Datenstrukturen und Algorithmen

Exercise 2

FS 2018

Program of today

Feedback of last exercise

Repetition theory
m Induction

m Analysis of programs

Programming Task

Landau Notation

m Give a correct definition of the set O(f) as compact as possible
analogously to the definitions for sets O(f) and Q(f).

Landau Notation

m Give a correct definition of the set O(f) as compact as possible
analogously to the definitions for sets O(f) and Q(f).

mO(f)={g- N—>R|Ja>0,b>0, ngeN:a-f(n) <gn)<
b- f(n) Vn > ng}

Landau Notation

m Give a correct definition of the set O(f) as compact as possible
analogously to the definitions for sets O(f) and Q(f).

n (f)—{g N—-R|Ja>0,b>0, ngeN:a-f(n) <gn)<
b- f(n) Vn > no}

(f)—{g]N—)]R‘Elc>0 ng € N : % f(n)gg(n)g
c- f(n) Yn > no}

Landau Notation

Prove or disprove the following statements, where f,g: N — R™.

(a) f € O(g) if and only if g € Q(f).
(e) log,(n) € ©(log,(n)) for all constants a,b € N \ {1}
(g) If fi, f2 € O(g) and f(n) := fi(n) - fa(n), then f € O(g).

Landau Notation

Sorting functions: if function f is left to function g, then f € O(g).
216 log(n'), log®(n), v/, nlogn, (3), n®+n, %, nl, n"

Sum of elements in two-dimensional array

Problems / Questions?

2. Repetition theory

Induction: what is required?

n(n+1)

m Prove statements, for example X' ;7 = P

Induction: what is required?

. 1
m Prove statements, for example X' ;7 = "(n;).

m Base clause:

m The given (in)equality holds for one or more base cases.

meg YL, i=1=11

Induction: what is required?

. 1
m Prove statements, for example ¥ ;¢ = n(n;).

m Base clause:

m The given (in)equality holds for one or more base cases.

meg YL, i=1=11

m Induction hypothesis: we assume that the statement holds for some
n

Induction: what is required?

. 1
m Prove statements, for example ¥ ;¢ = n(n;).

m Base clause:

m The given (in)equality holds for one or more base cases.
_ 1(1+1)

m Induction hypothesis: we assume that the statement holds for some
n

m Induction step (n — n + 1):

m From the validity of the statement for n (induction hypothesis) it follows

the one for n + 1.
meg.: Z"+17’_n+1+zz 1_n+1_|_n(n+1) (n+2)2(n+1)_

Induction: Example

1_TTL+1

m Show X7 ' = 5.

Induction: Example

1_Tn+1

m Show X7 ' = 5.

m Base clause:

0 _nl
n=0:) r'=1= 11_7;4.

Induction: Example

n i 1—gpntl
m Show ZiZOT = 1= -
m Base clause:
N 0 i1 _ 1=t
n=0 X yr'=1=5".

m Induction step (n — n + 1):

n+1 | no
>t = 3y
1=0 1=0

_ ntl n+1
ntl 1—r T

_ TTL+2 _|_ 1 _|_ ,,JH—l

= r —|— 1_7,, =

1—17r

Analysis

How many calls to £()?

for(unsigned i = 1; i <= n/3; i += 3)
for(unsigned j = 1; j <= i; ++j)

£O;

Analysis

How many calls to £()?

for(unsigned i =
for(unsigned j

£O;

1; i <= n/3; i += 3)
=1; j <= 1; ++j)

The code fragment implies ©(n?) calls to £(): the outer loop is
executed 1/9 times and the inner loop contains ¢ calls to £ ()

Analysis

How many calls to £()?
for(unsigned i = 0; i < n; ++i) {
for(unsigned j = 100; j*j >= 1; --j)

£0O;
for (unsigned k 1; k <= n; k *= 2)

£O;

Analysis

How many calls to £ ()7
for(unsigned i = 0; i < n; ++i) {
for(unsigned j = 100; j*j >= 1; --j)

£0O;
for (unsigned k 1; k <= n; k *= 2)

£O;

¥
We can ignore the first inner loop because it contains only a constant

number of calls to £()

Analysis

How many calls to £ ()7

for(unsigned i = 0; i < n; ++i) {
for(unsigned j = 100; j*j >= 1; --j)
£O;
for(unsigned k
£O;
}

1; k <= n; k *= 2)

We can ignore the first inner loop because it contains only a constant

number of calls to £ ()
The second inner loop contains |logy(n)| + 1 calls to £(). Summing
up yields ©(nlog(n)) calls.

