4. Searching

Linear Search, Binary Search, Interpolation Search, Lower Bounds [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5]

The Search Problem

Provided

A set of data sets

examples

telephone book, dictionary, symbol table

- \blacksquare Each dataset has a key k.
- Keys are comparable: unique answer to the question $k_1 \le k_2$ for keys k_1 , k_2 .

Task: find data set by key k.

The Selection Problem

Provided

 \blacksquare Set of data sets with comparable keys k.

Wanted: data set with smallest, largest, middle key value. Generally: find a data set with *i*-smallest key.

Search in Array

Provided

- \blacksquare Array A with n elements $(A[1], \ldots, A[n])$.
- \blacksquare Key b

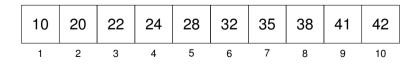
Wanted: index k, $1 \le k \le n$ with A[k] = b or "not found".

22	20	32	10	35	24	42	38	28	41
1	2	3	4	5	6	7	8	9	10

Linear Search

Traverse the array from A[1] to A[n].

- *Best case:* 1 comparison.
- *Worst case: n* comparisons.
- Assumption: each permutation of the *n* keys with same probability. *Expected* number of comparisons:


$$\frac{1}{n}\sum_{i=1}^{n} i = \frac{n+1}{2}.$$

Search in a Sorted Array

Provided

- Sorted array A with n elements $(A[1], \ldots, A[n])$ with $A[1] \leq A[2] \leq \cdots \leq A[n]$.
- \blacksquare Key b

Wanted: index k, $1 \le k \le n$ with A[k] = b or "not found".

Divide and Conquer!

Search b = 23.

b < 28	42	41	38	35	32	28	24	22	20	10
,	10	9	8	7	6	5	4	3	2	1
b > 20	42	41	38	35	32	28	24	22	20	10
'	10	9	8	7	6	5	4	3	2	1
b > 22	42	41	38	35	32	28	24	22	20	10
	10	9	8	7	6	5	4	3	2	1
b < 24	42	41	38	35	32	28	24	22	20	10
	10	9	8	7	6	5	4	3	2	1
erfolglos	42	41	38	35	32	28	24	22	20	10
_	10	9	8	7	6	5	4	3	2	1

Binary Search Algorithm BSearch (A,b,1,r)

```
Input : Sorted array A of n keys. Key b. Bounds 1 \le l \le r \le n or l > r beliebig.
Output: Index of the found element. 0, if not found.
m \leftarrow \lfloor (l+r)/2 \rfloor
if l > r then // Unsuccessful search
    return 0
else if b = A[m] then// found
    return m
else if b < A[m] then// element to the left
    return BSearch(A, b, l, m-1)
else //b > A[m]: element to the right
    return BSearch(A, b, m + 1, r)
```

Analysis (worst case)

Recurrence ($n=2^k$)

$$T(n) = egin{cases} d & \text{falls } n = 1, \\ T(n/2) + c & \text{falls } n > 1. \end{cases}$$

Compute:

$$T(n) = T\left(\frac{n}{2}\right) + c = T\left(\frac{n}{4}\right) + 2c$$
$$= T\left(\frac{n}{2^{i}}\right) + i \cdot c$$
$$= T\left(\frac{n}{2}\right) + \log_{2} n \cdot c.$$

 \Rightarrow Assumption: $T(n) = d + c \log_2 n$

Analysis (worst case)

$$T(n) = \begin{cases} d & \text{if } n = 1, \\ T(n/2) + c & \text{if } n > 1. \end{cases}$$

Guess: $T(n) = d + c \cdot \log_2 n$

Proof by induction:

- Base clause: T(1) = d.
- Hypothesis: $T(n/2) = d + c \cdot \log_2 n/2$
- Step: $(n/2 \rightarrow n)$

$$T(n) = T(n/2) + c = d + c \cdot (\log_2 n - 1) + c = d + c \log_2 n.$$

Result

Theorem

The binary sorted search algorithm requires $\Theta(\log n)$ fundamental operations.

