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Landau Notation

Give a correct definition of the set Θ(f) as compact as possible
analogously to the definitions for sets O(f) and Ω(f).

Θ(f) = {g : N→ R | ∃a > 0, b > 0, n0 ∈ N : a · f(n) ≤ g(n) ≤
b · f(n) ∀n ≥ n0}

Θ(f) = {g : N→ R | ∃c > 0, n0 ∈ N : 1
c · f(n) ≤ g(n) ≤

c · f(n) ∀n ≥ n0}
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Landau Notation

Prove or disprove the following statements, where f, g : N→ R
+.

(a) f ∈ O(g) if and only if g ∈ Ω(f).
(e) loga(n) ∈ Θ(logb(n)) for all constants a, b ∈ N \ {1}
(g) If f1, f2 ∈ O(g) and f(n) := f1(n) · f2(n), then f ∈ O(g).
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Landau Notation

Sorting functions: if function f is left to function g, then f ∈ O(g).
216, log(n4), log8(n),

√
n, n log n,

(
n
3
)
, n5 + n, 2n

n2 , n!, nn.
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Sum of elements in two-dimensional array

Problems / Questions?
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2. Repetition theory
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Induction: what is required?
Prove statements, for example ∑n

i=1 i = n(n+1)
2 .

Base clause:
The given (in)equality holds for one or more base cases.
e.g. ∑1

i=1 i = 1 = 1(1+1)
2 .

Induction hypothesis: we assume that the statement holds for some
n

Induction step (n→ n + 1):
From the validity of the statement for n (induction hypothesis) it follows
the one for n + 1.
e.g.: ∑n+1

i=1 i = n + 1 +∑n
i=1 = n + 1 + n(n+1)

2 = (n+2)(n+1)
2 .
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Induction: Example

Show ∑n
i=0 ri = 1−rn+1

1−r .

Base clause:
n = 0: ∑0

i=0 ri = 1 = 1−r1

1−r .

Induction step (n→ n + 1):

n+1∑
i=0

ri = rn+1 +
n∑

i=0
ri

= rn+1 + 1− rn+1

1− r
= rn+1 − rn+2 + 1 + rn+1

1− r
= 1− rn+2

1− r
.
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Analysis

How many calls to f()?
for(unsigned i = 1; i <= n/3; i += 3)

for(unsigned j = 1; j <= i; ++j)
f();

The code fragment implies Θ(n2) calls to f(): the outer loop is
executed n/9 times and the inner loop contains i calls to f()
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Analysis

How many calls to f()?
for(unsigned i = 0; i < n; ++i) {

for(unsigned j = 100; j*j >= 1; --j)
f();

for(unsigned k = 1; k <= n; k *= 2)
f();

}

We can ignore the first inner loop because it contains only a constant
number of calls to f()
The second inner loop contains blog2(n)c+ 1 calls to f(). Summing
up yields Θ(n log(n)) calls.
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Analysis

How many calls to f()?
void g(unsigned n) {

for (unsigned i = 0; i<n ; ++i) {
g(i)

}
f();

}

T (0) = 1
T (n) = 1 + ∑n−1

i=0 T (i)
n 0 1 2 3 4

T (n) 1 2 4 8 16

Hypothesis: T (n) = 2n.
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Analysis
How many calls to f()?
void g(unsigned n) {

for (unsigned i = 0; i<n ; ++i) {
g(i)

}
f();

}

Hypothesis: T (n) = 2n.
Induction step:

T (n) = 1 +
n−1∑
i=0

2i

= 1 + 2n − 1 = 2n
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3. Programming Task
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The Problem of Selection

Input

unsorted array A = (A1, . . . , An) with pairwise different values
Number 1 ≤ k ≤ n.

Output A[i] with |{j : A[j] < A[i]}| = k − 1
Special cases
k = 1: Minimum: Algorithm with n comparison operations trivial.
k = n: Maximum: Algorithm with n comparison operations trivial.
k = bn/2c: Median.
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Use a pivot

1 Choose a pivot p

2 Partition A in two parts, thereby determining the rank of p.
3 Recursion on the relevant part. If k = r then found.
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Algorithmus Partition(A[l..r], p)

Input : Array A, that contains the sentinel p in the interval [l, r] at least once.
Output : Array A partitioned around p. Returns position of p.
while l ≤ r do

while A[l] < p do
l← l + 1

while A[r] > p do
r ← r − 1

swap(A[l], A[r])
if A[l] = A[r] then

l← l + 1

return l − 1
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Algorithm Quickselect (A[l..r], k)
Input : Array A with length n. Indices 1 ≤ l ≤ k ≤ r ≤ n, such that for all

x ∈ A[l..r] : |{j|A[j] ≤ x}| ≥ l and |{j|A[j] ≤ x}| ≤ r.
Output : Value x ∈ A[l..r] with |{j|A[j] ≤ x}| ≥ k and |{j|x ≤ A[j]}| ≥ n− k + 1
if l=r then

return A[l];
x← RandomPivot(A[l..r])
m← Partition(A[l..r], x)
if i < m then

return QuickSelect(A[l..m− 1], k)
else if i > m then

return QuickSelect(A[m + 1..r], k)
else

return A[l]
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Algorithm RandomPivot (A[l..r])
Input : Array A with length n. Indices 1 ≤ l ≤ i ≤ r ≤ n
Output : Random “good” pivot x ∈ A[l..r]
repeat

choose a random pivot x ∈ A[l..r]
p← l
for j = l to r do

if A[j] ≤ x then p← p + 1

until
⌊

3l+r
4

⌋
≤ p ≤

⌈
l+3r

4

⌉
return x

This algorithm is only of theoretical interest and delivers a good pivot in 2 expected
iterations. Practically, in algorithm QuickSelect a uniformly chosen random pivot
can be chosen.
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Questions?

Let’s get to work.
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