
Datenstrukturen und Algorithmen

Exercise 2

FS 2018

1

Program of today

1 Feedback of last exercise

2 Repetition theory
Induction
Analysis of programs

3 Programming Task

2

Landau Notation

Give a correct definition of the set Θ(f) as compact as possible
analogously to the definitions for sets O(f) and Ω(f).

Θ(f) = {g : N→ R | ∃a > 0, b > 0, n0 ∈ N : a · f(n) ≤ g(n) ≤
b · f(n) ∀n ≥ n0}

Θ(f) = {g : N→ R | ∃c > 0, n0 ∈ N : 1
c · f(n) ≤ g(n) ≤

c · f(n) ∀n ≥ n0}

3

Landau Notation

Give a correct definition of the set Θ(f) as compact as possible
analogously to the definitions for sets O(f) and Ω(f).

Θ(f) = {g : N→ R | ∃a > 0, b > 0, n0 ∈ N : a · f(n) ≤ g(n) ≤
b · f(n) ∀n ≥ n0}

Θ(f) = {g : N→ R | ∃c > 0, n0 ∈ N : 1
c · f(n) ≤ g(n) ≤

c · f(n) ∀n ≥ n0}

3

Landau Notation

Give a correct definition of the set Θ(f) as compact as possible
analogously to the definitions for sets O(f) and Ω(f).

Θ(f) = {g : N→ R | ∃a > 0, b > 0, n0 ∈ N : a · f(n) ≤ g(n) ≤
b · f(n) ∀n ≥ n0}

Θ(f) = {g : N→ R | ∃c > 0, n0 ∈ N : 1
c · f(n) ≤ g(n) ≤

c · f(n) ∀n ≥ n0}

3

Landau Notation

Prove or disprove the following statements, where f, g : N→ R
+.

(a) f ∈ O(g) if and only if g ∈ Ω(f).
(e) loga(n) ∈ Θ(logb(n)) for all constants a, b ∈ N \ {1}
(g) If f1, f2 ∈ O(g) and f(n) := f1(n) · f2(n), then f ∈ O(g).

4

Landau Notation

Sorting functions: if function f is left to function g, then f ∈ O(g).
216, log(n4), log8(n),

√
n, n log n,

(
n
3
)
, n5 + n, 2n

n2 , n!, nn.

5

Sum of elements in two-dimensional array

Problems / Questions?

6

2. Repetition theory

7

Induction: what is required?
Prove statements, for example ∑n

i=1 i = n(n+1)
2 .

Base clause:
The given (in)equality holds for one or more base cases.
e.g. ∑1

i=1 i = 1 = 1(1+1)
2 .

Induction hypothesis: we assume that the statement holds for some
n

Induction step (n→ n + 1):
From the validity of the statement for n (induction hypothesis) it follows
the one for n + 1.
e.g.: ∑n+1

i=1 i = n + 1 +∑n
i=1 = n + 1 + n(n+1)

2 = (n+2)(n+1)
2 .

8

Induction: what is required?
Prove statements, for example ∑n

i=1 i = n(n+1)
2 .

Base clause:
The given (in)equality holds for one or more base cases.
e.g. ∑1

i=1 i = 1 = 1(1+1)
2 .

Induction hypothesis: we assume that the statement holds for some
n

Induction step (n→ n + 1):
From the validity of the statement for n (induction hypothesis) it follows
the one for n + 1.
e.g.: ∑n+1

i=1 i = n + 1 +∑n
i=1 = n + 1 + n(n+1)

2 = (n+2)(n+1)
2 .

8

Induction: what is required?
Prove statements, for example ∑n

i=1 i = n(n+1)
2 .

Base clause:
The given (in)equality holds for one or more base cases.
e.g. ∑1

i=1 i = 1 = 1(1+1)
2 .

Induction hypothesis: we assume that the statement holds for some
n

Induction step (n→ n + 1):
From the validity of the statement for n (induction hypothesis) it follows
the one for n + 1.
e.g.: ∑n+1

i=1 i = n + 1 +∑n
i=1 = n + 1 + n(n+1)

2 = (n+2)(n+1)
2 .

8

Induction: what is required?
Prove statements, for example ∑n

i=1 i = n(n+1)
2 .

Base clause:
The given (in)equality holds for one or more base cases.
e.g. ∑1

i=1 i = 1 = 1(1+1)
2 .

