8. Sorting II

Heapsort, Quicksort, Mergesort

8.1 Heapsort

[Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]

209

Heapsort

Inspiration from selectsort: fast insertion
Inspiration from insertion sort: fast determination of position

- ? Can we have the best of two worlds?
- ① Yes, but it requires some more thinking...

[Max-]Heap⁶

Binary tree with the following properties

- complete up to the lowest level
- Gaps (if any) of the tree in the last level to the right
- 3 Heap-Condition:

Max-(Min-)Heap: key of a child smaller (greater) thant that of the parent node

⁶Heap(data structure), not: as in "heap and stack" (memory allocation)

Heap and Array

Tree \rightarrow Array:

- children $(i) = \{2i, 2i + 1\}$
- \blacksquare parent(i) = |i/2|

Depends on the starting index⁷

⁷For array that start at 0: $\{2i, 2i+1\} \rightarrow \{2i+1, 2i+2\}, \lfloor i/2 \rfloor \rightarrow \lfloor (i-1)/2 \rfloor$

Recursive heap structure

A heap consists of two heaps:

Insert

- Insert new element at the first free position. Potentially violates the heap property.
- Reestablish heap property: climb successively
- Worst case number of operations: $\mathcal{O}(\log n)$

Remove the maximum

- Replace the maximum by the lower right element
- Reestablish heap property: sink successively (in the direction of the greater child)
- Worst case number of operations: $\mathcal{O}(\log n)$

01

215

Algorithm Sink(A, i, m)

Sort heap

```
7 6 4 5 1 2
                                 swap
                                 sink
A[1, ..., n] is a Heap.
                                 swap
While n > 1
                                 sink
\blacksquare swap(A[1], A[n])
                                             1 4 2 5
                                 swap
■ Sink(A, 1, n - 1);
                                 sink
n \leftarrow n-1
                                 swap
                                 sink
                                 swap
```

217

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!

Algorithm HeapSort(A, n)

Analysis: sorting a heap

Sink traverses at most $\log n$ nodes. For each node 2 key comparisons. \Rightarrow sorting a heap costs is the worst case $2\log n$ comparisons.

Number of memory movements of sorting a heap also $\mathcal{O}(n \log n)$.

8.2 Mergesort

[Ottman/Widmayer, Kap. 2.4, Cormen et al, Kap. 2.3],

Analysis: creating a heap

Calls to sink: n/2. Thus number of comparisons and movements: $v(n) \in \mathcal{O}(n \log n)$.

But mean length of sinking paths is much smaller:

$$v(n) = \sum_{h=0}^{\lfloor \log n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil \cdot c \cdot h \in \mathcal{O}(n \sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h})$$

$$s(x) := \sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$$
 (0 < x < 1). With $s(\frac{1}{2}) = 2$:
$$v(n) \in \mathcal{O}(n).$$

221

Intermediate result

Heapsort: $O(n \log n)$ Comparisons and movements.

- ? Disadvantages of heapsort?
 - Missing locality: heapsort jumps around in the sorted array (negative cache effect).
- Two comparisons before each required memory movement.

Mergesort

Merge

Divide and Conquer!

- Assumption: two halves of the array *A* are already sorted.
- Minimum of *A* can be evaluated with two comparisons.
- Iteratively: sort the presorted array A in $\mathcal{O}(n)$.

225

Algorithm Merge(A, l, m, r)

```
\begin{array}{ccc} \textbf{Input}: & \text{Array $A$ with length $n$, indexes $1 \leq l \leq m \leq r \leq n$. $A[l,\ldots,m]$,} \\ & A[m+1,\ldots,r] \text{ sorted} \\ \textbf{Output}: & A[l,\ldots,r] \text{ sortiert} \\ & B \leftarrow \text{new Array}(r-l+1) \end{array}
```

```
\begin{array}{lll} 2 & i \leftarrow l; \ j \leftarrow m+1; \ k \leftarrow 1 \\ 3 & \mbox{while} \ i \leq m \ \mbox{and} \ j \leq r \ \mbox{do} \\ 4 & \mbox{if} \ A[i] \leq A[j] \ \mbox{then} \ B[k] \leftarrow A[i]; \ i \leftarrow i+1 \\ 5 & \mbox{else} \ B[k] \leftarrow A[j]; \ j \leftarrow j+1 \\ 6 & \mbox{k} \leftarrow k+1; \end{array}
```

