8. Sorting lI

Heapsort, Quicksort, Mergesort

209

Heapsort

Inspiration from selectsort: fast insertion
Inspiration from insertion sort: fast determination of position

@ Can we have the best of two worlds?
® Yes, but it requires some more thinking...

211

8.1 Heapsort

[Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]

[Max-]Heap®

Binary tree with the following prop-

erties W“lrze'
complete up to the lowest %

level /

Gaps (if any) of the tree in
the last level to the right

18 «——parent

/N /N

17 «——child
Heap-Condition: /\ N\ \ / \
Max-(Min-)Heap: key of a A A A A
child smaller (greater) thant leaves

that of the parent node

8Heap(data structure), not: as in “heap and stack” (memory allocation)

210

212

Heap and Array Recursive heap structure

Tree — Array:
A heap consists of two heaps:

m children(i) = {2i,2i + 1} /[212]\
m parent(i) = |i/2] 20 18 o

Vater 16/ [2]\12 / M\ =
22|2o|1m5|17|3|2|8|n|14 o ol 14/”’\ /'\ / N\ / \

16 12
12 @ 8 9 10 11 12 8] 9] [10] [11] [12] /
Kinder 14 \ /\

Depends on the starting index’

"For array that start at 0: {2d, 2 + 1} — {2i + 1,2 + 2}, |i/2] — [(i — 1)/2]
Insert Remove the maximum
22 21
§ / \18 | § / \18
m Insert new element at the first free 16/ \12 15/ \17 = rFi{ger?tlaeclzgnt”uZitmaXImum by the lower / N\ / N\
position. Potentially violates the heap
property. [N 14/\ /\ m Reestablish heap property: sink 3/\ /\ 14/\ /\

= Reestablish heap property: climb successively (in the direction of the

22 .
successively / \ greater child) | / \

m Worst case number of operations: / \ /@\ " \gagsgt 2?39 number of operations: / \ / \

O(logn) @
I, Ras A

2

215

Algorithm Sink(A, 7, m)

Input : Array A with heap structure for the children of i. Last element m.
Output : Array A with heap structure for ¢ with last element m.
while 2; < m do
J < 2i; // j left child
if 7 <m and A[j] < A[j + 1] then
‘ j<j+1;// jright child with greater key
if Ali] < A[j] then
swap(Ali], A[j])
i < j: // keep sinking
else
| i< m; // sinking finished

217

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!

219

Sort heap

>

76 4512

swap = 2 6 45 1H

, sink = 65421

?V[ﬁ_,...,n] is a Heap. swap = 1542 A
ilen>1 _

m swap(A[l], Afn)) sink & 421 0H

m Sink(4, 1,7 — 1); swap — 14 2HOH

S 1 snk = 41 2EHE0H

swap = 2 1 AEEE

snk = 21 ABEH

swap = HEHABEH

218

Algorithm HeapSort(A, n)

Input : Array A with length n.
Output : A sorted.
for i < n/2 downto 1 do

. Sink(A4,1,n);

// Now A is a heap.
for i <— n downto 2 do
swap(A[1], Al]
Sink(A, 1,7 — 1)

// Now A is sorted.

220

Analysis: sorting a heap

Sink traverses at most log n nodes. For each node 2 key
comparisons. = sorting a heap costs is the worst case 2logn
comparisons.

Number of memory movements of sorting a heap also O(nlogn).

221

8.2 Mergesort

[Ottman/Widmayer, Kap. 2.4, Cormen et al, Kap. 2.3],

223

Analysis: creating a heap

Calls to sink: n/2. Thus number of comparisons and movements:
v(n) € O(nlogn).

But mean length of sinking paths is much smaller:

|logn| [log A

o)=Y [TZJ c-heOmn Y o)

h=0 h=0

s(z) =300 kot = —£ (0 < z < 1). With s(3) = 2:
k=0 (1—z) 2

v(n) € O(n).

Intermediate result

Heapsort: O(nlogn) Comparisons and movements.

@ Disadvantages of heapsort?

O] Missing locality: heapsort jumps around in the sorted array
(negative cache effect).

® Two comparisons before each required memory movement.

222

224

A A W N =

0 ~

Mergesort

Divide and Conquer!

m Assumption: two halves of the array A are already sorted.
m Minimum of A can be evaluated with two comparisons.
m lteratively: sort the presorted array A in O(n).

