10. Sorting III

Lower bounds for the comparison based sorting, radix- and bucket-sort

10.1 Lower bounds for comparison based sorting

[Ottman/Widmayer, Kap. 2.8, Cormen et al, Kap. 8.1]

Lower bound for sorting

Up to here: worst case sorting takes $\Omega(n \log n)$ steps.

Is there a better way? No:

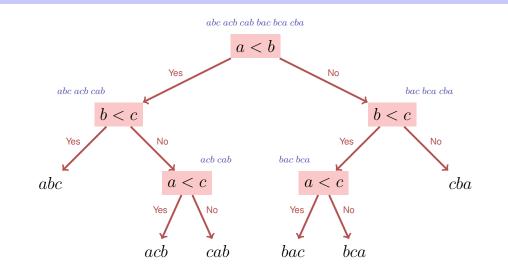
Theorem

Sorting procedures that are based on comparison require in the worst case and on average at least $\Omega(n \log n)$ key comparisons.

Comparison based sorting

- An algorithm must identify the correct one of n! permutations of an array $(A_i)_{i=1,\dots,n}$.
- At the beginning the algorithm know nothing about the array structure.
- We consider the knowledge gain of the algorithm in the form of a decision tree:
 - Nodes contain the remaining possibilities.
 - Edges contain the decisions.

Decision tree



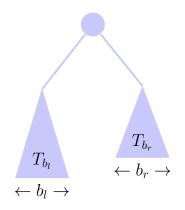
Decision tree

The height of a binary tree with L leaves is at least $\log_2 L$. \Rightarrow The heigh of the decision tree $h \ge \log n! \in \Omega(n \log n)$.¹¹ Thus the length of the longest path in the decision tree $\in \Omega(n \log n)$. Remaining to show: mean length M(n) of a path $M(n) \in \Omega(n \log n)$.

$$\begin{split} ^{11} & \log n! \in \Theta(n \log n) \text{:} \\ & \log n! = \sum_{k=1}^n \log k \leq n \log n \text{.} \\ & \log n! = \sum_{k=1}^n \log k \geq \sum_{k=n/2}^n \log k \geq \frac{n}{2} \cdot \log \frac{n}{2} \text{.} \end{split}$$

276

Average lower bound



- Decision tree *T_n* with *n* leaves, average height of a leaf *m*(*T_n*)
- Assumption $m(T_n) \ge \log n$ not for all n.
- Choose smalles b with $m(T_b) < \log n \Rightarrow b \ge 2$
- $b_l + b_r = b$, wlog $b_l > 0$ und $b_r > 0 \Rightarrow$ $b_l < b, b_r < b \Rightarrow m(T_{b_l}) \ge \log b_l$ und $m(T_{b_r}) \ge \log b_r$

Average lower bound

Average height of a leaf:

$$m(T_b) = \frac{b_l}{b}(m(T_{b_l}) + 1) + \frac{b_r}{b}(m(T_{b_r}) + 1)$$

$$\geq \frac{1}{b}(b_l(\log b_l + 1) + b_r(\log b_r + 1)) = \frac{1}{b}(b_l \log 2b_l + b_r \log 2b_r)$$

$$\geq \frac{1}{b}(b \log b) = \log b.$$

Contradiction.

The last inequality holds because $f(x) = x \log x$ is convex and for a convex function it holds that $f((x + y)/2) \le 1/2f(x) + 1/2f(y)$ ($x = 2b_l$, $y = 2b_r$).¹² Enter $x = 2b_l$, $y = 2b_r$, and $b_l + b_r = b$.

¹²generally $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$ for $0 \leq \lambda \leq 1$.

Radix Sort

10.2 Radixsort and Bucketsort

Radixsort, Bucketsort [Ottman/Widmayer, Kap. 2.5, Cormen et al, Kap. 8.3]

Sorting based on comparison: comparable keys (< or >, often =). No further assumptions.