Iterative Binary Search Algorithm

```
Input : Sorted array A of n keys. Key b.
Output: Index of the found element. 0, if unsuccessful.
l \leftarrow 1: r \leftarrow n
while l < r do
    m \leftarrow \lfloor (l+r)/2 \rfloor
    if A[m] = b then
         return m
    else if A[m] < b then
         l \leftarrow m+1
    else
      r \leftarrow m-1
return 0:
```

Correctness

Algorithm terminates only if A is empty or b is found.

Invariant: If b is in A then b is in domain A[l,...,r]

Proof by induction

- Base clause $b \in A[1,..,n]$ (oder nicht)
- \blacksquare Hypothesis: invariant holds after i steps.
- Step:

$$\begin{aligned} b &< A[m] \Rightarrow b \in A[l,..,m-1] \\ b &> A[m] \Rightarrow b \in A[m+1,..,r] \end{aligned}$$

Can this be improved?

Assumption: values of the array are uniformly distributed.

Example

Search for "Becker" at the very beginning of a telephone book while search for "Wawrinka" rather close to the end.

Binary search always starts in the middle.

Binary search always takes $m = \lfloor l + \frac{r-l}{2} \rfloor$.

Interpolation search

Expected relative position of b in the search interval [l, r]

$$\rho = \frac{b - A[l]}{A[r] - A[l]} \in [0, 1].$$

New 'middle': $l + \rho \cdot (r - l)$

Expected number of comparisons $\mathcal{O}(\log \log n)$ (without proof).

- Would you always prefer interpolation search?
- f O No: worst case number of comparisons $\Omega(n)$.

Exponential search

Assumption: key b is located somewhere at the beginning of the Array $A.\ n$ very large.

Exponential procedure:

- **1** Determine search domain l = r, r = 1.
- **2** Double r until r > n or A[r] > b.
- set $r \leftarrow \min(r, n)$.
- **4** Conduct a binary search with $l \leftarrow r/2$, r.

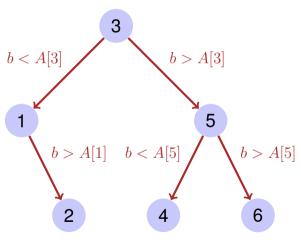
Analysis of the Exponential Search

Let m be the wanted index.

Number steps for the doubling of r: maximally $\log_2 m$.

Binary search then also $\mathcal{O}(\log_2 m)$.

Worst case number of steps overall $\mathcal{O}(\log_2 n)$.


When does this procedure make sense?

 \bigcirc If m << n. For example if positive pairwise different keys and b << N (N: largest key value).

Lower Bounds

Binary and exponential Search (worst case): $\Theta(\log n)$ comparisons. Does for *any* search algorithm in a sorted array (worst case) hold that number comparisons = $\Omega(\log n)$?

Decision tree

- For any input b = A[i] the algorithm must succeed \Rightarrow decision tree comprises at least n nodes.
- Number comparisons in worst case = height of the tree = maximum number nodes from root to leaf.

Decision Tree

Binary tree with height h has at most

$$2^0 + 2^1 + \dots + 2^{h-1} = 2^h - 1 < 2^h$$
 nodes.

At least n nodes in a decision tree with height h.

$$n < 2^h \Rightarrow h > \log_2 n$$
.

Number decisions = $\Omega(\log n)$.

Theorem

Any search algorithm on sorted data with length n requires in the worst case $\Omega(\log n)$ comparisons.

Lower bound for Search in Unsorted Array

Theorem

Any search algorithm with unsorted data of length n requires in the worst case $\Omega(n)$ comparisons.

Attempt

? Correct?

"Proof": to find b in A, b must be compared with each of the n elements A[i] ($1 \le i \le n$).

 \bigcirc Wrong argument! It is still possible to compare elements within A.

Better Argument

- Consider i comparisons without b and e comparisons with b.
- Comparisons geenrate g groups. Initially g = n.
- To connect two groups at least one comparison is needed: $n-g \le i$.
- lacktriangle At least one element per group must be compared with b.
- Number comparisons $i + e \ge n g + g = n$.