7 while
$$i \leq m$$
 do $B[k] \leftarrow A[i]$; $i \leftarrow i+1$; $k \leftarrow k+1$
8 while $j \leq r$ do $B[k] \leftarrow A[j]$; $j \leftarrow j+1$; $k \leftarrow k+1$

9 for $k \leftarrow l$ to r do $A[k] \leftarrow B[k-l+1]$

Correctness

Hypothesis: after k iterations of the loop in line 3 B[1, ..., k] is sorted and $B[k] \le A[i]$, if $i \le m$ and $B[k] \le A[j]$ falls $j \le r$.

Proof by induction:

Base clause: the empty array $B[1, \ldots, 0]$ is trivially sorted. Induction step $(k \to k+1)$:

- wlog $A[i] \le A[j], i \le m, j \le r$.
- B[1,...,k] is sorted by hypothesis and $B[k] \leq A[i]$.
- After $B[k+1] \leftarrow A[i] \ B[1, ..., k+1]$ is sorted.
- $B[k+1] = A[i] \le A[i+1]$ (if $i+1 \le m$) and $B[k+1] \le A[j]$ if $j \le r$.
- $k \leftarrow k+1, i \leftarrow i+1$: Statement holds again.

Analysis (Merge)

Mergesort

Lemma

If: array A with length n, indexes $1 \le l < r \le n$. $m = \lfloor (l+r)/2 \rfloor$ and $A[l, \ldots, m]$, $A[m+1, \ldots, r]$ sorted. Then: in the call of Merge(A, l, m, r) a number of $\Theta(r-l)$ key movements and comparison are executed.

Proof: straightforward(Inspect the algorithm and count the operations.)

5	2	6	1	8	4	3	9
5	2	6	1	8	4	3	9
5	2	6	1	8	4	3	9
5	2	6	1	8	4	3	9
2	5	1	6	4	8	3	9
1	2	5	6	3	4	8	9
1	2	3	4	5	6	8	9

Split

Split

Split

Merge

Merge

Merge

229

Algorithm recursive 2-way Mergesort(A, l, r)

Analysis

 $\begin{array}{lll} \textbf{Input}: & \text{Array A with length n. $1 \leq l \leq r \leq n$} \\ \textbf{Output}: & \text{Array $A[l,\ldots,r]$ sorted.} \\ \textbf{if $l < r$ then} \\ & m \leftarrow \lfloor (l+r)/2 \rfloor & \text{// middle position} \\ & \text{Mergesort}(A,l,m) & \text{// sort lower half} \\ & \text{Mergesort}(A,m+1,r) & \text{// sort higher half} \\ & \text{Merge}(A,l,m,r) & \text{// Merge subsequences} \\ \end{array}$

Recursion equation for the number of comparisons and key movements:

$$C(n) = C(\left\lceil \frac{n}{2} \right\rceil) + C(\left\lceil \frac{n}{2} \right\rceil) + \Theta(n) \in \Theta(n \log n)$$

Algorithm StraightMergesort(*A***)**

Avoid recursion: merge sequences of length 1, 2, 4, ... directly

```
\begin{array}{lll} \textbf{Input}: & \text{Array $A$ with length $n$} \\ \textbf{Output}: & \text{Array $A$ sorted} \\ length \leftarrow 1 \\ \textbf{while } length < n \ \textbf{do} & // \ \text{Iteriere "uber die L"angen $n$} \\ & \textbf{while } right \leftarrow 0 \\ \textbf{while } right + length < n \ \textbf{do} & // \ \text{Iteriere "uber die Teilfolgen} \\ & left \leftarrow right + 1 \\ & middle \leftarrow left + length - 1 \\ & right \leftarrow \min(middle + length, n) \\ & \text{Merge}(A, left, middle, right) \\ & length \leftarrow length \cdot 2 \\ \end{array}
```

Analysis

Like the recursive variant, the straight 2-way mergesort always executed a numbe rof $\Theta(n \log n)$ key comparisons and key movements.

