Datenstrukturen und Algorithmen

Exercise 10

FS 2018

Program of today

1 Feedback of last exercise

2 Repetition theory

3 Programming Task

1. Feedback of last exercise

Exercise 9.1: Labyrinth

- Robot has to stop to change direction
- Interpret as shortest path problem

Exercise 9.1: Labyrinth

position \times direction \times speed

Let n be the number of squares. Graph has |V| = 8n nodes
Graph has at |E| ≤ 20n edges
Therefore, Dijkstra O(|E| + |V|log|V|) has runtime O(nlogn)

- Given: an adjacency matrix for an *undirected* graph on n vertices.
- Output: the *closeness centrality* C(v) of every vertex v.

$$C(v) = \sum_{u \in V \setminus \{v\}} d(v, u)$$

- Intuition: If many connected vertices are close to v, then C(v) is small.
- "How central is the vertex in its connected component?"

Minimum Spanning Tree

Kruskal computes the following MST:

Minimum Spanning Tree

Proof using induction over the number of vertices |V|:

- Hypothesis: undirected graph with |V| 1 vertices has as most |V| 2 edges.
- Induction base (|V| = 1): A graph with one node has no edges.
- Induction step $(|V| 1 \rightarrow |V|)$ Undirected cycle-free graph G = (V, E). cycle-free \Rightarrow there is at least one vertex w with degree 0 or 1. Let $V' = V \setminus \{w\}$ and $E' = \{\{u, v\} \in E | u, v \in V'\}$. Because there is at most one edge incident to w, $|E'| \ge |E| 1$. Due to the induction hypothesis $|E'| \le |V'| 1$, we get

$$|E| \le |E'| + 1 \le |V'| - 1 + 1 = |V'| = |V| - 1$$

All Pairs Shortest Paths

```
template<typename Matrix>
void allPairsShortestPaths(unsigned n, Matrix& m){
 for(unsigned k = 0; k < n; ++k) {
   for(unsigned i = 0; i < n; ++i) {
     for(unsigned j = i + 1; j < n; ++j) {</pre>
       if(k == i || k == j)
         continue:
       if(m[i][k] == 0 || m[k][j] == 0)
         continue: // no connection via k
       if(m[i][j] == 0 || m[i][k] + m[k][j] < m[i][j])</pre>
         m[i][j] = m[j][i] = m[i][k] + m[k][j];
     }
   }
 }
```

Closeness Centrality

```
vector<vector<unsigned> > adjacencies(n,vector<unsigned>(n, 0));
vector<string> names(n);
// ...
allPairsShortestPaths(n, adjacencies);
for(unsigned i = 0; i < n; ++i) {
 cout << names[i] << ": ": unsigned centrality = 0;</pre>
 for(unsigned j = 0; j < n; ++j) {
   if(j == i) continue;
   centrality += adjacencies[i][j];
 }
 cout << centrality << endl;</pre>
}
```

2. Repetition theory

Implementation Issues

Consider a set of sets $i \equiv A_i \subset V$. To identify cuts and circles: membership of the both ends of an edge to sets?

Union-Find Algorithm MST-Kruskal(*G***)**

Input : Weighted Graph G = (V, E, c)**Output** : Minimum spanning tree with edges A.

```
Sort edges by weight c(e_1) < ... < c(e_m)
A \leftarrow \emptyset
for k = 1 to m do
    MakeSet(k)
for k = 1 to m do
    (u,v) \leftarrow e_k
    if Find(u) \neq Find(v) then
         Union(Find(u), Find(v))
      A \leftarrow A \cup e_k
```

return (V, A, c)

Implementation Union-Find

Operations:

- Make-Set(i): $p[i] \leftarrow i$; return i
- Find(*i*): while $(p[i] \neq i)$ do $i \leftarrow p[i]$; return *i*
- Union(i, j): $p[j] \leftarrow i$; return i

Optimization of the runtime for Find

Tree may degenerate. Example: Union(1, 2), Union(2, 3), Union(3, 4), ... Idea: always append smaller tree to larger tree. Additionally required: size information g

Operations:

Make-Set(i):
$$p[i] \leftarrow i; g[i] \leftarrow 1;$$
 return i
if $g[j] > g[i]$ then swap (i, j)
Union (i, j) : $p[j] \leftarrow i$
 $g[i] \leftarrow g[i] + g[j]$
return i

Further improvement

Link all nodes to the root when Find is called.

```
Find(i):

j \leftarrow i

while (p[i] \neq i) do i \leftarrow p[i]

while (j \neq i) do

\begin{pmatrix} t \leftarrow j \\ j \leftarrow p[j] \\ p[t] \leftarrow i \end{pmatrix}
```

return i

Amortised cost: amortised *nearly* constant (inverse of the Ackermann-function).

Fibonacci Heaps

Data structure for elements with key with operations

- MakeHeap(): Return new heap without elements
- Insert(H, x): Add x to H
- Minimum(H): return a pointer to element m with minimal key
- ExtractMin(H): return and remove (from H) pointer to the element m
- Union (H_1, H_2) : return a heap merged from H_1 and H_2
- **DecreaseKey**(H, x, k): decrease the key of x in H to k
- **Delete** (H, x): remove element x from H

Implementation

Doubly linked lists of nodes with a marked-flag and number of children. Pointer to minimal Element and number nodes.

