Datenstrukturen und Algorithmen

Exercise 10

FS 2018

Program of today

Feedback of last exercise
Repetition theory

Programming Task

1. Feedback of last exercise

Exercise 9.1: Labyrinth

m Robot has to stop to change direction
m Interpret as shortest path problem

Exercise 9.1: Labyrinth

m position X direction X speed

m Runtime?

Exercise 9.1: Labyrinth

m Let n be the number of squares. Graph has |V| = 8n nodes
m Graph has at |E| < 20n edges
m Therefore, Dijkstra O(|E| + |V|log|V|) has runtime O(nlogn)

Closeness Centrality

m Given: an adjacency matrix for an undirected graph on n vertices.
m Output: the closeness centrality C'(v) of every vertex v.

Clo)= > dv,u)

ueV\{v}

m Intuition: If many connected vertices are close to v, then C'(v) is
small.

m ‘How central is the vertex in its connected component?”

Minimum Spanning Tree

Kruskal computes the following MST:

~(B)—
4

forey;

Minimum Spanning Tree

Proof using induction over the number of vertices |V|:

m Hypothesis: undirected graph with |V| — 1 vertices has as most
|V| — 2 edges.

m Induction base (|V| = 1): A graph with one node has no edges.

m Induction step (|V| — 1 — |V|) Undirected cycle-free graph
G = (V, E). cycle-free = there is at least one vertex w with degree
Oor 1. Let V' =V \ {w} and E' = {{u,v} € E|lu,v € V'}.
Because there is at most one edge incident to w, |E'| > |E| — 1.
Due to the induction hypothesis |E'| < |V'| — 1, we get

E|<|El+1< V]| =-1+1=|V|=|V|-1

All Pairs Shortest Paths

template<typename Matrix>
void allPairsShortestPaths(unsigned n, Matrix& m){
for(unsigned k = 0; k < n; ++k) {
for(unsigned i = 0; i < n; ++i) {
for(unsigned j = i + 1; j < n; ++j) {
if(k ==1i || k == j)
continue;
if(m[il[k] == 0 || m[k][j] == 0)
continue; // no connection via k
if(m[il [j] == 0 || m[i]l [k] + m[k][j] < m[i][j1)
m[i] [j] = m[j][i] = m[i][k] + m[k][j];

Closeness Centrality

vector<vector<unsigned> > adjacencies(n,vector<unsigned>(n, 0));
vector<string> names(n);

//

allPairsShortestPaths(n, adjacencies);

for(unsigned i = 0; i < n; ++i) {

cout << names[i] << ": "; unsigned centrality = 0;
for(unsigned j = 0; j < n; ++j) {
if(j == i) continue;

centrality += adjacencies[i] [j];
}

cout << centrality << endl;

}

2. Repetition theory

Implementation Issues

Consider a set of sets i = A; C V. To identify cuts and circles:

membership of the both ends of an edge to sets?

o—O
| e

gt

Union-Find Algorithm MST-Kruskal(G)

Input : Weighted Graph G = (V, E, ¢)
Output : Minimum spanning tree with edges A.

Sort edges by weight c(e;) < ... < c(en)
A0
for £ =1 tom do

MakeSet(k)

for £ =1 tom do
(u,v) < eg
if Find(u) # Find(v) then
Union(Find(u), Find(v))
A+ AU €k

return (V, A, ¢)

Implementation Union-Find

Index
Parent

S—
N
[@)INTEN
QU Ot
Sy O
SIEEN
ot 00
w ©
-
oo

Operations:
m Make-Set(i): p[i] + i; return i

m Find(q): anil:ir(r]:[;] # 1) do i < pli]

m Union(4, j): plj] < i; return i

Optimization of the runtime for Find

Tree may degenerate. Example: Union(1,2), Union(2, 3),
Union(3,4), ...

Idea: always append smaller tree to larger tree. Additionally required:
size information g

Operations:
m Make-Set(i): pli] < 4 g[i] < 1; return i

if[%;[j] > g[i] then swap(i,)
) .. plil
m Union(4, j): ali] < gli] + gl

return ¢

Further improvement

Link all nodes to the root when Find is called.
Find(7):
Ji
while (p[i] # i) do i + pli]
while (j # i) do
t<+j
J < pli]
plt] ¢
return ¢
Amortised cost: amortised nearly constant (inverse of the
Ackermann-function).

Fibonacci Heaps

Data structure for elements with key with operations

MakeHeap(): Return new heap without elements
Insert(H, z): Add x to H
Minimum(H): return a pointer to element m with minimal key

ExtractMin(H): return and remove (from H) pointer to the
element m

m Union(Hy, Hs): return a heap merged from H; and H,
m DecreaseKey(H, z, k): decrease the key of z in H to k
m Delete (H,x): remove element x from H

Implementation

Doubly linked lists of nodes with a marked-flag and number of
children. Pointer to minimal Element and number nodes.

n =14
min

|
T P

23 7 17 24

181/\512(;\381 io 26‘Z ,\460
Gt T

e S L - SEP L LY

Simple Operations

MakeHeap (trivial)
m Minimum (trivial)
Insert(H, e)

