort(A, l, r)

Input : Array A with length n. 1 ≤ l ≤ r ≤ n
Output : Array A[l, . . . , r] sorted.
if l < r then

m← b(l + r)/2c // middle position
Mergesort(A, l, m) // sort lower half
Mergesort(A, m + 1, r) // sort higher half
Merge(A, l, m, r) // Merge subsequences
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Algorithm NaturalMergesort(A)
Input : Array A with length n > 0
Output : Array A sorted
repeat

r ← 0
while r < n do

l ← r + 1
m ← l; while m < n and A[m + 1] ≥ A[m] do m ← m + 1
if m < n then

r ← m + 1; while r < n and A[r + 1] ≥ A[r ] do r ← r + 1
Merge(A, l, m, r);

else
r ← n

until l = 1
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Quicksort (arbitrary pivot)

2 4 5 6 8 3 7 9 1

2 1 3 6 8 5 7 9 4

1 2 3 4 5 8 7 9 6

1 2 3 4 5 6 7 9 8

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9
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Algorithm Quicksort(A[l, . . . , r]

Input : Array A with length n. 1 ≤ l ≤ r ≤ n.
Output : Array A, sorted between l and r.
if l < r then

Choose pivot p ∈ A[l, . . . , r]
k ← Partition(A[l, . . . , r], p)
Quicksort(A[l, . . . , k − 1])
Quicksort(A[k + 1, . . . , r])
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Quicksort with logarithmic memory consumption
Input : Array A with length n. 1 ≤ l ≤ r ≤ n.
Output : Array A, sorted between l and r.
while l < r do

Choose pivot p ∈ A[l, . . . , r]
k ← Partition(A[l, . . . , r], p)
if k − l < r − k then

Quicksort(A[l, . . . , k − 1])
l← k + 1

else
Quicksort(A[k + 1, . . . , r])
r ← k − 1

The call of Quicksort(A[l, . . . , r]) in the original algorithm has moved to iteration (tail recursion!): the if-statement
became a while-statement.
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Stable and in-situ sorting algorithms

Stabe sorting algorithms don’t change the relative position of two
elements.

5 2 6 6 8 4

not stable2 4 5 6 6 8

5 2 6 6 8 4

stable2 4 5 6 6 8

In-situ algorithms require only a constant amount of additional
memory.
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3. Programming Task
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Types as Template Parameters
template <typename ElementType>
class vector{

size_t size;
T* elem;

public:
...
vector(size_t s):
size{s},
elem{new ElementType[s]}{}
...
ElementType& operator[](size_t pos){

return elem[pos];
}
...

}
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Function Templates
template <typename T> // square number
T sq(T x){

return x*x;
}
template <typename Container, typename F>
void apply(Container& c, F f){ // x <- f(x) forall x in c

for(auto& x: c)
x = f(x);

}
int main(){

std::vector<int> v={1,2,3};
apply(v,sq<int>);
output(v); // 1 4 9

}
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Questions?

Let’s get to work.

20



Questions?

Let’s get to work.
20


	Feedback of last exercise
	Repetition theory
	Programming Task

