
Datenstrukturen und Algorithmen

Exercise 10

FS 2018

1

Program of today

1 Feedback of last exercise

2 Repetition theory

3 Programming Task

2

1. Feedback of last exercise

3

Exercise 9.1: Labyrinth

Robot has to stop to change direction
Interpret as shortest path problem

4

Exercise 9.1: Labyrinth
position × direction × speed

2

2 2

2

2 2

2

2

3

3

3

3

Runtime?
5

Exercise 9.1: Labyrinth

Let n be the number of squares. Graph has |V | = 8n nodes
Graph has at |E| ≤ 20n edges
Therefore, Dijkstra O(|E|+ |V |log|V |) has runtime O(nlogn)

6

Closeness Centrality

Given: an adjacency matrix for an undirected graph on n vertices.
Output: the closeness centrality C(v) of every vertex v.

C(v) =
∑

u∈V \{v}
d(v, u)

Intuition: If many connected vertices are close to v, then C(v) is
small.
“How central is the vertex in its connected component?”

7

Minimum Spanning Tree

Kruskal computes the following MST:

A B

C

D

E

G

F

3

6

4

10

2

5
12

8

7

8

Minimum Spanning Tree
Proof using induction over the number of vertices |V |:

Hypothesis: undirected graph with |V | − 1 vertices has as most
|V | − 2 edges.
Induction base (|V | = 1): A graph with one node has no edges.
Induction step (|V | − 1→ |V |) Undirected cycle-free graph
G = (V, E). cycle-free ⇒ there is at least one vertex w with degree
0 or 1. Let V ′ = V \ {w} and E ′ = {{u, v} ∈ E|u, v ∈ V ′}.
Because there is at most one edge incident to w, |E ′| ≥ |E| − 1.
Due to the induction hypothesis |E ′| ≤ |V ′| − 1, we get

|E| ≤ |E ′|+ 1 ≤ |V ′| − 1 + 1 = |V ′| = |V | − 1
9

All Pairs Shortest Paths
template<typename Matrix>
void allPairsShortestPaths(unsigned n, Matrix& m){

for(unsigned k = 0; k < n; ++k) {
for(unsigned i = 0; i < n; ++i) {

for(unsigned j = i + 1; j < n; ++j) {
if(k == i || k == j)

continue;
if(m[i][k] == 0 || m[k][j] == 0)

continue; // no connection via k
if(m[i][j] == 0 || m[i][k] + m[k][j] < m[i][j])

m[i][j] = m[j][i] = m[i][k] + m[k][j];
}

}
}

}
10

Closeness Centrality

vector<vector<unsigned> > adjacencies(n,vector<unsigned>(n, 0));
vector<string> names(n);
// ...
allPairsShortestPaths(n, adjacencies);
for(unsigned i = 0; i < n; ++i) {

cout << names[i] << ": "; unsigned centrality = 0;
for(unsigned j = 0; j < n; ++j) {

if(j == i) continue;
centrality += adjacencies[i][j];

}
cout << centrality << endl;

}

11

2. Repetition theory

12

Implementation Issues

Consider a set of sets i ≡ Ai ⊂ V . To identify cuts and circles:
membership of the both ends of an edge to sets?

13

Union-Find Algorithm MST-Kruskal(G)
Input : Weighted Graph G = (V, E, c)
Output : Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to m do

MakeSet(k)

for k = 1 to m do
(u, v)← ek

if Find(u) 6= Find(v) then
Union(Find(u), Find(v))
A← A ∪ ek

return (V, A, c)

14

Implementation Union-Find

Index 1 2 3 4 5 6 7 8 9 10
Parent 1 1 1 6 5 6 5 5 3 10

Operations:

Make-Set(i): p[i]← i; return i

Find(i): while (p[i] 6= i) do i← p[i]
; return i

Union(i, j): p[j]← i; return i

15

Optimization of the runtime for Find

Tree may degenerate. Example: Union(1, 2), Union(2, 3),
Union(3, 4), ...
Idea: always append smaller tree to larger tree. Additionally required:
size information g

Operations:

Make-Set(i): p[i]← i; g[i]← 1; return i

Union(i, j):
if g[j] > g[i] then swap(i, j)
p[j]← i
g[i]← g[i] + g[j]
return i

16

Further improvement

Link all nodes to the root when Find is called.
Find(i):
j ← i
while (p[i] 6= i) do i← p[i]
while (j 6= i) do

t← j
j ← p[j]
p[t]← i

return i

Amortised cost: amortised nearly constant (inverse of the
Ackermann-function).

17

Fibonacci Heaps

Data structure for elements with key with operations

MakeHeap(): Return new heap without elements
Insert(H, x): Add x to H

Minimum(H): return a pointer to element m with minimal key
ExtractMin(H): return and remove (from H) pointer to the
element m

Union(H1, H2): return a heap merged from H1 and H2

DecreaseKey(H, x, k): decrease the key of x in H to k

Delete (H, x): remove element x from H

18

Implementation

Doubly linked lists of nodes with a marked-flag and number of
children. Pointer to minimal Element and number nodes.

23 7 3

18

39

52 38

41

17

30

24

26

35

46

min
n = 14

0 0 3 2 2

1

0

0 1

0

0 1

0

0

19

Simple Operations

MakeHeap (trivial)
Minimum (trivial)
Insert(H, e)

1 Insert new element into root-list
2 If key is smaller than minimum, reset min-pointer.

Union (H1, H2)
1 Concatenate root-lists of H1 and H2
2 Reset min-pointer.