Different idea: use more information about the keys.

Annahmen

Assumption: keys representable as words from an alphabet containing m elements.

Examples

m = 10decimal numbers $183 = 183_{10}$ m = 2dual numbers 101_2 m = 16hexadecimal numbers $A0_{16}$ m = 26words"'INFORMATIK''

m is called the radix of the representation.

Assumptions

- keys = m-adic numbers with same length.
- Procedure z for the extraction of digit k in $\mathcal{O}(1)$ steps.

Example	
$z_{10}(0,85) = 5$	
$z_{10}(1,85) = 8$	
$z_{10}(2,85) = 0$	

Radix-Exchange-Sort

Keys with radix 2.

Observation: if $k \ge 0$,

 $z_2(i, x) = z_2(i, y)$ for all i > k

and

$$z_2(k,x) < z_2(k,y),$$

then x < y.

Radix-Exchange-Sort

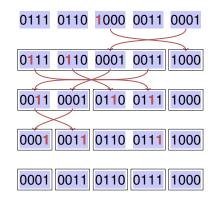
Idea:

- Start with a maximal *k*.
- Binary partition the data sets with $z_2(k, \cdot) = 0$ vs. $z_2(k, \cdot) = 1$ like with quicksort.
- $\blacksquare k \leftarrow k 1.$

282

284

Radix-Exchange-Sort



Algorithm RadixExchangeSort(A, l, r, b)

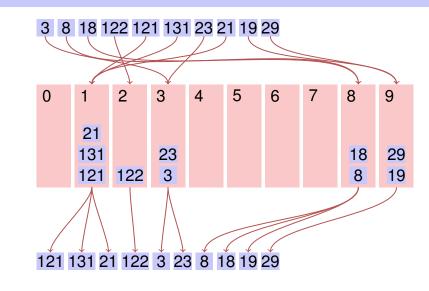
Input :	Array A with length n, left and right bounds $1 \le l \le r \le n$, bit position b
Output :	Array A, sorted in the domain $[l, r]$ by bits $[0, \ldots, b]$.
if $l > r$ and b	$0 \ge 0$ then
$i \leftarrow l-1$	
$j \leftarrow r+1$	
repeat	
repea	at $i \leftarrow i+1$ until $z_2(b, A[i]) = 1$ and $i \ge j$
repea	at $j \leftarrow j+1$ until $z_2(b, A[j]) = 0$ and $i \ge j$
if $i <$	(j then swap(A[i], A[j]))
until $i \ge$	j
RadixExcl	nangeSort(A, l, i-1, b-1)
RadixExcl	nangeSort(A, i, r, b-1)

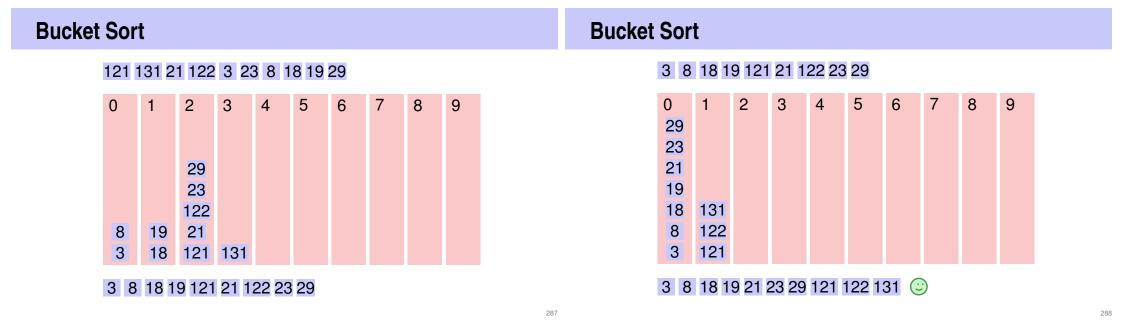
Analysis

RadixExchangeSort provide recursion with maximal recursion depth = maximal number of digits p.

