8. Sorting Il

Heapsort, Quicksort, Mergesort

8.1 Heapsort

[Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]

210

Heapsort

Inspiration from selectsort: fast insertion
Inspiration from insertion sort: fast determination of position

@ Can we have the best of two worlds?
@ Yes, but it requires some more thinking...

[Max-]Heap®

Binary tree with the following prop-

|
complete up to the lowest -

level /

Gaps (if any) of the tree in
the last level to the right

18 «——parent

16/20\ 15/ \

17 «—child
Heap-Condition: /\)\ / \ / \
Max-(Min-)Heap: key of a 3 2 8 11 14
child smaller (greater) thant leaves

that of the parent node

8Heap(data structure), not: as in “heap and stack” (memory allocation)

Heap and Array

Tree — Array:
m children(i) = {2i,2i + 1}
m parent(i) = |i/2]

Vater

|22]20[18]16]12[15]17] 3| 2| 8 |11]14]

1 2 4 5

Kinder

Depends on the starting index’

N,
/1IN /w\

16 12

5 J“\ A

8] [9] [10] [11]

For array that start at 0: {24,2i + 1} — {2i +1,2i + 2}, |3/2] — [(i — 1)/2]

Recursive heap structure

A heap consists of two heaps:

20

/ N\

16 12

/\ /\

22

/18\

’ 1/\ /\

Insert

22
20 18

m Insert new element at the first free 16/ \12 15/ \17

position. Potentially violates the heap N\ \ / \
property. 8 11 14
m Reestablish heap property: climb

22
successively 2 / \@

m Worst case number of operations: 7\ Pan\
16 12

O(logn) 17
[\ N]
3 2 8 11 14 @ /\

Remove the maximum

m Replace the maximum by the lower
right element

m Reestablish heap property: sink
successively (in the direction of the
greater child)

m Worst case number of operations:
O(logn)

20/ \18
/ \12 15/ \1

/16\ /\ /\ /7\

/\
/\ /\

/\ /\

Algorithm Sink(A, 7, m)

Input : Array A with heap structure for the children of 7. Last element m.

Output : Array A with heap structure for ¢ with last element m.
while 2 < m do

j < 2i; // j left child
if j <m and A[j] < A[j + 1] then
‘ j< j+1;// jright child with greater key
if Afi] < A[j] then
swap(A[i], A[j])
i < j; // keep sinking
else
| i m; // sinking finished

Sort heap

All,...,n] is a Heap.

While n > 1
m swap(A[l], A[n])
m Sink(A4,1,n —1);
En<n—1

swap
sink
swap
sink
swap
sink
swap
sink
swap

O 2 R

N DA =2 01 = 00NN
— 24 N N O OV OO O

218

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!

Algorithm HeapSort(A, n)

Input : Array A with length n.
Output : A sorted.
for i < n/2 downto 1 do

- Sink(A, 14, n);

// Now A is a heap.
for i < n downto 2 do
swap(A[1], Ali])
Sink(A, 1,7 —1)

// Now A is sorted.

Analysis: sorting a heap

Sink traverses at most log n nodes. For each node 2 key
comparisons. = sorting a heap costs is the worst case 2logn
comparisons.

Number of memory movements of sorting a heap also O(nlogn).

221

Analysis: creating a heap

Calls to sink: n/2. Thus number of comparisons and movements:
v(n) € O(nlogn).

But mean length of sinking paths is much smaller:

[log] n [logn] n
h=0 h=0
s(x) ==Y p kat = e (0 <2 <1). With s(3) =2

v(n) € O(n).

8.2 Mergesort

[Ottman/Widmayer, Kap. 2.4, Cormen et al, Kap. 2.3],

Intermediate result

Heapsort: O(nlogn) Comparisons and movements.

@ Disadvantages of heapsort?

O] Missing locality: heapsort jumps around in the sorted array
(negative cache effect).

® Two comparisons before each required memory movement.

204

Mergesort

Divide and Conquer!

m Assumption: two halves of the array A are already sorted.
m Minimum of A can be evaluated with two comparisons.
m lteratively: sort the presorted array A in O(n).

i 2 3 4 7 9 10 11 12 16

226

a0 W NN

~

Algorithm Merge(A, [, m, r)

Input : Array A with length n, indexes 1 <1 <m <r <n. A[l,...