233

Natural 2-way mergesort

Obserbation: the variants above do not make use of any presorting and always execute $\Theta(n \log n)$ memory movements.

- ? How can partially presorted arrays be sorted better?
- ① Recursive merging of previously sorted parts (runs) of A.

Natural 2-way mergesort

Algorithm NaturalMergesort(*A*)

```
\begin{array}{lll} \textbf{Input}: & \text{Array $A$ with length $n>0$} \\ \textbf{Output}: & \text{Array $A$ sorted} \\ \textbf{repeat} \\ & r \leftarrow 0 \\ & \textbf{while $r < n$ do} \\ & l \leftarrow r+1 \\ & m \leftarrow l; \textbf{ while $m < n$ and $A[m+1] \geq A[m]$ do $m \leftarrow m+1$} \\ & \textbf{if $m < n$ then} \\ & r \leftarrow m+1; \textbf{ while $r < n$ and $A[r+1] \geq A[r]$ do $r \leftarrow r+1$} \\ & \textbf{Merge}(A,l,m,r); \\ & \textbf{else} \\ & \bot & r \leftarrow n \\ & \textbf{until $l=1$} \end{array}
```

8.3 Quicksort

[Ottman/Widmayer, Kap. 2.2, Cormen et al, Kap. 7]

Analysis

In the best case, natural merge sort requires only n-1 comparisons.

Is it also asymptotically better than StraightMergesort on average?

①No. Given the assumption of pairwise distinct keys, on average there are n/2 positions i with $k_i > k_{i+1}$, i.e. n/2 runs. Only one iteration is saved on average.

Natural mergesort executes in the worst case and on average a number of $\Theta(n \log n)$ comparisons and memory movements.

237

Quicksort

- What is the disadvantage of Mergesort?
- $oldsymbol{\mathbb{O}}$ Requires $\Theta(n)$ storage for merging.
- ? How could we reduce the merge costs?
- ① Make sure that the left part contains only smaller elements than the right part.
- ? How?
- ① Pivot and Partition!

Quicksort (arbitrary pivot)

Algorithm Quicksort($A[l,\ldots,r]$

Input: Array A with length n. $1 \le l \le r \le n$. **Output**: Array A, sorted between l and r.

if l < r then

Choose pivot
$$p \in A[l, \ldots, r]$$

 $k \leftarrow \mathsf{Partition}(A[l, \ldots, r], p)$
Quicksort $(A[l, \ldots, k-1])$
Quicksort $(A[k+1, \ldots, r])$

241

Reminder: algorithm Partition(A[l, ..., r], p)

 $\mbox{\bf Input}$: Array A, that contains the sentinel p in [l,r] at least once.

 $\mbox{\bf Output:} \mbox{ Array A partitioned around p. Returns the position of p.}$

$$\quad \text{while } l < r \text{ do}$$

$$\begin{array}{l} \textbf{while} \ A[l] p \ \textbf{do} \\ \ \ \, \sqcup \ r \leftarrow r-1 \\ \\ \textbf{swap}(A[l], \ A[r]) \\ \textbf{if} \ A[l] = A[r] \ \textbf{then} \\ \ \ \, \parallel \ l \leftarrow l+1 \end{array}$$

 $\ensuremath{//}$ Only for keys that are not pairwise different

return |-1

Analysis: number comparisons

Best case. Pivot = median; number comparisons:

$$T(n) = 2T(n/2) + c \cdot n, \ T(1) = 0 \quad \Rightarrow \quad T(n) \in \mathcal{O}(n \log n)$$

Worst case. Pivot = min or max; number comparisons:

$$T(n) = T(n-1) + c \cdot n, \ T(1) = 0 \quad \Rightarrow \quad T(n) \in \Theta(n^2)$$

Analysis: number swaps

Result of a call to partition (pivot 3):

2 1 3 6 8 5 7 9 4

- ? How many swaps have taken place?
- ① 2. The maximum number of swaps is given by the number of keys in the smaller part.