225

Algorithm Merge(A, [, m, 1)

Input : Array A with length n, indexes 1 <1 <m <r <n. A[l,...,m],
Alm+1,...,r] sorted
Output : All, ... 7] sortiert

B < new Array(r — 1+ 1)
11l m+1 k1
while i <m and 7 <r do
if Ali] < A[j] then Blk] < Ali]; i+ i+1
else Blk|«+ Alj];j<+j+1
k<+ k+1;

while i <mdo B[k]+ Afi; i+ i+ 1; k< k+1
while j <rdo B[k|«+ A[j;j«<j+ 1L k+k+1
for k < [tor do A[k] «+ B[k — 1+ 1]

227

Merge

1 4 7 9 16 2 3 10 11 12

1 2 3 4 7 9 10 11 12 16

226

Correctness
Hypothesis: after k iterations of the loop in line 3 BJ[1,..., k] is
sorted and B[k] < A[i], if i <m and B[k] < A[j] falls j <.

Proof by induction:
Base clause: the empty array BJ[1,...,0] is trivially sorted.
Induction step (k — k + 1):

m wlog Afi] < Afj],i <m,j <.

m B[l,..., k| is sorted by hypothesis and B[k| < A[i].

m After B[k + 1] < A[i] BI[L,...,k + 1] is sorted.

m Blk+1] = A[i] < Ali + 1] (if i + 1 < m) and B[k + 1] < A[j]if j < r.

m k< k+ 1,79+ ¢+ 1: Statement holds again.

228

Analysis (Merge)

If: array A with length n, indexes 1 <l <r <n.m=[(+7)/2]
and A[l,...,m], Aijm+1,...,r] sorted.

Then: in the call of Merge(A, 1, m,r) a number of ©(r —) key
movements and comparison are executed.

Proof: straightforward(Inspect the algorithm and count the
operations.)

229

Algorithm recursive 2-way Mergesort(A, [, r)

Input : Array A with lengthn. 1 <1 <r <n

Output : Array AJl, ..., r| sorted.

if [<r then
m <+ [(I+71)/2] // middle position
Mergesort(A, [, m) // sort lower half
Mergesort(A, m + 1,r) // sort higher half

~ Merge(A,l,m,7) // Merge subsequences

231

Mergesort

5 2 6 1 8 4 3 9
Split

5 26 1]8 4 3 9]

Split

5 2|6 1|8 4|3 9]
Split

0TI TR

2 5/[1 64 83 9

Merge

\1256\\3489\

I 1 = 1| 1 Merge
1 2 3 45 6 8 9

Analysis

Recursion equation for the number of comparisons and key
movements:

C(n) = O {gb O [gJ) +0(n) € ©(nlogn)

232

Algorithm StraightMergesort(A)

Avoid recursion: merge sequences of length 1,2, 4, ... directly

Input :
Output :
length <1
while [ength < n do
right <— 0
while right + length < n do
left < right + 1
middle < left + length — 1
right < min(middle + length,n)
Merge(A, left, middle, right)

 length < length - 2

Array A with length n
Array A sorted

// lteriere liber die Langen n

// lteriere liber die Teilfolgen

233

Natural 2-way mergesort

Obserbation: the variants above do not make use of any presorting
and always execute O(n logn) memory movements.

@ How can partially presorted arrays be sorted better?

@ Recursive merging of previously sorted parts (runs) of A.

235

Analysis

Like the recursive variant, the straight 2-way mergesort always
executed a numbe rof ©(nlogn) key comparisons and key
movements.

Natural 2-way mergesort
5 f6]l2 4 &3 [9][7][]

2 4 5 6 8]3 7 9f1]

e

2 3 45 6 7 8 9|1]

1 2 3 4 5 6 7 8 9

236

Algorithm NaturalMergesort(A)

Input : Array A with length n > 0

Output : Array A sorted

repeat

r <0

while » < n do

l+—r+1

m < I; while m <n and A[m + 1] > A[m] do m <~ m + 1

if m < n then
r < m+1;, while r <nand A[r +1] > Alr]do r < r+1
Merge(A, I, m, 1);

else
L r<n

until [=1

8.3 Quicksort

[Ottman/Widmayer, Kap. 2.2, Cormen et al, Kap. 7]

Analysis

In the best case, natural merge sort requires only n — 1
comparisons.

@ Is it also asymptotically better than StraightMergesort on
average?

OnNo. Given the assumption of pairwise distinct keys, on average there are n /2
positions i with k; > k;,1, i.e. n/2 runs. Only one iteration is saved on average.

Natural mergesort executes in the worst case and on average a
number of ©(n logn) comparisons and memory movements.

