10. Sorting III

Lower bounds for the comparison based sorting, radix- and bucket-sort

10.1 Lower bounds for comparison based sorting

[Ottman/Widmayer, Kap. 2.8, Cormen et al, Kap. 8.1]

Lower bound for sorting

Up to here: worst case sorting takes $\Omega(n \log n)$ steps.

Is there a better way? No:

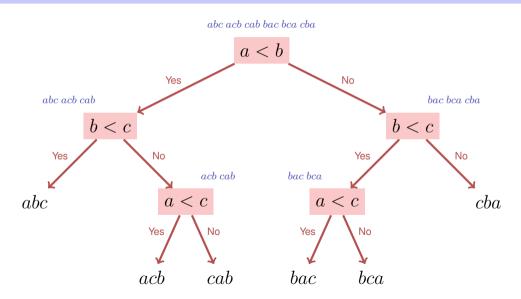
Theorem

Sorting procedures that are based on comparison require in the worst case and on average at least $\Omega(n \log n)$ key comparisons.

Comparison based sorting

- An algorithm must identify the correct one of n! permutations of an array $(A_i)_{i=1,\dots,n}$.
- At the beginning the algorithm know nothing about the array structure.
- We consider the knowledge gain of the algorithm in the form of a decision tree:
 - Nodes contain the remaining possibilities.
 - Edges contain the decisions.

Decision tree



Decision tree

The height of a binary tree with L leaves is at least $\log_2 L$. \Rightarrow The heigh of the decision tree $h \ge \log n! \in \Omega(n \log n)$.¹¹

Thus the length of the longest path in the decision tree $\in \Omega(n \log n)$.

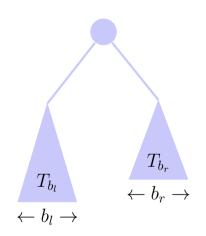
Remaining to show: mean length M(n) of a path $M(n) \in \Omega(n \log n)$.

 $^{^{11}\}log n! \in \Theta(n\log n)$:

 $[\]log n! = \sum_{k=1}^{n} \log k \le n \log n.$

 $[\]log n! = \sum_{k=1}^{n} \log k \ge \sum_{k=n/2}^{n} \log k \ge \frac{n}{2} \cdot \log \frac{n}{2}.$

Average lower bound



- Decision tree T_n with n leaves, average height of a leaf $m(T_n)$
- Assumption $m(T_n) \ge \log n$ not for all n.
- Choose smalles b with $m(T_b) < \log n \Rightarrow b \geq 2$
- $b_l + b_r = b$, wlog $b_l > 0$ und $b_r > 0 \Rightarrow$ $b_l < b, b_r < b \Rightarrow m(T_{b_l}) \ge \log b_l$ und $m(T_{b_r}) \ge \log b_r$

Average lower bound

Average height of a leaf:

$$m(T_b) = \frac{b_l}{b}(m(T_{b_l}) + 1) + \frac{b_r}{b}(m(T_{b_r}) + 1)$$

$$\geq \frac{1}{b}(b_l(\log b_l + 1) + b_r(\log b_r + 1)) = \frac{1}{b}(b_l \log 2b_l + b_r \log 2b_r)$$

$$\geq \frac{1}{b}(b \log b) = \log b.$$

Contradiction.

The last inequality holds because $f(x)=x\log x$ is convex and for a convex function it holds that $f((x+y)/2)\leq 1/2f(x)+1/2f(y)$ ($x=2b_l,\,y=2b_r$). Enter $x=2b_l,\,y=2b_r$, and $b_l+b_r=b$.

 $^{^{12} \}text{generally } f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y) \text{ for } 0 \leq \lambda \leq 1.$

10.2 Radixsort and Bucketsort

Radixsort, Bucketsort [Ottman/Widmayer, Kap. 2.5, Cormen et al, Kap. 8.3]

Radix Sort

Sorting based on comparison: comparable keys (< or >, often =). No further assumptions.

Different idea: use more information about the keys.

Annahmen

Assumption: keys representable as words from an alphabet containing m elements.

Examples

```
m=10 decimal numbers 183=183_{10} m=2 dual numbers 101_2 m=16 hexadecimal numbers A0_{16} m=26 words "INFORMATIK"
```

m is called the radix of the representation.

Assumptions

- \blacksquare keys = m-adic numbers with same length.
- Procedure z for the extraction of digit k in $\mathcal{O}(1)$ steps.

Example

$$z_{10}(0,85) = 5$$

 $z_{10}(1,85) = 8$
 $z_{10}(2,85) = 0$

Radix-Exchange-Sort

Keys with radix 2.

Observation: if $k \geq 0$,

$$z_2(i, x) = z_2(i, y)$$
 for all $i > k$

and

$$z_2(k,x) < z_2(k,y),$$

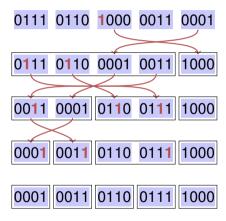
then x < y.

