
Datenstrukturen und Algorithmen

Exercise 12

FS 2018

1

Program of today

1 Feedback of last exercise

2 Repetition theory

3 Programming Tasks

2

1. Feedback of last exercise

3

Football Championship

Club Points Oppon.

maximum. . .

1) FC St. Gallen (FCSG) 37 FCB, FCW

+0 points

2) BSC Young Boys (YB) 36 FCW, FCB

+1 point

3) FC Basel (FCB) 35 FCSG, YB

+2 points

4) FC Luzern (FCL) 33 FCZ, GCZ
5) FC Winterthur (FCW) 31 YB, FCSG

never mind
Historic 2-Point-Rule
In each game, exactly 2 points are distributed: 2 + 0, 1 + 1, 0 + 2
Question: Can FCL still win the league?
under the Assumption: The FCL wins both matches → 37p.

4

Football Championship

Club Points Oppon.

maximum. . .

1) FC St. Gallen (FCSG) 37 FCB, FCW

+0 points

2) BSC Young Boys (YB) 36 FCW, FCB

+1 point

3) FC Basel (FCB) 35 FCSG, YB

+2 points

4) FC Luzern (FCL) 33 FCZ, GCZ
5) FC Winterthur (FCW) 31 YB, FCSG

never mind

Historic 2-Point-Rule
In each game, exactly 2 points are distributed: 2 + 0, 1 + 1, 0 + 2

Question: Can FCL still win the league?
under the Assumption: The FCL wins both matches → 37p.

4

Football Championship

Club Points Oppon.

maximum. . .

1) FC St. Gallen (FCSG) 37 FCB, FCW

+0 points

2) BSC Young Boys (YB) 36 FCW, FCB

+1 point

3) FC Basel (FCB) 35 FCSG, YB

+2 points

4) FC Luzern (FCL) 33 FCZ, GCZ
5) FC Winterthur (FCW) 31 YB, FCSG

never mind

Historic 2-Point-Rule
In each game, exactly 2 points are distributed: 2 + 0, 1 + 1, 0 + 2
Question: Can FCL still win the league?

under the Assumption: The FCL wins both matches → 37p.

4

Football Championship

Club Points Oppon. maximum. . .
1) FC St. Gallen (FCSG) 37 FCB, FCW

+0 points

2) BSC Young Boys (YB) 36 FCW, FCB

+1 point

3) FC Basel (FCB) 35 FCSG, YB

+2 points

4) FC Luzern (FCL) 33 FCZ, GCZ
5) FC Winterthur (FCW) 31 YB, FCSG

never mind

Historic 2-Point-Rule
In each game, exactly 2 points are distributed: 2 + 0, 1 + 1, 0 + 2
Question: Can FCL still win the league?
under the Assumption: The FCL wins both matches → 37p.

4

Football Championship

Club Points Oppon. maximum. . .
1) FC St. Gallen (FCSG) 37 FCB, FCW +0 points
2) BSC Young Boys (YB) 36 FCW, FCB +1 point
3) FC Basel (FCB) 35 FCSG, YB +2 points
4) FC Luzern (FCL) 33 FCZ, GCZ
5) FC Winterthur (FCW) 31 YB, FCSG

never mind

Historic 2-Point-Rule
In each game, exactly 2 points are distributed: 2 + 0, 1 + 1, 0 + 2
Question: Can FCL still win the league?
under the Assumption: The FCL wins both matches → 37p.

4

Football Championship

Club Points Oppon. maximum. . .
1) FC St. Gallen (FCSG) 37 FCB, FCW +0 points
2) BSC Young Boys (YB) 36 FCW, FCB +1 point
3) FC Basel (FCB) 35 FCSG, YB +2 points
4) FC Luzern (FCL) 33 FCZ, GCZ
5) FC Winterthur (FCW) 31 YB, FCSG never mind
Historic 2-Point-Rule
In each game, exactly 2 points are distributed: 2 + 0, 1 + 1, 0 + 2
Question: Can FCL still win the league?
under the Assumption: The FCL wins both matches → 37p.

