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Landau Notation

m Give a correct definition of the set O(f) as compact as possible
analogously to the definitions for sets O(f) and Q(f).
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m Give a correct definition of the set O(f) as compact as possible
analogously to the definitions for sets O(f) and Q(f).
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Landau Notation

Prove or disprove the following statements, where f,g: N — R™.

(a) f € O(g) if and only if g € Q(f).
(e) log,(n) € ©(log,(n)) for all constants a,b € N \ {1}
(g) If fi, f2 € O(g) and f(n) := fi(n) - fa(n), then f € O(g).



Landau Notation

Sorting functions: if function f is left to function g, then f € O(g).
216 log(n'), log®(n), v/, nlogn, (3), n®+n, %, nl, n"



Sum of elements in two-dimensional array

Problems / Questions?



2. Repetition theory



Induction: what is required?

n(n+1)

m Prove statements, for example X' ;7 = P
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Induction: what is required?

. 1
m Prove statements, for example ¥ ;¢ = n(n; ).

m Base clause:

m The given (in)equality holds for one or more base cases.
_ 1(1+1)

m Induction hypothesis: we assume that the statement holds for some
n

m Induction step (n — n + 1):

m From the validity of the statement for n (induction hypothesis) it follows

the one for n + 1.
meg.: Z"+17’_n+1+zz 1_n+1_|_n(n+1) (n+2)2(n+1)_




Induction: Example

1_TTL+1

m Show X7 ' = 5.



Induction: Example

1_Tn+1

m Show X7 ' = 5.

m Base clause:

0 _nl
n=0: ) r'=1= 11_7;4.



Induction: Example

n i 1—gpntl
m Show ZiZOT = 1= -
m Base clause:
N 0 i1 _ 1=t
n=0 X yr'=1=5".

m Induction step (n — n + 1):

n+1 | no
>t = 3y
1=0 1=0

_ ntl n+1
ntl 1—r T

_ TTL+2 _|_ 1 _|_ ,,JH—l

= r —|— 1_7,, =

1—17r



Analysis

How many calls to £()?

for(unsigned i = 1; i <= n/3; i += 3)
for(unsigned j = 1; j <= i; ++j)

£O;



Analysis

How many calls to £()?

for(unsigned i =
for(unsigned j

£O;

1; i <= n/3; i += 3)
=1; j <= 1; ++j)

The code fragment implies ©(n?) calls to £(): the outer loop is
executed 1/9 times and the inner loop contains ¢ calls to £ ()
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We can ignore the first inner loop because it contains only a constant

number of calls to £()



Analysis

How many calls to £ ()7

for(unsigned i = 0; i < n; ++i) {
for(unsigned j = 100; j*j >= 1; --j)
£O;
for(unsigned k
£O;
}

1; k <= n; k *= 2)

We can ignore the first inner loop because it contains only a constant

number of calls to £ ()
The second inner loop contains |logy(n)| + 1 calls to £(). Summing
up yields ©(nlog(n)) calls.
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How many calls to £()?

void g(unsigned n) {
for (unsigned i = 0; i<n ; ++i) {
g(i)
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£0O;
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Analysis

How many calls to £()?

void g(unsigned n) {
for (unsigned i =

0; i<n ; ++i) {

g(i)
}
£O;
}
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Analysis

How many calls to £()?

void g(unsigned n) {
for (unsigned i = 0; i<n ; ++i) {

g(i)
}
£0;
}
T00)=1 n
T(n) =144 T() T(n

Hypothesis: T'(n) = 2".



Analysis

How many calls to £()?
void g(unsigned n) {
for (unsigned i = 0; i<n ; ++i) {
g(i)
}
£0;
}

Hypothesis: T'(n) = 2™.
Induction step:

n—1
T(n)=1+ 3 2
142" —1=2"



3. Programming Task



The Problem of Selection

Input

m unsorted array A = (A4, ..., A,) with pairwise different values
m Number 1 < k <n.

Output A[i] with [{j : A[j] < A[i]}| =k —1

Special cases

k = 1. Minimum: Algorithm with n comparison operations trivial.

k = n: Maximum: Algorithm with n comparison operations trivial.
k = |n/2]: Median.




Use a pivot
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Use a pivot

Choose a pivot p
Partition A in two parts, thereby determining the rank of p.
Recursion on the relevant part. If £ = r then found.
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Algorithmus Partition(A[l..7], p)

Input : Array A, that contains the sentinel p in the interval [I,7] at least once.
Output : Array A partitioned around p. Returns position of p.
while [ < r do
while A[l] < p do
l<1+1
while A[r] > p do
r<nr—1
swap(A[l], A[r])
if A[l] = A[r] then
l<1+1

return [ — 1



Algorithm Quickselect (A[l..7|, k)

Input : Array A with length n. Indices 1 <[ < k < r < n, such that for all
x € All.r] : [{jIAl] < 2} > 1 and [{j]A[j] < z}| <.
Output : Value x € A[l..r] with [{j|A[j] < z}| > k and [{jlz < A[j]} >n—k+1
if I=r then
. return A[l];

x < RandomPivot(A[l..r])
m < Partition(A[l..r], z)
if © < m then
- return QuickSelect(A[l..m — 1], k)
else if i > m then
- return QuickSelect(A[m + 1..r], k)

else
. return A[l]



Algorithm RandomPivot (A|l..7])

Input : Array A with length n. Indices 1 <[ <i<r<n
Output : Random “good” pivot z € All..r]
repeat
choose a random pivot = € A[l..r]
p <1
for j =1 tor do
 if A[j] <z thenp <« p+1

o |3+ 1+3
until |35 ] < p < [Hr]
return x
This algorithm is only of theoretical interest and delivers a good pivot in 2 expected

iterations. Practically, in algorithm QuickSelect a uniformly chosen random pivot
can be chosen.



Questions?



Questions?

Let's get to work.
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