Worst case run time $\mathcal{O}(p \cdot n)$.

Bucket Sort





implementation details

Bucket size varies greatly. Two possibilities

- Linked list for each digit.
- One array of length n. compute offsets for each digit in the first iteration.

11. Fundamental Data Types

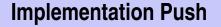
Abstract data types stack, queue, implementation variants for linked lists, amortized analysis [Ottman/Widmayer, Kap. 1.5.1-1.5.2, Cormen et al, Kap. 10.1.-10.2,17.1-17.3]

Abstract Data Types

We recall

A stack is an abstract data type (ADR) with operations

- **push**(x, S): Puts element x on the stack S.
- **pop**(S): Removes and returns top most element of S or **null**
- **top**(S): Returns top most element of S or **null**.
- isEmpty(S): Returns true if stack is empty, false otherwise.
- emptyStack(): Returns an empty stack.

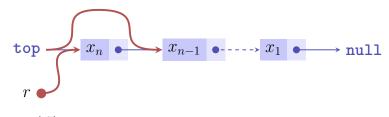


push(x, S):

- **1** Create new list element with x and pointer to the value of top.
- **2** Assign the node with x to top.

289

Implementation Pop



pop(S):

- If top=null, then return null
- **2** otherwise memorize pointer p of top in r.
- **3** Set top to p.next and return r

Analysis

Each of the operations push, pop, top and isEmpty on a stack can be executed in $\mathcal{O}(1)$ steps.

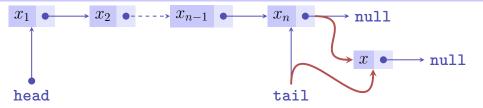
294

Queue (fifo)

A queue is an ADT with the following operations

- enqueue(x, Q): adds x to the tail (=end) of the queue.
- dequeue(Q): removes x from the head of the queue and returns x (null otherwise)
- head(Q): returns the object from the head of the queue (null otherwise)
- isEmpty(Q): return true if the queue is empty, otherwise false
- emptyQueue(): returns empty queue.

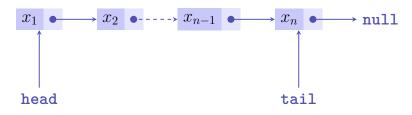
Implementation Queue



enqueue(x, S):

- **1** Create a new list element with *x* and pointer to **null**.
- **2** If tail \neq null, then set tail.next to the node with x.
- **3** Set tail to the node with x.
- If head = null, then set head to tail.

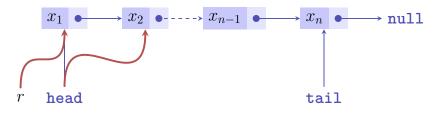
Invariants



With this implementation it holds that

- either head = tail = null,
- Or head = tail \neq null and head.next = null
- Or head \neq null and tail \neq null and head \neq tail and head.next \neq null.

Implementation Queue

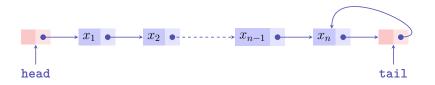


dequeue(S):

- **1** Store pointer to head in r. If r = null, then return r.
- 2 Set the pointer of head to head.next.
- \exists Is now head = null then set tail to null.
- **4** Return the value of r.

Implementation Variants of Linked Lists

List with dummy elements (sentinels).



Advantage: less special cases

Variant: like this with pointer of an element stored singly indirect.

Each of the operations enqueue, dequeue, head and is Empty on the queue can be executed in $\mathcal{O}(1)$ steps.