Delete(H, e)
1 DecreaseKey(H, e,−∞)
2 ExtractMin(H)

20

ExtractMin

1 Remove minimal node m from the root list
2 Insert children of m into the root list
3 Merge heap-ordered trees with the same degrees until all trees
have a different degree:
Array of degrees a[1, . . . , n] of elements, empty at beginning. For
each element e of the root list:
a Let g be the degree of e
b If a[g] = nil: a[g]← e.
c If e′ := a[g] 6= nil: Merge e with e′ resutling in e′′ and set a[g]← nil. Set

e′′ unmarked. Re-iterate with e← e′′ having degree g + 1.

21

DecreaseKey (H, e, k)

1 Remove e from its parent node p (if existing) and decrease the
degree of p by one.

2 Insert(H, e)
3 Avoid too thin trees:

a If p = nil then done.
b If p is unmarked: mark p and done.
c If p marked: unmark p and cut p from its parent pp. Insert (H, p). Iterate

with p← pp.

22

Runtimes

Binary Heap Fibonacci Heap
(worst-Case) (amortized)

MakeHeap Θ(1) Θ(1)
Insert Θ(log n) Θ(1)
Minimum Θ(1) Θ(1)
ExtractMin Θ(log n) Θ(log n)
Union Θ(n) Θ(1)
DecreaseKey Θ(log n) Θ(1)
Delete Θ(log n) Θ(log n)

23

Flow
A Flow f : V × V → R fulfills the follow-
ing conditions:
Bounded Capacity:
For all u, v ∈ V : f(u, v) ≤ c(u, v).
Skew Symmetry:
For all u, v ∈ V : f(u, v) = −f(v, u).
Conservation of flow:
For all u ∈ V \ {s, t}:

∑
v∈V

f(u, v) = 0.

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6

Value of the flow:
|f | = ∑

v∈V f(s, v).
Here |f | = 18.

24

Rest Network

Rest network Gf provided by the edges with positive rest capacity:

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6

s

v1

v2

v3

v4

t
8

8

3

10

12

4

10

6

14

4

5

4
4 1 6

Rest networks provide the same kind of properties as flow networks with the exception of permitting antiparallel

edges

25

Observation

Theorem
Let G = (V, E, c) be a flow network with source s and sink t and f a
flow in G. Let Gf be the corresponding rest networks and let f ′ be a
flow in Gf . Then f ⊕ f ′ with

(f ⊕ f ′)(u, v) = f(u, v) + f ′(u, v)

defines a flow in G with value |f |+ |f ′|.

26

Augmenting Paths

expansion path p: simple path from s to t in the rest network Gf .
Rest capacity cf(p) = min{cf(u, v) : (u, v) edge in p}

27

Flow in Gf

Theorem
The mapping fp : V × V → R,

fp(u, v) =


cf(p) if (u, v) edge in p

−cf(p) if (v, u) edge in p

0 otherwise

provides a flow in Gf with value |fp| = cf(p) > 0.

fp is a flow (easy to show). there is one and only one u ∈ V with
(s, u) ∈ p. Thus |fp| =

∑
v∈V fp(s, v) = fp(s, u) = cf(p).

28

Max-Flow Min-Cut Theorem

Theorem
Let f be a flow in a flow network G = (V, E, c) with source s and sink
t. The following statementsa are equivalent:

1 f is a maximal flow in G

2 The rest network Gf does not provide any expansion paths
3 It holds that |f | = c(S, T) for a cut (S, T) of G.

29

Algorithm Ford-Fulkerson(G, s, t)

Input : Flow network G = (V, E, c)
Output : Maximal flow f .

for (u, v) ∈ E do
f(u, v)← 0

while Exists path p : s t in rest network Gf do
cf (p)← min{cf (u, v) : (u, v) ∈ p}
foreach (u, v) ∈ p do

if (u, v) ∈ E then
f(u, v)← f(u, v) + cf (p)

else
f(v, u)← f(u, v)− cf (p)

30

Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in Gf the
expansion path of shortest possible length (e.g. with BFS)
Theorem
When the Edmonds-Karp algorithm is applied to some integer valued
flow network G = (V, E) with source s and sink t then the number of
flow increases applied by the algorithm is in O(|V | · |E|)
⇒ Overal asymptotic runtime: O(|V | · |E|2)

[Without proof]

31

Application: maximal bipartite matching
Given: bipartite undirected graph G = (V, E).
Matching M : M ⊆ E such that |{m ∈M : v ∈ m}| ≤ 1 for all
v ∈ V .
Maximal Matching M : Matching M , such that |M | ≥ |M ′| for each
matching M ′.

32

3. Programming Task

33

Task 10.3: Union Find

Input: union operations to be performed, followed by queries if they
are located in the same set.
Output: For each query, answer if they are in the same set.
Make sure you can re-use your code in the next task.

34

Task 10.4: Kruskal’s MST algorithm

Edges have to be sorted.

Create an Edge class that implements the comparison operator.
Then use std::sort.

35

Task 10.4: Kruskal’s MST algorithm

Edges have to be sorted.
Create an Edge class that implements the comparison operator.
Then use std::sort.

35

Questions?

36

	Feedback of last exercise
	Repetition theory
	Programming Task