Radix-Exchange-Sort

Idea:

- Start with a maximal k.
- Binary partition the data sets with $z_2(k,\cdot)=0$ vs. $z_2(k,\cdot)=1$ like with quicksort.
- $k \leftarrow k 1$.

Radix-Exchange-Sort



Algorithm RadixExchangeSort(A, l, r, b)

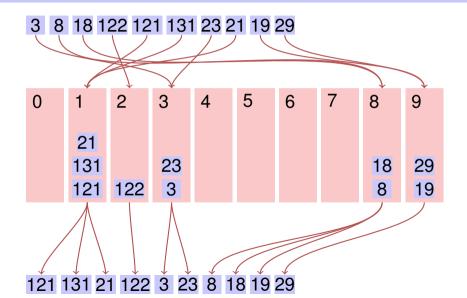
```
Array A with length n, left and right bounds 1 < l < r < n, bit
Input:
                 position b
                 Array A, sorted in the domain [l, r] by bits [0, \ldots, b].
Output:
if l > r and b > 0 then
   i \leftarrow l-1
   i \leftarrow r + 1
    repeat
         repeat i \leftarrow i+1 until z_2(b,A[i])=1 and i \geq j
         repeat i \leftarrow i+1 until z_2(b,A[i])=0 and i > i
        if i < j then swap(A[i], A[j])
    until i > j
    RadixExchangeSort(A, l, i - 1, b - 1)
    RadixExchangeSort(A, i, r, b - 1)
```

Analysis

RadixExchangeSort provide recursion with maximal recursion depth = maximal number of digits p.

Worst case run time $\mathcal{O}(p \cdot n)$.

Bucket Sort



Bucket Sort

121 131 21 122 3 23 8 18 19 29

0		1	2	3	4	5	6	7	8	9
			29							
			29 23							
			122							
8	3	19	21							
3	3	18	121	131						

3 8 18 19 121 21 122 23 29

Bucket Sort

3 8 18 19 121 21 122 23 29

0	1	2	3	4	5	6	7	8	9
29 23									
23									
21									
19									
18	131								
8	122								
3	121								

3 8 18 19 21 23 29 121 122 131 🙂

implementation details

Bucket size varies greatly. Two possibilities

- Linked list for each digit.
- lacksquare One array of length n. compute offsets for each digit in the first iteration.

11. Fundamental Data Types

Abstract data types stack, queue, implementation variants for linked lists, amortized analysis [Ottman/Widmayer, Kap. 1.5.1-1.5.2, Cormen et al, Kap. 10.1.-10.2,17.1-17.3]

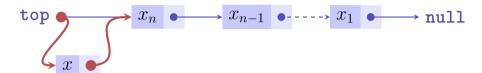
Abstract Data Types

We recall

A *stack* is an abstract data type (ADR) with operations

- **push**(x, S): Puts element x on the stack S.
- ightharpoonup pop(S): Removes and returns top most element of S or null
- **top**(S): Returns top most element of S or null.
- **isEmpty**(S): Returns true if stack is empty, false otherwise.
- emptyStack(): Returns an empty stack.

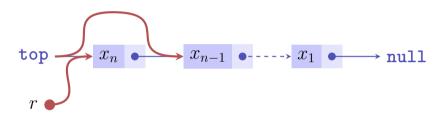
Implementation Push



push(x, S):

- \blacksquare Create new list element with x and pointer to the value of top.
- 2 Assign the node with x to top.

Implementation Pop



pop(S):

- If top=null, then return null
- **2** otherwise memorize pointer p of top in r.
- \blacksquare Set top to p.next and return r

Analysis

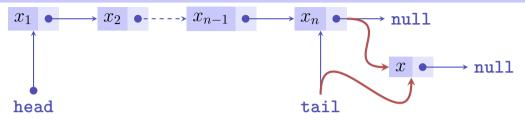
Each of the operations push, pop, top and is Empty on a stack can be executed in $\mathcal{O}(1)$ steps.

Queue (fifo)

A queue is an ADT with the following operations

- \blacksquare enqueue(x,Q): adds x to the tail (=end) of the queue.
- dequeue(Q): removes x from the head of the queue and returns x (null otherwise)
- head(Q): returns the object from the head of the queue (null otherwise)
- isEmpty(Q): return true if the queue is empty, otherwise false
- emptyQueue(): returns empty queue.

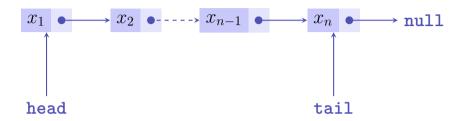
Implementation Queue



enqueue(x, S):

- **The state of the state of the**
- If tail \neq null, then set tail.next to the node with x.
- \blacksquare Set tail to the node with x.
- If head = null, then set head to tail.

