
14. Hashing

Hash Tables, Birthday Paradoxon, Hash functions, Perfect and
Universal Hashing, Resolving Collisions with Chaining, Open
Addressing, Probing

[Ottman/Widmayer, Kap. 4.1-4.3.2, 4.3.4, Cormen et al, Kap.
11-11.4]

366

Motivation

Gloal: Table of all n students of this course

Requirement: fast access by name

367

Naive Ideas
Mapping Name s = s1s2 . . . sls to key

k(s) =

ls∑

i=1

si · bi

b large enough such taht different names map to different keys.

Store each data set at its index in a huge array.

Example with b = 100. Ascii-Values si.
Anna 7→ 71111065
Jacqueline 7→ 102110609021813999774

Unrealistic: requires too large arrays.
368

Better idea?

Allocation of an array of size m (m > n).

Mapping Name s to

km(s) =

(
ls∑

i=1

si · bi
)

mod m.

Different names can map to the same key (“Collision”). And then?

369

Estimation

Maybe collision do not really exist? We make an estimation ...

370

Abschätzung

Assumption: m urns, n balls (wlog n ≤ m).
n balls are put uniformly distributed into the urns

What is the collision probability?

Very similar question: with how many people (n) the probability that
two of them share the same birthday (m = 365) is larger than 50%?

371

Estimation
P(no collision) = m

m · m−1m · · · · · m−n+1
m = m!

(m−n)!·mm .

Let a� m. With ex = 1 + x+ x2

2! + . . . approximate 1− a
m ≈ e−

a
m .

This yields:

1 ·
(
1− 1

m

)
·
(
1− 2

m

)
· ... ·

(
1− n− 1

m

)
≈ e−

1+···+n−1
m = e−

n(n−1)
2m .

Thus
P(Kollision) = 1− e−n(n−1)

2m .

Puzzle answer: with 23 people the probability for a birthday collision is 50.7%. Derived from the slightly more accurate

Stirling formula. 372

With filling degree:

With filling degree α :=
n/m it holds that (simplified
further)

P(collision) ≈ 1− e−α2·m2 .

100 200 300

0.5

1

10%

5%

20%

m

P(Kollision)

The maximal filling degree should be chosen according to the ratio
n2/m.

373

Nomenclature

Hash funtion h: Mapping from the set of keys K to the index set
{0, 1, . . . ,m− 1} of an array (hash table).

h : K → {0, 1, . . . ,m− 1}.

Normally |K| � m. There are k1, k2 ∈ K with h(k1) = h(k2)
(collision).

A hash function should map the set of keys as uniformly as possible
to the hash table.

374

Examples of Good Hash Functions

h(k) = k mod m, m prime

h(k) = bm(k · r − bk · rc)c, r irrational, paritcularly good:
r =

√
5−1
2 .

375

Perfect Hashing

Is the set of used keys known up front? Then the hash function can
be chosen perfectly. The practical construction is non-trivial.

Example: table of key words of a compiler.

376

Universal Hashing

|K| > m⇒ Set of “similar keys” can be chose such that a large
number of collisions occur.
Impossible to select a “best” hash function for all cases.
Possible, however14: randomize!

Universal hash class H ⊆ {h : K → {0, 1, . . . ,m− 1}} is a family of
hash functions such that

∀k1 6= k2 ∈ K : |{h ∈ H|h(k1) = h(k2)}| ≤
1

m
|H|.

14Similar as for quicksort
377

Universal Hashing

Theorem
A function h randomly chosen from a universal class H of hash
functions randomly distributes an arbitrary sequence of keys from K
as uniformly as possible on the available slots.

378

Universal Hashing

Initial remark for the proof of the theorem:

Define with x, y ∈ K, h ∈ H, Y ⊆ K:

δ(x, y, h) =

{
1, if h(x) = h(y), x 6= y

0, otherwise,

δ(x, Y, h) =
∑

y∈Y
δ(x, y, h),

δ(x, y,H) =
∑

h∈H
δ(x, y, h).

H is universal if for all x, y ∈ K, x 6= y : δ(x, y,H) ≤ |H|/m.

379

Universal Hashing
Proof of the theorem

S ⊆ K: keys stored up to now. x is added now:

EH(δ(x, S, h)) =
∑

h∈H
δ(x, S, h)/|H|

=
1

|H|
∑

h∈H

∑

y∈S
δ(x, y, h) =

1

|H|
∑

y∈S

∑

h∈H
δ(x, y, h)

=
1

|H|
∑

y∈S
δ(x, y,H)

≤ 1

|H|
∑

y∈S
|H|/m =

|S|
m
.

�
380

Universal Hashing is Relevant!

Let p be prime and K = {0, . . . , p− 1}. With a ∈ K \ {0}, b ∈ K
define

hab : K → {0, . . . ,m− 1}, hab(x) = ((ax+ b) mod p) mod m.

Then the following theorem holds:

Theorem
The class H = {hab|a, b ∈ K, a 6= 0} is a universal class of hash
functions.