Induction hypothesis: we assume that the statement holds for some
n

Induction step (n→ n + 1):
From the validity of the statement for n (induction hypothesis) it follows
the one for n + 1.
e.g.: ∑n+1

i=1 i = n + 1 +∑n
i=1 = n + 1 + n(n+1)

2 = (n+2)(n+1)
2 .

8

Induction: Example

Show ∑n
i=0 ri = 1−rn+1

1−r .

Base clause:
n = 0: ∑0

i=0 ri = 1 = 1−r1

1−r .

Induction step (n→ n + 1):

n+1∑
i=0

ri = rn+1 +
n∑

i=0
ri

= rn+1 + 1− rn+1

1− r
= rn+1 − rn+2 + 1 + rn+1

1− r
= 1− rn+2

1− r
.

9

Induction: Example

Show ∑n
i=0 ri = 1−rn+1

1−r .

Base clause:
n = 0: ∑0

i=0 ri = 1 = 1−r1

1−r .

Induction step (n→ n + 1):

n+1∑
i=0

ri = rn+1 +
n∑

i=0
ri

= rn+1 + 1− rn+1

1− r
= rn+1 − rn+2 + 1 + rn+1

1− r
= 1− rn+2

1− r
.

9

Induction: Example

Show ∑n
i=0 ri = 1−rn+1

1−r .

Base clause:
n = 0: ∑0

i=0 ri = 1 = 1−r1

1−r .

Induction step (n→ n + 1):

n+1∑
i=0

ri = rn+1 +
n∑

i=0
ri

= rn+1 + 1− rn+1

1− r
= rn+1 − rn+2 + 1 + rn+1

1− r
= 1− rn+2

1− r
.

9

Analysis

How many calls to f()?
for(unsigned i = 1; i <= n/3; i += 3)

for(unsigned j = 1; j <= i; ++j)
f();

The code fragment implies Θ(n2) calls to f(): the outer loop is
executed n/9 times and the inner loop contains i calls to f()

10

Analysis

How many calls to f()?
for(unsigned i = 1; i <= n/3; i += 3)

for(unsigned j = 1; j <= i; ++j)
f();

The code fragment implies Θ(n2) calls to f(): the outer loop is
executed n/9 times and the inner loop contains i calls to f()

10

Analysis

How many calls to f()?
for(unsigned i = 0; i < n; ++i) {

for(unsigned j = 100; j*j >= 1; --j)
f();

for(unsigned k = 1; k <= n; k *= 2)
f();

}

We can ignore the first inner loop because it contains only a constant
number of calls to f()
The second inner loop contains blog2(n)c+ 1 calls to f(). Summing
up yields Θ(n log(n)) calls.

11

Analysis

How many calls to f()?
for(unsigned i = 0; i < n; ++i) {

for(unsigned j = 100; j*j >= 1; --j)
f();

for(unsigned k = 1; k <= n; k *= 2)
f();

}

We can ignore the first inner loop because it contains only a constant
number of calls to f()

The second inner loop contains blog2(n)c+ 1 calls to f(). Summing
up yields Θ(n log(n)) calls.

11

Analysis

How many calls to f()?
for(unsigned i = 0; i < n; ++i) {

for(unsigned j = 100; j*j >= 1; --j)
f();

for(unsigned k = 1; k <= n; k *= 2)
f();

}

We can ignore the first inner loop because it contains only a constant
number of calls to f()
The second inner loop contains blog2(n)c+ 1 calls to f(). Summing
up yields Θ(n log(n)) calls.

11

Analysis

How many calls to f()?
void g(unsigned n) {

for (unsigned i = 0; i<n ; ++i) {
g(i)

}
f();

}

T (0) = 1
T (n) = 1 + ∑n−1

i=0 T (i)
n 0 1 2 3 4

T (n) 1 2 4 8 16

Hypothesis: T (n) = 2n.

12

Analysis

How many calls to f()?
void g(unsigned n) {

for (unsigned i = 0; i<n ; ++i) {
g(i)

}
f();

}

T (0) = 1

T (n) = 1 + ∑n−1
i=0 T (i)

n 0 1 2 3 4
T (n) 1 2 4 8 16

Hypothesis: T (n) = 2n.

12

Analysis

How many calls to f()?
void g(unsigned n) {

for (unsigned i = 0; i<n ; ++i) {
g(i)

}
f();

}

T (0) = 1
T (n) = 1 + ∑n−1

i=0 T (i)

n 0 1 2 3 4
T (n) 1 2 4 8 16

Hypothesis: T (n) = 2n.

