
10. Sorting III

Lower bounds for the comparison based sorting, radix- and
bucket-sort

269

10.1 Lower bounds for comparison based sorting

[Ottman/Widmayer, Kap. 2.8, Cormen et al, Kap. 8.1]

270

Lower bound for sorting

Up to here: worst case sorting takes Ω(n log n) steps.

Is there a better way? No:

Theorem
Sorting procedures that are based on comparison require in the
worst case and on average at least Ω(n log n) key comparisons.

271

Comparison based sorting

An algorithm must identify the correct one of n! permutations of an
array (Ai)i=1,...,n .
At the beginning the algorithm know nothing about the array
structure.
We consider the knowledge gain of the algorithm in the form of a
decision tree:

Nodes contain the remaining possibilities.
Edges contain the decisions.

272



Decision tree

a < b

b < c

abc a < c

acb cab

b < c

a < c

bac bca

cba

Yes No

Yes No Yes No

Yes No Yes No

abc acb cab bac bca cba

abc acb cab bac bca cba

acb cab bac bca

273

Decision tree

The height of a binary tree with L leaves is at least log2 L. ⇒ The
heigh of the decision tree h ≥ log n! ∈ Ω(n log n).11

Thus the length of the longest path in the decision tree ∈ Ω(n log n).

Remaining to show: mean length M(n) of a path M(n) ∈ Ω(n log n).

11logn! ∈ Θ(n logn):
logn! =

∑n
k=1 log k ≤ n logn.

logn! =
∑n

k=1 log k ≥∑n
k=n/2 log k ≥ n

2
· log n

2
.

274

Average lower bound

Tbl

Tbr

← br →
← bl →

Decision tree Tn with n leaves, average height
of a leaf m(Tn)

Assumption m(Tn) ≥ log n not for all n.

Choose smalles b with m(Tb) < log n⇒ b ≥ 2

bl + br = b, wlog bl > 0 und br > 0⇒
bl < b, br < b⇒ m(Tbl) ≥ log bl und
m(Tbr) ≥ log br

275

Average lower bound

Average height of a leaf:

m(Tb) =
bl
b

(m(Tbl) + 1) +
br
b

(m(Tbr) + 1)

≥ 1

b
(bl(log bl + 1) + br(log br + 1)) =

1

b
(bl log 2bl + br log 2br)

≥ 1

b
(b log b) = log b.

Contradiction. �
The last inequality holds because f(x) = x log x is convex and for a convex
function it holds that f((x + y)/2) ≤ 1/2f(x) + 1/2f(y) (x = 2bl, y = 2br ).12

Enter x = 2bl, y = 2br, and bl + br = b.

12generally f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for 0 ≤ λ ≤ 1.
276



10.2 Radixsort and Bucketsort

Radixsort, Bucketsort [Ottman/Widmayer, Kap. 2.5, Cormen et al, Kap. 8.3]

277

Radix Sort

Sorting based on comparison: comparable keys (< or >, often =).
No further assumptions.

Different idea: use more information about the keys.

278

Annahmen

Assumption: keys representable as words from an alphabet
containing m elements.

Examples

m = 10 decimal numbers 183 = 18310
m = 2 dual numbers 1012
m = 16 hexadecimal numbers A016
m = 26 words “INFORMATIK”

m is called the radix of the representation.

279

Assumptions

keys = m-adic numbers with same length.
Procedure z for the extraction of digit k in O(1) steps.

Example
z10(0, 85) = 5
z10(1, 85) = 8
z10(2, 85) = 0

280



Radix-Exchange-Sort

Keys with radix 2.

Observation: if k ≥ 0,

z2(i, x) = z2(i, y) for all i > k

and
z2(k, x) < z2(k, y),

then x < y.

281

Radix-Exchange-Sort

Idea:

Start with a maximal k.
Binary partition the data sets with z2(k, ·) = 0 vs. z2(k, ·) = 1 like
with quicksort.
k ← k − 1.