Alm+1,...,r] sorted
Output : All,. .., r] sortiert
B < new Array(r — [+ 1)
1L+ m+1 k<1
while : < m and j < r do
if Ali] < A[j] then Blk] < Afi]; i+ i+1
else Bk« Aljl; j«j+1
k<« k+1;

while i <m do B[k« Afi]; i ¢ i+1; k« k+1

s while j <rdo B[]« A[j]; j«< j+1; k+ k+1

for k < [to r do A[k] < B[k — [+ 1]

yml,

Correctness
Hypothesis: after k iterations of the loop in line 3 BJ[1,... k] is
sorted and Blk| < Ali], ifi < mand B[k] < A[j] falls j < 7.

Proof by induction:
Base clause: the empty array B]1, ..., 0] is trivially sorted.
Induction step (k — k + 1):

m wlog Afi] < A[j],i <m,j <r.

m Bl[l,..., k] is sorted by hypothesis and B[k] < A[i].

m After B[k + 1] < A[i] B[l,...,k+ 1] is sorted.

m Bk+1]=A[] < Ali+1] (ifi+1 <m)and Blk + 1] < A[j]ifj <.

m k< k+ 1,7+ i+ 1: Statement holds again.

Analysis (Merge)

If: array A with lengthn, indexes 1 <[l <r <n.m=[(l+r)/2]
and All,...,m|, Aijm +1,...,r| sorted.

Then: in the call of Merge(A,l, m,r) a number of ©(r — l) key
movements and comparison are executed.

Proof: straightforward(Inspect the algorithm and count the
operations.)

Mergesort

5 2 6 1 8 4 3 9

5 26 1)|8 4 3 9]

5 2|6 1H8 43 9

ousmn

(&)]
I

O — © +—

l\)(—l\)
Cﬁ)%
00 «— 00

1
l
1 4 5

»

Split
Split
Split
Merge
Merge
Merge

Algorithm recursive 2-way Mergesort(A, [, r)

Input : Array A with lengthn. 1 <1 <r<n

Output : Array All, ..., r] sorted.

if [<r then
m < (I +7)/2] // middle position
Mergesort(A, [, m) // sort lower half
Mergesort(A,m + 1,r) // sort higher half

Merge(A, 1, m,r) // Merge subsequences

Analysis

Recursion equation for the number of comparisons and key
movements:

C(n) = O [gb o [SJ) +0(n) € Onlogn)

Algorithm StraightMergesort(A)

Avoid recursion: merge sequences of length 1, 2,4, ... directly

Input : Array A with length n
Output : Array A sorted
length < 1
while length < n do // Iteriere iiber die Langen n
right <— 0
while right + length < n do // Iteriere tiber die Teilfolgen
left < right + 1
middle < left + length — 1
right <— min(middle + length, n)
Merge(A, left, middle, right)

 length < length - 2

Analysis

Like the recursive variant, the straight 2-way mergesort always
executed a numbe rof ©(nlogn) key comparisons and key
movements.

Natural 2-way mergesort

Obserbation: the variants above do not make use of any presorting
and always execute O (n log n) memory movements.

@ How can partially presorted arrays be sorted better?

@ Recursive merging of previously sorted parts (runs) of A.

Natural 2-way mergesort

5leflz 4 88 o] 7]H]

/\

’

1 2 3 4 5 6 7 8 9

Algorithm NaturalMergesort(A)

Input : Array A with length n > 0

Output : Array A sorted

repeat

r<0

while » < n do

[+—r+1

m < [; while m < n and Ajm + 1] > A[m] do m <~ m +1

if m <n then
r < m+1; while r <nand A[r +1] > A[rjdo r < r+1
Merge(A, [, m, r);

else
L r<mn

until [=1

237

Analysis

In the best case, natural merge sort requires only n — 1
comparisons.

@ Is it also asymptotically better than StraightMergesort on
average?

ONo. Given the assumption of pairwise distinct keys, on average there are n/2
positions i with k; > k;4, i.e. n/2 runs. Only one iteration is saved on average.

o

Natural mergesort executes in the worst case and on average a
number of ©(n logn) comparisons and memory movements.

8.3 Quicksort

[Ottman/Widmayer, Kap. 2.2, Cormen et al, Kap. 7]

Quicksort

@ What is the disadvantage of Mergesort?
O] Requires O(n) storage for merging.

@ How could we reduce the merge costs?