Insert new element into root-list
If key is smaller than minimum, reset min-pointer.

m Union (Hy, Hy)

Concatenate root-lists of H; and H,
Reset min-pointer.

m Delete(H, e)

DecreaseKey(H, e, —o0)
ExtractMin(H)

ExtractMin

Remove minimal node m from the root list
Insert children of m into the root list

Merge heap-ordered trees with the same degrees until all trees
have a different degree:

Array of degrees a[l, ..., n| of elements, empty at beginning. For
each element e of the root list:

a Let g be the degree of e

b If a[g] = nil: a[g] + e.

c If ¢ :=alg] # nil: Merge e with ¢’ resutling in €’ and set a[g] < nil. Set
e’ unmarked. Re-iterate with e <— ¢” having degree g + 1.

DecreaseKey (H, e, k)

Remove e from its parent node p (if existing) and decrease the
degree of p by one.

Insert(H, e)

Avoid too thin trees:
a If p = nil then done.
b If p is unmarked: mark p and done.

c If p marked: unmark p and cut p from its parent pp. Insert (H,p). Iterate
with p < pp.

Runtimes

Binary Heap Fibonacci Heap
(worst-Case) (amortized)

MakeHeap O(1) O(1)
Insert O(logn) O(1)
Minimum (1) (1)
ExtractMin O(logn) O(logn)
Union O(n) O(1)
DecreaseKey O(logn) O(1)

Delete O©(logn) O©(logn)

Flow

A Flow f:V xV — R fulfills the follow-
ing conditions: 12/12

m Bounded Capacity: V ‘WH
For all u,v € V: f(u,v) < c(u,v). s 1/1‘ - }/b t
m Skew Symmetry: 1% 4/4
For all u,v € V: f(u,v) = —f(v,u). _amvyTas
m Conservation of flow:
Forall u e V'\ {s,t}: Value of the flow:
=>. 5,0).
S flu,v) = 0. L{e|re |f] ivljé(.)

veV

Rest Network

Rest network Gy provided by the edges with positive rest capacity:

U1<—U3

S t
12/12
V) —— U3
V 20/14
s 4/4 t
9/4

7/6
13/10

Uz —) U4

4/4
LTI 10

Rest networks provide the same kind of properties as flow networks with the exception of permitting antiparallel

edges

25

Observation

Theorem

Let G = (V, E,c) be a flow network with source s and sink t and f a

flow in G. Let G be the corresponding rest networks and let f' be a
flow in Gy. Then f @ f" with

(f D f/)(uvv) - f(uvv) + f’(u,v)

defines a flow in G with value |f| + | f'|.

26

Augmenting Paths

expansion path p: simple path from s to ¢ in the rest network G/.

Rest capacity cf(p) = min{cy(u,v) : (u,v) edge in p}

Flow in G'¢

Theorem
The mapping f, : V xV = R,

ct(p)
fo(u,v) = ¢ —c4(p)
0

if (u,v) edge in p
if (v,u) edge in p

otherwise

provides a flow in Gy with value |f,| = c¢(p) > 0.

fp is a flow (easy to show). there is one and only one u € V' with
(S,U,) € p. Thus ‘fp| = D vev fp(S,U) - fp(sa U) - Cf(p)

Max-Flow Min-Cut Theorem

Theorem
Let f be a flow in a flow network G = (V, E, ¢) with source s and sink
t. The following statementsa are equivalent:

f is a maximal flow in G

The rest network Gy does not provide any expansion paths

It holds that |f| = ¢(S,T) for a cut (S,T) of G.

29

Algorithm Ford-Fulkerson((, s, t)

Input : Flow network G = (V, E, ¢)
Output : Maximal flow f.

for (u,v) € £ do
flu,v) «0
while Exists path p : s ~~ t in rest network G do
cs(p) < min{cs(u,v) : (u,v) € p}
foreach (u,v) € p do
if (u,v) € E then
f(u,v) < f(u,v) + c¢(p)
else

f(v,u) < f(u,v) —cs(p)

Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in Gs the
expansion path of shortest possible length (e.g. with BFS)

When the Edmonds-Karp algorithm is applied to some integer valued
flow network G = (V, E) with source s and sink t then the number of

flow increases applied by the algorithm is in O(|V'| - |E|)
= Overal asymptotic runtime: O(|V] - |E|?)

[Without proof]

31

Application: maximal bipartite matching

Given: bipartite undirected graph G = (V, F).

M: M C FE such that [{m € M :v € m}| <1 for all
veV.

Maximal Matching M: Matching M, such that |M| > |M’| for each

matching M'.
\ \
—— —

3. Programming Task

Task 10.3: Union Find

m Input: wnion operations to be performed, followed by queries if they
are located in the same set.

m Output: For each query, answer if they are in the same set.
m Make sure you can re-use your code in the next task.

Task 10.4: Kruskal’s MST algorithm

m Edges have to be sorted.

Task 10.4: Kruskal’s MST algorithm

m Edges have to be sorted.
m Create an Edge class that implements the comparison operator.
m Then use std::sort.

Questions?

	Feedback of last exercise
	Repetition theory
	Programming Task