282

Radix-Exchange-Sort

0111 0110 1000 0011 0001

0111 0110 0001 0011 1000

0011 0001 0110 0111 1000

0001 0011 0110 0111 1000

0001 0011 0110 0111 1000

283

Algorithm RadixExchangeSort(A, l, r, b)
Input : Array A with length n, left and right bounds 1 ≤ l ≤ r ≤ n, bit

position b
Output : Array A, sorted in the domain [l, r] by bits [0, . . . , b] .
if l > r and b ≥ 0 then

i← l − 1
j ← r + 1
repeat

repeat i← i + 1 until z2(b, A[i]) = 1 and i ≥ j
repeat j ← j + 1 until z2(b, A[j]) = 0 and i ≥ j
if i < j then swap(A[i], A[j])

until i ≥ j
RadixExchangeSort(A, l, i− 1, b− 1)
RadixExchangeSort(A, i, r, b− 1)

284



Analysis

RadixExchangeSort provide recursion with maximal recursion depth
= maximal number of digits p.

Worst case run time O(p · n).

285

Bucket Sort
3 8 18 122 121 131 23 21 19 29

0 1 2 3 4 5 6 7 8 9

121
131
21

122 3
23

8
18

19
29

121 131 21 122 3 23 8 18 19 29
286

Bucket Sort

121 131 21 122 3 23 8 18 19 29

0 1 2 3 4 5 6 7 8 9

3
8

18
19

121
21

122
23
29

131

3 8 18 19 121 21 122 23 29
287

Bucket Sort
3 8 18 19 121 21 122 23 29

0 1 2 3 4 5 6 7 8 9

3
8

18
19
21
23
29

121
122
131

3 8 18 19 21 23 29 121 122 131
288



implementation details

Bucket size varies greatly. Two possibilities

Linked list for each digit.
One array of length n. compute offsets for each digit in the first
iteration.

289

11. Fundamental Data Types

Abstract data types stack, queue, implementation variants for linked
lists, amortized analysis [Ottman/Widmayer, Kap. 1.5.1-1.5.2,
Cormen et al, Kap. 10.1.-10.2,17.1-17.3]

290

Abstract Data Types

We recall

A stack is an abstract data type (ADR) with operations

push(x, S): Puts element x on the stack S.
pop(S): Removes and returns top most element of S or null
top(S): Returns top most element of S or null.
isEmpty(S): Returns true if stack is empty, false otherwise.
emptyStack(): Returns an empty stack.

291

Implementation Push

top xn xn−1 x1 null

x

push(x, S):

1 Create new list element with x and pointer to the value of top.
2 Assign the node with x to top.

292



Implementation Pop

top xn xn−1 x1 null

r

pop(S):

1 If top=null, then return null
2 otherwise memorize pointer p of top in r.
3 Set top to p.next and return r

293

Analysis

Each of the operations push, pop, top and isEmpty on a stack can
be executed in O(1) steps.

294

Queue (fifo)

A queue is an ADT with the following operations

enqueue(x,Q): adds x to the tail (=end) of the queue.
dequeue(Q): removes x from the head of the queue and returns x
(null otherwise)
head(Q): returns the object from the head of the queue (null
otherwise)
isEmpty(Q): return true if the queue is empty, otherwise false
emptyQueue(): returns empty queue.

295

Implementation Queue
x1 x2 xn−1 xn

head tail

null

x null

enqueue(x, S):

1 Create a new list element with x and pointer to null.
2 If tail 6= null, then set tail.next to the node with x.
3 Set tail to the node with x.
4 If head = null, then set head to tail.

296



Invariants
x1 x2 xn−1 xn

head tail

null

With this implementation it holds that

either head = tail = null,
or head = tail 6= null and head.next = null
or head 6= null and tail 6= null and head 6= tail and
head.next 6= null.