Analysis: number swaps

Intellectual game

- Each key from the smaller part pay a coin when swapped.
- When a key has paid a coin then the domain containing the key is less or equal than half the previous size.
- \blacksquare Every key needs to pay at most $\log n$ coins. But there are only n keys.

Consequence: there are $O(n \log n)$ key swaps in the worst case.

245

Randomized Quicksort

Despite the worst case running time of $\Theta(n^2)$, quicksort is used practically very often.

Reason: quadratic running time unlikely if the choice of the pivot and the presorting is not very disadvantageous.

Avoidance: randomly choose pivot. Draw uniformly from [l, r].

Analysis (randomized quicksort)

Expected number of compared keys with input length n:

$$T(n) = (n-1) + \frac{1}{n} \sum_{k=1}^{n} (T(k-1) + T(n-k)), T(0) = T(1) = 0$$

Claim $T(n) \leq 4n \log n$.

Proof by induction:

Base clause straightforward for n=0 (with $0 \log 0 := 0$) and for n=1.

Hypothesis: $T(n) \le 4n \log n$ für ein n. Induction step: $(n-1 \to n)$

Analysis (randomized quicksort)

$$T(n) = n - 1 + \frac{2}{n} \sum_{k=0}^{n-1} T(k) \stackrel{\mathsf{H}}{\leq} n - 1 + \frac{2}{n} \sum_{k=0}^{n-1} 4k \log k$$

$$= n - 1 + \sum_{k=1}^{n/2} 4k \underbrace{\log k}_{\leq \log n - 1} + \sum_{k=n/2+1}^{n-1} 4k \underbrace{\log k}_{\leq \log n}$$

$$\leq n - 1 + \frac{8}{n} \left((\log n - 1) \sum_{k=1}^{n/2} k + \log n \sum_{k=n/2+1}^{n-1} k \right)$$

$$= n - 1 + \frac{8}{n} \left((\log n) \cdot \frac{n(n-1)}{2} - \frac{n}{4} \left(\frac{n}{2} + 1 \right) \right)$$

$$= 4n \log n - 4 \log n - 3 \leq 4n \log n$$

Analysis (randomized quicksort)

Theorem

On average randomized quicksort requires $O(n \cdot \log n)$ comparisons.

249

Practical considerations

Worst case recursion depth $n-1^8$. The also memory consumption of $\mathcal{O}(n)$.

Can be avoided: recursion only on the smaller part. Then guaranteed $\mathcal{O}(\log n)$ worst case recursion depth and memory consumption.

Quicksort with logarithmic memory consumption

 $\begin{array}{lll} \textbf{Input}: & \text{Array A with length n. } 1 \leq l \leq r \leq n. \\ \textbf{Output}: & \text{Array A, sorted between l and r.} \\ \textbf{while $l < r$ do} \\ & \text{Choose pivot $p \in A[l, \ldots, r]$} \\ & k \leftarrow \text{Partition}(A[l, \ldots, r], p) \\ & \textbf{if $k - l < r - k$ then} \\ & \text{Quicksort}(A[l, \ldots, k-1]) \\ & l \leftarrow k+1 \\ & \textbf{else} \\ & \text{Quicksort}(A[k+1, \ldots, r]) \\ & r \leftarrow k-1 \\ \end{array}$

The call of $\operatorname{Quicksort}(A[l,\ldots,r])$ in the original algorithm has moved to iteration (tail recursion!): the if-statement became a while-statement.

⁸stack overflow possible!

Practical considerations.

Practically the pivot is often the median of three elements. For example: Median3($A[l],A[r],A[\lfloor l+r/2\rfloor]$).

There is a variant of quicksort that requires only constant storage.

Idea: store the old pivot at the position of the new pivot.