381

Resolving Collisions
Example m = 7, K = {0, . . . , 500}, h(k) = k mod m.
Keys 12 , 53 , 5 , 15 , 2 , 19 , 43

Chaining the Collisions

15

43

2 53 12

5

19

hash table

Colliding entries

0 1 2 3 4 5 6

382

Resolving Collisions
Example m = 7, K = {0, . . . , 500}, h(k) = k mod m.
Keys 12 , 53 , 5 , 15 , 2 , 19 , 43

Direct Chaining of the Colliding entries

15

43

2 53 12

5

19

hash table

Colliding entries

0 1 2 3 4 5 6

383

Algorithm for Hashing with Chaining

search(k) Search in list from position h(k) for k. Return true if
found, otherwise false.
insert(k) Check if k is in list at position h(k). If no, then append
k to the end of the list.
delete(k) Search the list at position h(k) for k. If successful,
remove the list element.

384

Analysis (directly chained list)
1 Unsuccesful search. The average list lenght is α = n

m . The list
has to be traversed completely.
⇒ Average number of entries considered

C ′n = α.

2 Successful search Consider the insertion history: key j sees an
average list length of (j − 1)/m.
⇒ Average number of considered entries

Cn =
1

n

n∑

j=1

(1 + (j − 1)/m)) = 1 +
1

n

n(n− 1)

2m
≈ 1 +

α

2
.

385

Advantages and Disadvantages

Advantages

Possible to overcommit: α > 1

Easy to remove keys.

Disadvantages

Memory consumption of the chains-

386

Open Addressing

Store the colliding entries directly in the hash table using a probing
function s(j, k) (0 ≤ j < m, k ∈ K)

Key table position along a probing sequence

S(k) := (h(k)− s(0, k) mod m, . . . , (h(k)− (m− 1, k)) mod m

387

Algorithms for open addressing

search(k) Traverse table entries according to S(k). If k is found,
return true. If the probing sequence is finished or an empty
position is reached, return false.
insert(k) Search for k in the table according to S(k). If k is not
present, insert k at the first free position in the probing sequence.
15

delete(k) Search k in the table according to S(k). If k is found,
mark the position of k with a deleted flag

15A position is also free when it is non-empty and contains a deleted flag.
388

Linear Probing

s(j, k) = j ⇒
S(k) = (h(k) mod m, (h(k)− 1) mod m, . . . , (h(k) + 1) mod m)

Example m = 7, K = {0, . . . , 500}, h(k) = k mod m.
Key 12 , 53 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

1253515 219

389

Analysis linear probing (without proof)

1 Unsuccessful search. Average number of considered entries

C ′n ≈
1

2

(
1 +

1

(1− α)2
)

2 Successful search. Average number of considered entries

Cn ≈
1

2

(
1 +

1

1− α

)
.

390

Discussion

Example α = 0.95

The unsuccessful search consideres 200 table entries on average!

? Disadvantage of the method?

! Primary clustering: simular hasht addresses have similar probing
sequences⇒ long contiguous areas of used entries.

391

Quadratic Probing

s(j, k) = dj/2e2 (−1)j
S(k) = (h(k) + 1, h(k)− 1, h(k) + 4, h(k)− 4, . . .) mod m

Example m = 7, K = {0, . . . , 500}, h(k) = k mod m.
Keys 12 , 53 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

1253 515 219

392

Analysis Quadratic Probing (without Proof)

1 Unsuccessful search. Average number of entries considered

C ′n ≈
1

1− α − α + ln

(
1

1− α

)

2 Successful search. Average number of entries considered

Cn ≈ 1 + ln

(
1

1− α

)
− α

2
.

393

Discussion

Example α = 0.95

Unsuccessfuly search considers 22 entries on average

? Problems of this method?
! Secondary clustering: Synonyms k and k′ (with h(k) = h(k′))

travers the same probing sequence.

394

Double Hashing

Two hash functions h(k) and h′(k). s(j, k) = j · h′(k).
S(k) = (h(k)− h′(k), h(k)− 2h′(k), . . . , h(k)− (m− 1)h′(k)) mod m

Example:
m = 7, K = {0, . . . , 500}, h(k) = k mod 7, h′(k) = 1 + k mod 5.
Keys 12 , 53 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

1253515 219

395

Double Hashing

Probing sequence must permute all hash addresses. Thus
h′(k) 6= 0 and h′(k) may not divide m, for example guaranteed
with m prime.
h′ should be independent of h (avoiding secondary clustering)

Independence:

P ((h(k) = h(k′)) ∧ (h′(k) = h′(k′))) = P (h(k) = h(k′)) ·P (h′(k) = h′(k′)) .

Independence fulfilled by h(k) = k mod m and h′(k) = 1 + k mod (m− 2) (m
prime).

396

Analysis Double Hashing

Let h and h′ be independent, then:

1 Unsuccessful search. Average number of considered entries:

C ′n ≈
1

1− α

2 Successful search. Average number of considered entries:

Cn ≈ 1 +
α

2
+
α3

4
+
α4

15
− α5

18
+ · · · < 2.5

397

Overview

α = 0.50 α = 0.90 α = 0.95

Cn C ′
n Cn C ′

n Cn C ′
n

Separate Chaining 1.250 1.110 1.450 1.307 1.475 1.337

Direct Chaining 1.250 0.500 1.450 0.900 1.475 0.950

Linear Probing 1.500 2.500 5.500 50.500 10.500 200.500

Quadratic Probing 1.440 2.190 2.850 11.400 3.520 22.050

Double Hashing 1.39 2.000 2.560 10.000 3.150 20.000

398

