Datenstrukturen und Algorithmen

Exercise 2

FS 2018

Program of today

- 1 Feedback of last exercise
- **2** Repetition theory
 - Induction
 - Analysis of programs

3 Programming Task

■ Give a correct definition of the set Θ(f) as compact as possible analogously to the definitions for sets O(f) and Ω(f).

■ Give a correct definition of the set Θ(f) as compact as possible analogously to the definitions for sets O(f) and Ω(f).

$$\Theta(f) = \{g : \mathbb{N} \to \mathbb{R} \mid \exists a > 0, \ b > 0, \ n_0 \in \mathbb{N} : a \cdot f(n) \le g(n) \le b \cdot f(n) \ \forall n \ge n_0\}$$

■ Give a correct definition of the set Θ(f) as compact as possible analogously to the definitions for sets O(f) and Ω(f).

$$\Theta(f) = \{g : \mathbb{N} \to \mathbb{R} \mid \exists a > 0, \ b > 0, \ n_0 \in \mathbb{N} : a \cdot f(n) \le g(n) \le b \cdot f(n) \ \forall n \ge n_0\}$$

$$\Theta(f) = \{g : \mathbb{N} \to \mathbb{R} \mid \exists c > 0, \ n_0 \in \mathbb{N} : \frac{1}{c} \cdot f(n) \le g(n) \le c \cdot f(n) \ \forall n \ge n_0\}$$

Prove or disprove the following statements, where $f, g : \mathbb{N} \to \mathbb{R}^+$.

(a)
$$f \in \mathcal{O}(g)$$
 if and only if $g \in \Omega(f)$.
(e) $\log_a(n) \in \Theta(\log_b(n))$ for all constants $a, b \in \mathbb{N} \setminus \{1\}$
(g) If $f_1, f_2 \in \mathcal{O}(g)$ and $f(n) := f_1(n) \cdot f_2(n)$, then $f \in \mathcal{O}(g)$.

Sorting functions: if function f is left to function g, then $f \in \mathcal{O}(g)$. $2^{16}, \log(n^4), \log^8(n), \sqrt{n}, n \log n, \binom{n}{3}, n^5 + n, \frac{2^n}{n^2}, n!, n^n$.

Sum of elements in two-dimensional array

Problems / Questions?

2. Repetition theory

• Prove statements, for example $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

- Prove statements, for example $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- Base clause:

The given (in)equality holds for one or more base cases.
 e.g. ∑¹_{i=1} i = 1 = ¹⁽¹⁺¹⁾/₂.

- Prove statements, for example $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- Base clause:

The given (in)equality holds for one or more base cases.
 e.g. ∑¹_{i=1} i = 1 = ¹⁽¹⁺¹⁾/₂.

 \blacksquare Induction hypothesis: we assume that the statement holds for some n

- Prove statements, for example $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- Base clause:

The given (in)equality holds for one or more base cases.
 e.g. ∑_{i=1}¹ i = 1 = ¹⁽¹⁺¹⁾/₂.

- \blacksquare Induction hypothesis: we assume that the statement holds for some n
- Induction step $(n \rightarrow n+1)$:
 - From the validity of the statement for n (induction hypothesis) it follows the one for n + 1.

• e.g.:
$$\sum_{i=1}^{n+1} i = n+1 + \sum_{i=1}^{n} = n+1 + \frac{n(n+1)}{2} = \frac{(n+2)(n+1)}{2}$$

Induction: Example

• Show
$$\sum_{i=0}^{n} r^i = \frac{1-r^{n+1}}{1-r}$$
.

Induction: Example

• Show
$$\sum_{i=0}^{n} r^i = \frac{1-r^{n+1}}{1-r}$$
.

Base clause: n = 0: $\sum_{i=0}^{0} r^{i} = 1 = \frac{1-r^{1}}{1-r}$.

Induction: Example

• Show
$$\sum_{i=0}^{n} r^i = \frac{1-r^{n+1}}{1-r}$$

Base clause: $n = 0: \sum_{i=0}^{0} r^i = 1 = \frac{1-r^1}{1-r}.$

Induction step $(n \rightarrow n+1)$:

$$\sum_{i=0}^{n+1} r^i = r^{n+1} + \sum_{i=0}^n r^i$$
$$= r^{n+1} + \frac{1 - r^{n+1}}{1 - r} = \frac{r^{n+1} - r^{n+2} + 1 + r^{n+1}}{1 - r} = \frac{1 - r^{n+2}}{1 - r}$$

```
How many calls to f()?
for(unsigned i = 1; i <= n/3; i += 3)
for(unsigned j = 1; j <= i; ++j)
f();</pre>
```

```
How many calls to f()?
for(unsigned i = 1; i <= n/3; i += 3)
for(unsigned j = 1; j <= i; ++j)
f();</pre>
```