297

Implementation Queue
x1 x2 xn−1 xn

head tail

null

r

dequeue(S):

1 Store pointer to head in r. If r = null, then return r .
2 Set the pointer of head to head.next.
3 Is now head = null then set tail to null.
4 Return the value of r.

298

Analysis

Each of the operations enqueue, dequeue, head and isEmpty on
the queue can be executed in O(1) steps.

299

Implementation Variants of Linked Lists

List with dummy elements (sentinels).

x1 x2 xn−1 xn

head tail

Advantage: less special cases

Variant: like this with pointer of an element stored singly indirect.

300



Implementation Variants of Linked Lists

Doubly linked list

null x1 x2 xn−1 xn null

head tail

301

Overview

enqueue insert delete search concat
(A) Θ(1) Θ(1) Θ(n) Θ(n) Θ(n)
(B) Θ(1) Θ(1) Θ(n) Θ(n) Θ(1)
(C) Θ(1) Θ(1) Θ(1) Θ(n) Θ(1)
(D) Θ(1) Θ(1) Θ(1) Θ(n) Θ(1)

(A) = singly linked
(B) = Singly linked with dummy
(C) = Singly linked with indirect element addressing
(D) = doubly linked

302

priority queue

Priority Queue

Operations

insert(x,p,Q): Enter object x with priority p.
extractMax(Q): Remove and return object x with highest priority.

303

Implementation Priority Queue

With a Max Heap

Thus

insert in O(log n) and
extractMax in O(log n).

304



Multistack

Multistack adds to the stack operations below

multipop(s,S): remove the min(size(S), k) most recently inserted
objects and return them.

Implementation as with the stack. Runtime of multipop is O(k).

305

Academic Question

If we execute on a stack with n elements a number of n times
multipop(k,S) then this costs O(n2)?

Certainly correct because each multipop may take O(n) steps.

How to make a better estimation?

306

Idea (accounting)

Introduction of a cost model:

Each call of push costs 1 CHF and additional 1 CHF will be put to
account.
Each call to pop costs 1 CHF and will be paid from the account.

Account will never have a negative balance. Thus: maximal costs =
number of push operations times two.

307

More Formal
Let ti denote the real costs of the operation i. Potential function
Φi ≥ 0 for the “account balance” after i operations. Φi ≥ Φ0 ∀i.
Amortized costs of the ith operation:

ai := ti + Φi − Φi−1.

It holds

n∑

i=1

ai =
n∑

i=1

(ti + Φi − Φi−1) =

(
n∑

i=1

ti

)
+ Φn − Φ0 ≥

n∑

i=1

ti.

Goal: find potential function that evens out expensive operations.
308



Example stack

Potential function Φi = number element on the stack.

push(x, S): real costs ti = 1. Φi − Φi−1 = 1. Amortized costs
ai = 2.
pop(S): real costs ti = 1. Φi − Φi−1 = −1. Amortized costs
ai = 0.
multipop(k, S): real costs ti = k. Φi − Φi−1 = −k. amortized
costs ai = 0.

All operations have constant amortized cost! Therefore, on average
Multipop requires a constant amount of time.

309

Example Binary Counter

Binary counter with k bits. In the worst case for each count
operation maximally k bitflips. Thus O(n · k) bitflips for counting from
1 to n. Better estimation?

Real costs ti = number bit flips from 0 to 1 plus number of bit-flips
from 1 to 0.

...0 1111111︸ ︷︷ ︸
l Einsen

+1 = ...1 0000000︸ ︷︷ ︸
l Zeroes

.

⇒ ti = l + 1

310

Example Binary Counter

...0 1111111︸ ︷︷ ︸
l Einsen

+1 = ...1 0000000︸ ︷︷ ︸
l Nullen

potential function Φi: number of 1-bits of xi.

⇒ Φi − Φi−1 = 1− l,

⇒ ai = ti + Φi − Φi−1 = l + 1 + (1− l) = 2.

Amortized constant cost for each count operation.

311