Quicksort

@ What is the disadvantage of Mergesort?
® Requires ©(n) storage for merging.

@ How could we reduce the merge costs?

® Make sure that the left part contains only smaller elements than
the right part.

@ How?

@ Pivot and Partition!

240

Quicksort (arbitrary pivot)

2 45 6 8(3|]7 9 1
2|1 36 8[5]7 9 4

1 2 34 5 8/[7]9 6
7 9|8

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6

241

Reminder: algorithm Partition(A[/, . .., 7|, p)

Input : Array A, that contains the sentinel p in [[, 7] at least once.

Output : Array A partitioned around p. Returns the position of p.

while [< r do

while A[l] < p do
Ll +1

while A[r] > p do
| r<r—1

swap(A[l], A[r])

if All] = A[r] then
Ll +1

// Only for keys that are not pairwise different

return |-1

243

Algorithm Quicksort(A[l, . .., 7]

Input : Array A with lengthn. 1 <[l <r <n.
Output : Array A, sorted between [and r.
if { <r then

Choose pivot p € A[l,...,7]

k « Partition(A[l,...,7],p)

Quicksort(A[L, ...,k —1])
 Quicksort(Alk+1,....,7])

242

Analysis: number comparisons

Best case. Pivot = median; number comparisons:

T(n)=2Tn/2)4+c-n, T1)=0 = T(n) <€ Onlogn)

Worst case. Pivot = min or max; number comparisons:

T(n)=T(n—1)+c-n, T(1)=0 = T(n) < O(n?

244

Analysis: number swaps

Result of a call to partition (pivot 3):

2 1 3 6 8 5§ 7 9 4

@ How many swaps have taken place?

® 2. The maximum number of swaps is given by the number of keys
in the smaller part.

Randomized Quicksort

Despite the worst case running time of ©(n?), quicksort is used
practically very often.

Reason: quadratic running time unlikely if the choice of the pivot and
the presorting is not very disadvantageous.

Avoidance: randomly choose pivot. Draw uniformly from [I, 7].

Analysis: number swaps

Intellectual game

m Each key from the smaller part pay a coin when swapped.

m When a key has paid a coin then the domain containing the key is
less or equal than half the previous size.

m Every key needs to pay at most logn coins. But there are only n
keys.

Consequence: there are O(nlogn) key swaps in the worst case.

246

Analysis (randomized quicksort)

Expected number of compared keys with input length n:

T(n):(n—1)+%zn:(T(k—l)+T(n—kz)), T(0) = T(1) = 0

Claim T'(n) < 4nlogn.

Proof by induction:

Base clause straightforward for n = 0 (with 0log 0 := 0) and for
n = 1.

Hypothesis: T'(n) < 4nlogn fur ein n.

Induction step: (n — 1 — n)

248

Analysis (randomized quicksort)

n—1

n—1
2 2
T(n)=n—1+>> T(k) JEn—142 }:Md%k

n k=0 k 0

n/2 n—1
=n—1+ 4k logk + 4k log k

24k logk + 3, dklosk

<10g n—1 k=n/2+1 <logn
n/2 n—1
<n—1+— (logn — 1) Zszrlogn Z k
k=n/2+1

8 nn—1) n/n
—n—1+2((logn)- 77(7 1)
n +n((ogn) 5 gt)
=4dnlogn —4logn — 3 < 4nlogn

249

Practical considerations

Worst case recursion depth n — 18. The also memory consumption
of O(n).

Can be avoided: recursion only on the smaller part. Then
guaranteed O(log n) worst case recursion depth and memory
consumption.

8stack overflow possible!
251

Analysis (randomized quicksort)

On average randomized quicksort requires O(n - logn) comparisons.

Quicksort with logarithmic memory consumption

Array A with lengthn. 1 <[l <r <n.
Array A, sorted between [and r.

Input :
Output :
while [< r do
Choose pivot p € A[l,...,7]
k « Partition(A[l,...,7],p)
if k—1<r—kthen
Quicksort(A[L, . ..
[+ Fk+1

k—1])

else
Quicksort(A[k + 1,...,7])
Cr« k-1

The call of Quicksort(A[l, .. ., r]) in the original algorithm has moved to iteration (tail recursion!): the if-statement became a
while-statement.

Practical considerations.

Practically the pivot is often the median of three elements. For
example: Median3(A[l], A[r], A[|l + r/2]]).

There is a variant of quicksort that requires only constant storage.
Idea: store the old pivot at the position of the new pivot.