The code fragment implies $\Theta(n^2)$ calls to f(): the outer loop is executed n/9 times and the inner loop contains i calls to f()

```
How many calls to f()?
for(unsigned i = 0; i < n; ++i) {
  for(unsigned j = 100; j*j >= 1; --j)
    f();
  for(unsigned k = 1; k <= n; k *= 2)
    f();
}</pre>
```

```
How many calls to f()?
for(unsigned i = 0; i < n; ++i) {
  for(unsigned j = 100; j*j >= 1; --j)
    f();
  for(unsigned k = 1; k <= n; k *= 2)
    f();
}</pre>
```

We can ignore the first inner loop because it contains only a constant number of calls to f()

```
How many calls to f()?
for(unsigned i = 0; i < n; ++i) {
  for(unsigned j = 100; j*j >= 1; --j)
    f();
  for(unsigned k = 1; k <= n; k *= 2)
    f();
}</pre>
```

We can ignore the first inner loop because it contains only a constant number of calls to f() The second inner loop contains $\lfloor \log_2(n) \rfloor + 1$ calls to f(). Summing up yields $\Theta(n \log(n))$ calls.

```
How many calls to f()?
void g(unsigned n) {
  for (unsigned i = 0; i<n ; ++i) {
    g(i)
    }
    f();
}</pre>
```

```
How many calls to f()?
void g(unsigned n) {
 for (unsigned i = 0; i < n; ++i) {
   g(i)
 }
 f();
}
T(0) = 1
```

```
How many calls to f()?
void g(unsigned n) {
  for (unsigned i = 0; i < n; ++i) {
   g(i)
  }
  f();
}
T(0) = 1
T(n) = 1 + \sum_{i=0}^{n-1} T(i)
```

```
How many calls to f()?
void g(unsigned n) {
 for (unsigned i = 0; i < n; ++i) {
   g(i)
 }
 f();
}
                                T(0) = 1
T(n) = 1 + \sum_{i=0}^{n-1} T(i)
```

```
How many calls to f()?
void g(unsigned n) {
 for (unsigned i = 0; i < n; ++i) {
   g(i)
 }
 f();
}
                               T(0) = 1
T(n) = 1 + \sum_{i=0}^{n-1} T(i)
```

Hypothesis: $T(n) = 2^n$.

```
How many calls to f()?
void g(unsigned n) {
  for (unsigned i = 0; i<n ; ++i) {
    g(i)
  }
  f();
}</pre>
```

Hypothesis: $T(n) = 2^n$. Induction step:

$$T(n) = 1 + \sum_{i=0}^{n-1} 2^{i}$$

= 1 + 2ⁿ - 1 = 2ⁿ

3. Programming Task

The Problem of Selection

Input

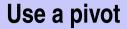
unsorted array A = (A₁,..., A_n) with pairwise different values
Number 1 ≤ k ≤ n.

Output
$$A[i]$$
 with $|\{j : A[j] < A[i]\}| = k - 1$

Special cases

k = 1: Minimum: Algorithm with n comparison operations trivial. k = n: Maximum: Algorithm with n comparison operations trivial. $k = \lfloor n/2 \rfloor$: Median.

[



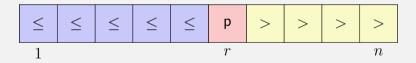
1 Choose a *pivot p*

р					

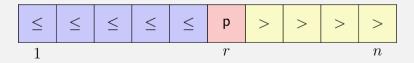
- **1** Choose a *pivot* p
- **2** Partition A in two parts, thereby determining the rank of p.

- **1** Choose a *pivot* p
- **2** Partition A in two parts, thereby determining the rank of p.

- **1** Choose a *pivot p*
- **2** Partition A in two parts, thereby determining the rank of p.



- **1** Choose a *pivot p*
- **2** Partition A in two parts, thereby determining the rank of p.
- **3** Recursion on the relevant part. If k = r then found.



Algorithmus Partition(A[l..r], p)

Input : Array A, that contains the sentinel p in the interval [l, r] at least once. **Output** : Array A partitioned around p. Returns position of p. while $l \le r$ do

return l-1

Algorithm Quickselect (A[l..r], k)

Input : Array A with length n. Indices $1 \le l \le k \le r \le n$, such that for all $x \in A[l..r] : |\{j|A[j] < x\}| > l \text{ and } |\{j|A[j] < x\}| < r.$ **Output**: Value $x \in A[l..r]$ with $|\{j|A[j] < x\}| > k$ and $|\{j|x < A[j]\}| > n-k+1$ if l=r then return A[l]; $x \leftarrow \mathsf{RandomPivot}(A[l..r])$ $m \leftarrow \mathsf{Partition}(A[l..r], x)$ if i < m then return QuickSelect(A[l..m-1], k) else if i > m then return QuickSelect(A[m+1..r], k) else return A[l]

Algorithm RandomPivot (A[l..r])

Input : Array A with length n. Indices $1 \le l \le i \le r \le n$ **Output** : Random "good" pivot $x \in A[l..r]$ repeat

This algorithm is only of theoretical interest and delivers a good pivot in 2 expected iterations. Practically, in algorithm QuickSelect a uniformly chosen random pivot can be chosen.

Questions?

Questions?

Let's get to work.