® Make sure that the left part contains only smaller elements than
the right part.

@ How?

@ Pivot and Partition!

Quicksort (arbitrary pivot)

2 4 5 6 8(3|7 9 f
2] & 85/7 9 4
1 2 34 5 8[7|96

1 2 3 456 7 98

w
(e2]

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Algorithm Quicksort(A[/, . . . ,]

Input : Array A with lengthn. 1 <[<r <n.
Output : Array A, sorted between [and r.
if [<r then

Choose pivot p € A[l, ...,]
k <« Partition(A[l, ..., 7], p)
Quicksort(A[l, ...,k —1])
Quicksort(Alk + 1,...,7])

Reminder: algorithm Partition(A[/, . .., 7|, p)

Input : Array A, that contains the sentinel p in [, r] at least once.

Output : Array A partitioned around p. Returns the position of p.

while [< r do

while A[l] < p do
L+l +1

while A[r] > p do
Cor+r—1

swap(A[l], A[r])

if A[l] = A[r| then // Only for keys that are not pairwise different
L+l +1

return |-1

Analysis: number comparisons

Best case. Pivot = median; number comparisons:

T(n)=2Tn/2)+c-n, T(1)=0 = T(n) € O(nlogn)

Worst case. Pivot = min or max; number comparisons:

Tn)=Tn—-1)+c-n, T(1)=0 = T(n) € O(n?

Analysis: number swaps

Result of a call to partition (pivot 3):
2 1 36 8 5 7 9 4

@ How many swaps have taken place?

® 2. The maximum number of swaps is given by the number of keys
in the smaller part.

245

Analysis: number swaps

Intellectual game

m Each key from the smaller part pay a coin when swapped.

m When a key has paid a coin then the domain containing the key is
less or equal than half the previous size.

m Every key needs to pay at most logn coins. But there are only n
keys.

Consequence: there are O(nlogn) key swaps in the worst case.

Randomized Quicksort

Despite the worst case running time of ©(n?), quicksort is used
practically very often.

Reason: quadratic running time unlikely if the choice of the pivot and
the presorting is not very disadvantageous.

Avoidance: randomly choose pivot. Draw uniformly from [Z, r|.

247

Analysis (randomized quicksort)

Expected number of compared keys with input length n:
T(n)=m—1)+— Z k—1)+T(n—k), T(0)=T(1)=0

Claim T'(n) < 4nlogn.

Proof by induction:

Base clause straightforward for n = 0 (with 0log 0 := 0) and for
n = 1.

Hypothesis: T'(n) < 4nlogn fur ein n.

Induction step: (n — 1 — n)

Analysis (randomized quicksort)

n—1 n—1
2
T(n):n_1+_ZT(/<;)<n—1+ Z4klogk
=0 " k=0
n/2 n—1
=n—1+) 4k logk 4k log k
D 4k logk + > dklogh
k=1 <logn—1 k=n/2+1 <logn

AN
3
|
—
l
3|
/\
5
0=}
3
|
)—l
M
(Y]
>
+
o
o
3
T~
~—_

k=n/2+1
—n—1+ ((mgn).@_%(g 1))

=4nlogn —4logn — 3 < 4nlogn

Analysis (randomized quicksort)

On average randomized quicksort requires O(n -logn) comparisons.

Practical considerations

Worst case recursion depth n — 18. The also memory consumption
of O(n).

Can be avoided: recursion only on the smaller part. Then
guaranteed O(logn) worst case recursion depth and memory
consumption.

8stack overflow possible!

Quicksort with logarithmic memory consumption

Input : Array A with length n. 1 <[<r <n.
Output : Array A, sorted between [and 7.
while [< r do
Choose pivot p € A[l,...,r]
k < Partition(A[l, ..., r],p)
if k—1<r—kthen

Quicksort(A[l, ...,k —1])

[+—Fk+1
else
Quicksort(Alk +1,...,7])
r<k—1
The call of Quicksort(A[l, . . ., r]) in the original algorithm has moved to iteration (tail recursion!): the if-statement became a

while-statement.

Practical considerations.

Practically the pivot is often the median of three elements. For
example: Median3(A[l], A[r], A[|l + r/2]]).

There is a variant of quicksort that requires only constant storage.
Idea: store the old pivot at the position of the new pivot.

	Sorting II
	Heapsort
	Mergesort
	Quicksort