4

Football Championship

Assumption: FCL can still win the league.

4 Games ⇒ We must have 8 Flow Units.
But: MinCut has size 7. ⇒ Contradiction.

5

Football Championship

Assumption: FCL can still win the league.

4 Games ⇒ We must have 8 Flow Units.

But: MinCut has size 7. ⇒ Contradiction.

5

Football Championship

Assumption: FCL can still win the league.

4 Games ⇒ We must have 8 Flow Units.

But: MinCut has size 7. ⇒ Contradiction.

5

Football Championship

Assumption: FCL can still win the league.

4 Games ⇒ We must have 8 Flow Units.
But: MinCut has size 7. ⇒ Contradiction.

5

2. Repetition theory

6

Parallel Performance

Given

fixed amount of computing work W (number computing steps)
Sequential execution time T1

Parallel execution time on p CPUs
runtime speedup efficiency

perfection (linear) Tp = T1/p Sp = p Ep = 1
loss (sublinear) Tp > T1/p Sp < p Ep < 1
sorcery (superlinear) Tp < T1/p Sp > p Ep > 1

7

Gustafson’s Law

Fix the time of execution
Vary the problem size.
Assumption: the sequential part stays constant, the parallel part
becomes larger

8

Gustafson’s Law
Work that can be executed by one processor in time T :

Ws +Wp = T

Work that can be executed by p processors in time T :

Ws + p ·Wp = λ · T + p · (1− λ) · T

Speedup:

Sp = Ws + p ·Wp

Ws +Wp
= p · (1− λ) + λ

= p− λ(p− 1)
9

Illustration Gustafson’s Law

p = 1

t

Ws

Wp

p = 2

Ws

Wp Wp

p = 4

Ws

Wp Wp Wp Wp

T

10

Amdahl’s Law: Ingredients

Computational work W falls into two categories

Paralellisable part Wp

Not parallelisable, sequential part Ws

Assumption: W can be processed sequentially by one processor in W
time units (T1 = W):

T1 = Ws +Wp

Tp ≥ Ws +Wp/p

11

Amdahl’s Law

Sp = T1

Tp
≤ Ws +Wp

Ws + Wp

p

12

Amdahl’s Law

With sequential, not parallelizable fraction λ: Ws = λW ,
Wp = (1− λ)W :

Sp ≤
1

λ+ 1−λ
p

Thus
S∞ ≤

1
λ

13

Illustration Amdahl’s Law

p = 1

t

Ws

Wp

p = 2

Ws

Wp

p = 4

Ws

Wp

T1

14

Amdahl vs. Gustafson

Amdahl Gustafson

p = 4 p = 4

15

Amdahl vs. Gustafson, or why do we care?

Amdahl Gustafson
pessimist optimist

strong scaling weak scaling

⇒ need to develop methods with small sequential protion as possible.

16

Amdahl vs. Gustafson, or why do we care?

Amdahl Gustafson
pessimist optimist

strong scaling weak scaling

⇒ need to develop methods with small sequential protion as possible.

16

Question

Each Node (task) takes 1 time unit.
Arrows depict dependencies.
Minimal execution time when number
of processors = ∞?

critical path

17

Question

Each Node (task) takes 1 time unit.
Arrows depict dependencies.
Minimal execution time when number
of processors = ∞?

critical path

17

Performance Model

p processors
Dynamic scheduling
Tp: Execution time on p processors

18

Performance Model

Tp: Execution time on p processors
T1: work: time for executing total work
on one processor
T1/Tp: Speedup

19

Performance Model

T∞: span: critical path, execution time
on ∞ processors. Longest path from
root to sink.
T1/T∞: Parallelism: wider is better
Lower bounds:

Tp ≥ T1/p Work law
Tp ≥ T∞ Span law

20

Greedy Scheduler

Greedy scheduler: at each time it schedules as many as availbale tasks.
Theorem
On an ideal parallel computer with p processors, a greedy scheduler
executes a multi-threaded computation with work T1 and span T∞ in
time

Tp ≤ T1/p+ T∞

21

Beispiel
Assume p = 2.