Analysis

How many calls to £()?

void g(unsigned n) {
for (unsigned i = 0; i<n ; ++i) {
g(i)
}
£0O;
}

Analysis

How many calls to £()?

void g(unsigned n) {
for (unsigned i = 0; i<n ; ++i) {
g(i)
}
£0O;
}

7(0) = 1

Analysis

How many calls to £()?

void g(unsigned n) {
for (unsigned i = 0; i<n ; ++i) {
g(i)
}
£0O;

Analysis

How many calls to £()?

void g(unsigned n) {
for (unsigned i =

0; i<n ; ++i) {

g(i)
}
£O;
}
T0)=1
T(n)=1+ zg‘;ol T(7) T(n

Analysis

How many calls to £()?

void g(unsigned n) {
for (unsigned i = 0; i<n ; ++i) {

g(i)
}
£0;
}
T00)=1 n
T(n) =144 T() T(n

Hypothesis: T'(n) = 2".

Analysis

How many calls to £()?
void g(unsigned n) {
for (unsigned i = 0; i<n ; ++i) {
g(i)
}
£0;
}

Hypothesis: T'(n) = 2™.
Induction step:

n—1
T(n)=1+ 3 2
142" —1=2"

3. Programming Task

The Problem of Selection

Input

m unsorted array A = (A4, ..., A,) with pairwise different values
m Number 1 < k <n.

Output A[i] with [{j : A[j] < A[i]}| =k —1

Special cases

k = 1. Minimum: Algorithm with n comparison operations trivial.

k = n: Maximum: Algorithm with n comparison operations trivial.
k = |n/2]: Median.

Use a pivot

Use a pivot

Choose a pivot p

Use a pivot

Choose a pivot p
Partition A in two parts, thereby determining the rank of p.

Use a pivot

Choose a pivot p
Partition A in two parts, thereby determining the rank of p.

Use a pivot

Choose a pivot p
Partition A in two parts, thereby determining the rank of p.

IN
IN
IN
IN
IN
o
V
V
V
V

Use a pivot

Choose a pivot p
Partition A in two parts, thereby determining the rank of p.
Recursion on the relevant part. If £ = r then found.

IN
IN
IN
IN
IN
o
V
V
V
V

Algorithmus Partition(A[l..7], p)

Input : Array A, that contains the sentinel p in the interval [I,7] at least once.
Output : Array A partitioned around p. Returns position of p.
while [< r do
while A[l] < p do
l<1+1
while A[r] > p do
r<nr—1
swap(A[l], A[r])
if A[l] = A[r] then
l<1+1

return [— 1

Algorithm Quickselect (A[l..7|, k)

Input : Array A with length n. Indices 1 <[< k < r < n, such that for all
x € All.r] : [{jIAl] < 2} > 1 and [{j]A[j] < z}| <.
Output : Value x € A[l..r] with [{j|A[j] < z}| > k and [{jlz < A[j]} >n—k+1
if I=r then
. return A[l];

x < RandomPivot(A[l..r])
m < Partition(A[l..r], z)
if © < m then
- return QuickSelect(A[l..m — 1], k)
else if i > m then
- return QuickSelect(A[m + 1..r], k)

else
. return A[l]

Algorithm RandomPivot (A|l..7])

Input : Array A with length n. Indices 1 <[<i<r<n
Output : Random “good” pivot z € All..r]
repeat
choose a random pivot = € A[l..r]
p <1
for j =1 tor do
 if A[j] <z thenp <« p+1

o |3+ 1+3
until |35] < p < [Hr]
return x
This algorithm is only of theoretical interest and delivers a good pivot in 2 expected

iterations. Practically, in algorithm QuickSelect a uniformly chosen random pivot
can be chosen.

Questions?

Questions?

Let's get to work.

	Feedback of last exercise
	Repetition theory
	Induction
	Analysis of programs

	Programming Task