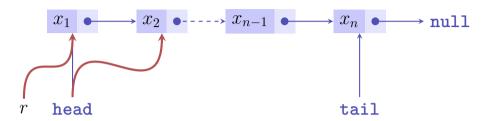
Invariants



With this implementation it holds that

- \blacksquare either head = tail = null,
- lacksquare or head = tail eq null and head.next = null
- or head \neq null and tail \neq null and head \neq tail and head.next \neq null.

Implementation Queue



dequeue(S):

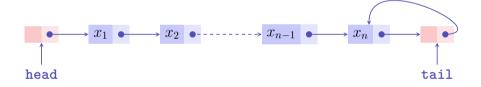
- Store pointer to head in r. If r = null, then return r.
- Set the pointer of head to head.next.
- Is now head = null then set tail to null.
- \blacksquare Return the value of r.

Analysis

Each of the operations enqueue, dequeue, head and is Empty on the queue can be executed in $\mathcal{O}(1)$ steps.

Implementation Variants of Linked Lists

List with dummy elements (sentinels).



Advantage: less special cases

Variant: like this with pointer of an element stored singly indirect.

Implementation Variants of Linked Lists

Doubly linked list

Overview

	enqueue	insert	delete	search	concat
(A)	$\Theta(1)$	$\Theta(1)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
(B)	$\Theta(1)$	$\Theta(1)$	$\Theta(n)$	$\Theta(n)$	$\Theta(1)$
(C)	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(n)$	$\Theta(1)$
(D)	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(n)$	$\Theta(1)$

- (A) = singly linked
- (B) = Singly linked with dummy
- (C) = Singly linked with indirect element addressing
- (D) = doubly linked

priority queue

Priority Queue

Operations

- **insert**(x,p,Q): Enter object x with priority p.
- \blacksquare extractMax(Q): Remove and return object x with highest priority.

Implementation Priority Queue

With a Max Heap

Thus

- lacktriangle insert in $\mathcal{O}(\log n)$ and
- **extractMax** in $\mathcal{O}(\log n)$.

Multistack

Multistack adds to the stack operations below

 $\operatorname{multipop}(s,S)$: remove the $\min(\operatorname{size}(S),k)$ most recently inserted objects and return them.

Implementation as with the stack. Runtime of multipop is $\mathcal{O}(k)$.

Academic Question

If we execute on a stack with n elements a number of n times $\mathtt{multipop(k,S)}$ then this costs $\mathcal{O}(n^2)$?

Certainly correct because each multipop may take O(n) steps.

How to make a better estimation?

Idea (accounting)

Introduction of a cost model:

- Each call of push costs 1 CHF and additional 1 CHF will be put to account.
- Each call to pop costs 1 CHF and will be paid from the account.

Account will never have a negative balance. Thus: maximal costs = number of push operations times two.

More Formal

Let t_i denote the real costs of the operation i. Potential function $\Phi_i \geq 0$ for the "account balance" after i operations. $\Phi_i \geq \Phi_0 \ \forall i$.

Amortized costs of the *i*th operation:

$$a_i := t_i + \Phi_i - \Phi_{i-1}.$$

It holds

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} (t_i + \Phi_i - \Phi_{i-1}) = \left(\sum_{i=1}^{n} t_i\right) + \Phi_n - \Phi_0 \ge \sum_{i=1}^{n} t_i.$$

Goal: find potential function that evens out expensive operations.

Example stack

Potential function Φ_i = number element on the stack.

- **push**(x, S): real costs $t_i = 1$. $\Phi_i \Phi_{i-1} = 1$. Amortized costs $a_i = 2$.
- pop(S): real costs $t_i = 1$. $\Phi_i \Phi_{i-1} = -1$. Amortized costs $a_i = 0$.
- multipop(k, S): real costs $t_i = k$. $\Phi_i \Phi_{i-1} = -k$. amortized costs $a_i = 0$.

All operations have *constant amortized cost!* Therefore, on average Multipop requires a constant amount of time.

Example Binary Counter

Binary counter with k bits. In the worst case for each count operation maximally k bitflips. Thus $\mathcal{O}(n \cdot k)$ bitflips for counting from 1 to n. Better estimation?

Real costs t_i = number bit flips from 0 to 1 plus number of bit-flips from 1 to 0.

$$...0\underbrace{1111111}_{l \text{ Einsen}} + 1 = ...1\underbrace{0000000}_{l \text{ Zeroes}}.$$

$$\Rightarrow t_i = l + 1$$

Example Binary Counter

$$...0\underbrace{1111111}_{l \text{ Einsen}} + 1 = ...1\underbrace{0000000}_{l \text{ Nullen}}$$

potential function Φ_i : number of 1-bits of x_i .

$$\Rightarrow \Phi_i - \Phi_{i-1} = 1 - l,$$

$$\Rightarrow a_i = t_i + \Phi_i - \Phi_{i-1} = l + 1 + (1 - l) = 2.$$

Amortized constant cost for each count operation.