12

Analysis

How many calls to f()?
void g(unsigned n) {

for (unsigned i = 0; i<n ; ++i) {
g(i)

}
f();

}

T (0) = 1
T (n) = 1 + ∑n−1

i=0 T (i)
n 0 1 2 3 4

T (n) 1 2 4 8 16

Hypothesis: T (n) = 2n.

12

Analysis

How many calls to f()?
void g(unsigned n) {

for (unsigned i = 0; i<n ; ++i) {
g(i)

}
f();

}

T (0) = 1
T (n) = 1 + ∑n−1

i=0 T (i)
n 0 1 2 3 4

T (n) 1 2 4 8 16

Hypothesis: T (n) = 2n.
12

Analysis
How many calls to f()?
void g(unsigned n) {

for (unsigned i = 0; i<n ; ++i) {
g(i)

}
f();

}

Hypothesis: T (n) = 2n.
Induction step:

T (n) = 1 +
n−1∑
i=0

2i

= 1 + 2n − 1 = 2n

13

3. Programming Task

14

The Problem of Selection

Input

unsorted array A = (A1, . . . , An) with pairwise different values
Number 1 ≤ k ≤ n.

Output A[i] with |{j : A[j] < A[i]}| = k − 1
Special cases
k = 1: Minimum: Algorithm with n comparison operations trivial.
k = n: Maximum: Algorithm with n comparison operations trivial.
k = bn/2c: Median.

15

Use a pivot

1 Choose a pivot p

2 Partition A in two parts, thereby determining the rank of p.
3 Recursion on the relevant part. If k = r then found.

16

Use a pivot

1 Choose a pivot p

2 Partition A in two parts, thereby determining the rank of p.
3 Recursion on the relevant part. If k = r then found.

p

16

Use a pivot

1 Choose a pivot p

2 Partition A in two parts, thereby determining the rank of p.

3 Recursion on the relevant part. If k = r then found.

> ≤ ≤ > > ≤ ≤ > ≤p

16

Use a pivot

1 Choose a pivot p

2 Partition A in two parts, thereby determining the rank of p.

3 Recursion on the relevant part. If k = r then found.

>≤ ≤ > >≤ ≤ >≤p

16

Use a pivot

1 Choose a pivot p

2 Partition A in two parts, thereby determining the rank of p.

3 Recursion on the relevant part. If k = r then found.

>≤ ≤ > >≤ ≤ >≤p p≤

r1 n

16

Use a pivot

1 Choose a pivot p

2 Partition A in two parts, thereby determining the rank of p.
3 Recursion on the relevant part. If k = r then found.

>≤ ≤ > >≤ ≤ >≤p p≤

r1 n

16

Algorithmus Partition(A[l..r], p)

Input : Array A, that contains the sentinel p in the interval [l, r] at least once.
Output : Array A partitioned around p. Returns position of p.
while l ≤ r do

while A[l] < p do
l← l + 1

while A[r] > p do
r ← r − 1

swap(A[l], A[r])
if A[l] = A[r] then

l← l + 1

return l − 1

17

Algorithm Quickselect (A[l..r], k)
Input : Array A with length n. Indices 1 ≤ l ≤ k ≤ r ≤ n, such that for all

x ∈ A[l..r] : |{j|A[j] ≤ x}| ≥ l and |{j|A[j] ≤ x}| ≤ r.
Output : Value x ∈ A[l..r] with |{j|A[j] ≤ x}| ≥ k and |{j|x ≤ A[j]}| ≥ n− k + 1
if l=r then

return A[l];
x← RandomPivot(A[l..r])
m← Partition(A[l..r], x)
if i < m then

return QuickSelect(A[l..m− 1], k)
else if i > m then

return QuickSelect(A[m + 1..r], k)
else

return A[l]

18

Algorithm RandomPivot (A[l..r])
Input : Array A with length n. Indices 1 ≤ l ≤ i ≤ r ≤ n
Output : Random “good” pivot x ∈ A[l..r]
repeat

choose a random pivot x ∈ A[l..r]
p← l
for j = l to r do

if A[j] ≤ x then p← p + 1

until
⌊

3l+r
4

⌋
≤ p ≤

⌈
l+3r

4

⌉
return x

This algorithm is only of theoretical interest and delivers a good pivot in 2 expected
iterations. Practically, in algorithm QuickSelect a uniformly chosen random pivot
can be chosen.

19

Questions?

Let’s get to work.

20

Questions?

Let’s get to work.
20

	Feedback of last exercise
	Repetition theory
	Induction
	Analysis of programs

	Programming Task