Tp = 5 Tp = 4

22

3. Programming Tasks

23

C++11 Threads
#include <iostream>
#include <thread>

void hello(){
std::cout << "hello\n";

}

int main(){
// create and launch thread t
std::thread t(hello);
// wait for termination of t
t.join();
return 0;

}

create thread

hello

join

24

C++11 Threads
void hello(int id){

std::cout << "hello from " << id << "\n";
}

int main(){
std::vector<std::thread> tv(3);
int id = 0;
for (auto & t:tv)

t = std::thread(hello, ++id);
std::cout << "hello from main \n";
for (auto & t:tv)

t.join();
return 0;

}

create threads

join

25

Nondeterministic Execution!

One execution:
hello from main
hello from 2
hello from 1
hello from 0

Other execution:
hello from 1
hello from main
hello from 0
hello from 2

Other execution:
hello from main
hello from 0
hello from hello from 1
2

26

Technical Details I
With allocating a thread, reference parameters are copied, except
explicitly std::ref is provided at the construction.

void calc(std::vector<int>& very_long_vector){
// doing funky stuff with very_long_vector

}
int main(){

std::vector<int> v(1000000000);
std::thread t1(calc, v); // bad idea, v is copied
// here v is unchanged
std::thread t2(calc, std::ref(v)); // good idea, v is not copied
// here v is modified
std::thread t2([&v]{calc(v)}; }); // also good idea
// here v is modified
// ...

27

Technical Details I
With allocating a thread, reference parameters are copied, except
explicitly std::ref is provided at the construction.

void calc(std::vector<int>& very_long_vector){
// doing funky stuff with very_long_vector

}
int main(){

std::vector<int> v(1000000000);
std::thread t1(calc, v); // bad idea, v is copied
// here v is unchanged
std::thread t2(calc, std::ref(v)); // good idea, v is not copied
// here v is modified
std::thread t2([&v]{calc(v)}; }); // also good idea
// here v is modified
// ...

27

Technical Details II
Threads cannot be copied.

{
std::thread t1(hello);
std::thread t2;
t2 = t1; // compiler error
t1.join();

}
{

std::thread t1(hello);
std::thread t2;
t2 = std::move(t1); // ok
t2.join();

}

28

Technical Details II
Threads cannot be copied.

{
std::thread t1(hello);
std::thread t2;
t2 = t1; // compiler error
t1.join();

}
{

std::thread t1(hello);
std::thread t2;
t2 = std::move(t1); // ok
t2.join();

}

28

Guarantees of Mutual Exclusion (Lock)

Correctness (Safety)
At most one process executes the
critical section code

Liveness
Acquiring the mutex terminates in finite
time when no process executes in the
critical section

29

Locks: RAII Approach

class BankAccount {
int balance = 0;
std::mutex m;

public:
...
void withdraw(int amount) {

std::lock_guard<std::mutex> guard(m);
int b = getBalance();
setBalance(b - amount);

} // Destruction of guard leads to unlocking m
};

What about getBalance / setBalance?

30

Locks: RAII Approach

class BankAccount {
int balance = 0;
std::mutex m;

public:
...
void withdraw(int amount) {

std::lock_guard<std::mutex> guard(m);
int b = getBalance();
setBalance(b - amount);

} // Destruction of guard leads to unlocking m
};

What about getBalance / setBalance?

30

Reentrant Locks

Reentrant Lock (recursive lock)

remembers the currently affected thread;
provides a counter

Call of lock: counter incremented
Call of unlock: counter is decremented. If counter = 0 the lock is released.

31

Account with reentrant lock
class BankAccount {

int balance = 0;
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
int getBalance(){ guard g(m); return balance;
}
void setBalance(int x) { guard g(m); balance = x;
}
void withdraw(int amount) { guard g(m);

int b = getBalance();
setBalance(b - amount);

}
};

32

	Feedback of last exercise
	Repetition theory
	Programming Tasks