297

Implementation Variants of Linked Lists

Overview

		enqueue	insert	delete	search	concat	
Doubly linked list	(A)	$\Theta(1)$	$\Theta(1)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	
	(B)	$\Theta(1)$	$\Theta(1)$	$\Theta(n)$	$\Theta(n)$	$\Theta(1)$	
null $\leftarrow \bullet x_1 \bullet \leftarrow x_2 \bullet \leftarrow \leftarrow x_{n-1} \bullet \leftarrow \to x_n \bullet \rightarrow $ null	(C)	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(n)$	$\Theta(1)$	
$null \longleftrightarrow x_1 \bullet x_2 \bullet x_2 \bullet x_{n-1} \bullet x_n \bullet null$ \uparrow head $tail$	(D)	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(n)$	$\Theta(1)$	
301		ly linked with dur Iy linked with ind		t addressing			
priority queue	Implementation Priority Queue						
Priority Queue	With a M	lax Heap					
Operations	Thus						
insert(x,p,Q) : Enter object x with priority p.	insert in $\mathcal{O}(\log n)$ and						
extractMax (Q): Remove and return object x with highest priority.		extractMax in $\mathcal{O}(\log n)$.					
			0 - /-				

Multistack

Academic Question

Multistack adds to the stack operations below

multipop(s,S): remove the min(size(S), k) most recently inserted objects and return them.

Implementation as with the stack. Runtime of multipop is $\mathcal{O}(k)$.

If we execute on a stack with n elements a number of n times multipop(k,S) then this costs $\mathcal{O}(n^2)$? Certainly correct because each multipop may take $\mathcal{O}(n)$ steps. How to make a better estimation?

305

Idea (accounting)

Introduction of a cost model:

- Each call of push costs 1 CHF and additional 1 CHF will be put to account.
- Each call to pop costs 1 CHF and will be paid from the account.

Account will never have a negative balance. Thus: maximal costs = number of push operations times two.

More Formal

Let t_i denote the real costs of the operation i. Potential function $\Phi_i \ge 0$ for the "account balance" after i operations. $\Phi_i \ge \Phi_0 \ \forall i$. Amortized costs of the *i*th operation:

$$a_i := t_i + \Phi_i - \Phi_{i-1}$$

It holds

$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} (t_i + \Phi_i - \Phi_{i-1}) = \left(\sum_{i=1}^{n} t_i\right) + \Phi_n - \Phi_0 \ge \sum_{i=1}^{n} t_i.$$

Goal: find potential function that evens out expensive operations.

Example stack

Potential function Φ_i = number element on the stack.

- **push**(x, S): real costs $t_i = 1$. $\Phi_i \Phi_{i-1} = 1$. Amortized costs $a_i = 2$.
- **pop**(S): real costs $t_i = 1$. $\Phi_i \Phi_{i-1} = -1$. Amortized costs $a_i = 0$.
- multipop(k, S): real costs $t_i = k$. $\Phi_i \Phi_{i-1} = -k$. amortized costs $a_i = 0$.

All operations have *constant amortized cost*! Therefore, on average Multipop requires a constant amount of time.

Example Binary Counter

Binary counter with k bits. In the worst case for each count operation maximally k bitflips. Thus $\mathcal{O}(n \cdot k)$ bitflips for counting from 1 to n. Better estimation?

Real costs t_i = number bit flips from 0 to 1 plus number of bit-flips from 1 to 0.

$$\ldots \underbrace{0}_{l \text{ Einsen}} +1 = \ldots \underbrace{1}_{l \text{ Zeroes}} \underbrace{0000000}_{l \text{ Zeroes}}.$$

$$\Rightarrow t_i = l + 1$$

310

Example Binary Counter

$$\dots 0 \underbrace{1111111}_{l \text{ Einsen}} + 1 = \dots 1 \underbrace{0000000}_{l \text{ Nullen}}$$

potential function Φ_i : number of 1-bits of x_i .

$$\Rightarrow \Phi_{i} - \Phi_{i-1} = 1 - l,$$

$$\Rightarrow a_{i} = t_{i} + \Phi_{i} - \Phi_{i-1} = l + 1 + (1 - l) = 2$$

Amortized constant cost for each count operation. 🙂