Simple Operations

- MakeHeap (trivial)
 Minimum (trivial)
 Insert(H, e)
 - 1 Insert new element into root-list
 - 2 If key is smaller than minimum, reset min-pointer.
- Union (H_1, H_2)
 - **1** Concatenate root-lists of H_1 and H_2
 - 2 Reset min-pointer.
- Delete(*H*, *e*)
 - **1** DecreaseKey $(H, e, -\infty)$
 - 2 ExtractMin(H)

ExtractMin

- $\hfill\blacksquare$ Remove minimal node m from the root list
- $\ensuremath{\mathbf{2}}$ Insert children of m into the root list
- ³ Merge heap-ordered trees with the same degrees until all trees have a different degree: Array of degrees $a[1, \ldots, n]$ of elements, empty at beginning. For each element e of the root list:
 - a Let g be the degree of \boldsymbol{e}

b If
$$a[g] = nil: a[g] \leftarrow e$$
.

c If $e' := a[g] \neq nil$: Merge e with e' resutling in e'' and set $a[g] \leftarrow nil$. Set e'' unmarked. Re-iterate with $e \leftarrow e''$ having degree g + 1.

- **1** Remove e from its parent node p (if existing) and decrease the degree of p by one.
- **2** $\mathsf{Insert}(H, e)$
- 3 Avoid too thin trees:
 - a If p = nil then done.
 - b If p is unmarked: mark p and done.
 - c If p marked: unmark p and cut p from its parent pp. Insert (H, p). Iterate with $p \leftarrow pp$.

Runtimes

	Binary Heap	Fibonacci Heap
	(worst-Case)	(amortized)
MakeHeap	$\Theta(1)$	$\Theta(1)$
Insert	$\Theta(\log n)$	$\Theta(1)$
Minimum	$\Theta(1)$	$\Theta(1)$
ExtractMin	$\Theta(\log n)$	$\Theta(\log n)$
Union	$\Theta(n)$	$\Theta(1)$
DecreaseKey	$\Theta(\log n)$	$\Theta(1)$
Delete	$\Theta(\log n)$	$\Theta(\log n)$

Flow

A *Flow* $f: V \times V \rightarrow \mathbb{R}$ fulfills the following conditions:

Bounded Capacity: For all $u, v \in V$: $f(u, v) \le c(u, v)$.
Skew Symmetry: For all $u, v \in V$: f(u, v) = -f(v, u).

• Conservation of flow: For all $u \in V \setminus \{s, t\}$:

$$\sum_{v \in V} f(u, v) = 0.$$

Value of the flow: $|f| = \sum_{v \in V} f(s, v).$ Here |f| = 18.

Rest Network

Rest network G_f provided by the edges with positive rest capacity:

Rest networks provide the same kind of properties as flow networks with the exception of permitting antiparallel

edges

Observation

Theorem

Let G = (V, E, c) be a flow network with source s and sink t and f a flow in G. Let G_f be the corresponding rest networks and let f' be a flow in G_f . Then $f \oplus f'$ with

$$(f \oplus f')(u, v) = f(u, v) + f'(u, v)$$

defines a flow in G with value |f| + |f'|.

expansion path p: simple path from s to t in the rest network G_f . Rest capacity $c_f(p) = \min\{c_f(u, v) : (u, v) \text{ edge in } p\}$

Flow in G_f

Theorem

The mapping $f_p: V \times V \to \mathbb{R}$,

$$f_p(u,v) = \begin{cases} c_f(p) & \text{ if } (u,v) \text{ edge in } p \\ -c_f(p) & \text{ if } (v,u) \text{ edge in } p \\ 0 & \text{ otherwise} \end{cases}$$

provides a flow in G_f with value $|f_p| = c_f(p) > 0$.

 f_p is a flow (easy to show). there is one and only one $u \in V$ with $(s, u) \in p$. Thus $|f_p| = \sum_{v \in V} f_p(s, v) = f_p(s, u) = c_f(p)$.

Max-Flow Min-Cut Theorem

Theorem

Let f be a flow in a flow network G = (V, E, c) with source s and sink

- t. The following statementsa are equivalent:
 - **1** f is a maximal flow in G
 - **2** The rest network G_f does not provide any expansion paths
 - 3 It holds that |f| = c(S,T) for a cut (S,T) of G.

Algorithm Ford-Fulkerson(G, s, t)

```
Input : Flow network G = (V, E, c)
Output : Maximal flow f.
for (u, v) \in E do
    f(u,v) \leftarrow 0
while Exists path p: s \rightsquigarrow t in rest network G_f do
    c_f(p) \leftarrow \min\{c_f(u, v) : (u, v) \in p\}
    foreach (u, v) \in p do
         if (u, v) \in E then
              f(u,v) \leftarrow f(u,v) + c_f(p)
         else
       f(v,u) \leftarrow f(u,v) - c_f(p)
```

Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in G_f the expansion path of shortest possible length (e.g. with BFS)

Theorem

When the Edmonds-Karp algorithm is applied to some integer valued flow network G = (V, E) with source s and sink t then the number of flow increases applied by the algorithm is in $\mathcal{O}(|V| \cdot |E|)$ \Rightarrow Overal asymptotic runtime: $\mathcal{O}(|V| \cdot |E|^2)$

[Without proof]

Application: maximal bipartite matching

Given: bipartite undirected graph G = (V, E). Matching M: $M \subseteq E$ such that $|\{m \in M : v \in m\}| \le 1$ for all $v \in V$.

Maximal Matching M: Matching M, such that $|M| \ge |M'|$ for each matching M'.

3. Programming Task

- Input: union operations to be performed, followed by queries if they are located in the same set.
- Output: For each query, answer if they are in the same set.
- Make sure you can re-use your code in the next task.

Task 10.4: Kruskal's MST algorithm

Edges have to be sorted.

Task 10.4: Kruskal's MST algorithm

- Edges have to be sorted.
- Create an *Edge* class that implements the comparison operator.
- Then use *std::sort*.

Questions?