5. Selection

The Selection Problem, Randomised Selection, Linear Worst-Case Selection [Ottman/Widmayer, Kap. 3.1, Cormen et al, Kap. 9]

Min and Max

- $oldsymbol{?}$ To separately find minimum an maximum in $(A[1], \ldots, A[n])$, 2n comparisons are required. (How) can an algorithm with less than 2n comparisons for both values at a time can be found?
- \bigcirc Possible with $\frac{3}{2}N$ comparisons: compare 2 elemetrs each and then the smaller one with min and the greater one with max.

The Problem of Selection

Input

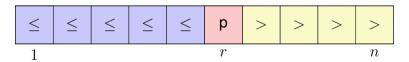
- lacksquare unsorted array $A=(A_1,\ldots,A_n)$ with pairwise different values
- Number $1 \le k \le n$.

Output A[i] with $|\{j : A[j] < A[i]\}| = k - 1$

Special cases

k=1: Minimum: Algorithm with n comparison operations trivial.

k=n: Maximum: Algorithm with n comparison operations trivial.


 $k = \lfloor n/2 \rfloor$: Median.

Approaches

- Repeatedly find and remove the minimum $\mathcal{O}(k \cdot n)$. Median: $\mathcal{O}(n^2)$
- Sorting (covered soon): $\mathcal{O}(n \log n)$
- Use a pivot $\mathcal{O}(n)$!

Use a pivot

- Choose a pivot p
- **2** Partition A in two parts, thereby determining the rank of p.
- Recursion on the relevant part. If k = r then found.

Algorithmus Partition(A[l..r], p)

return |-1

```
Input: Array A, that contains the sentinel p in the interval [l, r] at least once.
Output: Array A partitioned in [l..r] around p. Returns position of p.
while l < r do
     while A[l] < p do
     l \leftarrow l + 1
     \begin{array}{c|c} \textbf{while} \ A[r] > p \ \textbf{do} \\ & r \leftarrow r-1 \end{array}
     swap(A[l], A[r])
     if A[l] = A[r] then l \leftarrow l+1
```

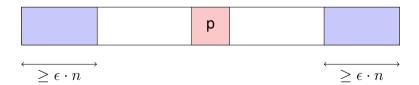
Correctness: Invariant

return I-1

```
Invariant I: A_i  p \ \forall i \in (r, n], \exists k \in [l, r]: A_k = p.
while l < r do
     while A[l] < p do
     l \leftarrow l + 1
                                     -I und A[l] > p
     while A[r] > p do
     r \leftarrow r - 1
                                     -I und A[r] < p
     swap(A[l], A[r])
                                      -I und A[l] 
    if A[l] = A[r] then
    l \leftarrow l+1
```

Correctness: progress

```
\begin{array}{c|c} \textbf{while } l < r \ \textbf{do} \\ \hline & \textbf{while } A[l] < p \ \textbf{do} \\ & \bot \ l \leftarrow l+1 \\ \hline & \textbf{while } A[r] > p \ \textbf{do} \\ & \bot \ r \leftarrow r-1 \\ \hline & \textbf{swap}(A[l], \ A[r]) \\ \hline & \textbf{if } A[l] = A[r] \ \textbf{then} \\ & \bot \ l \leftarrow l+1 \\ \hline \end{array} \quad \begin{array}{c} \textbf{progress if } A[l]  p \ \textbf{oder } A[r]
```

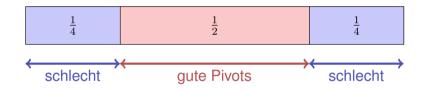

return |-1

Choice of the pivot.

The minimum is a bad pivot: worst case $\Theta(n^2)$

p_1	p_2	p_3	p_4	p_5					
-------	-------	-------	-------	-------	--	--	--	--	--

A good pivot has a linear number of elements on both sides.


Analysis

Partitioning with factor q (0 < q < 1): two groups with $q \cdot n$ and $(1 - q) \cdot n$ elements (without loss of generality $g \ge 1 - q$).

$$\begin{split} T(n) &\leq T(q \cdot n) + c \cdot n \\ &= c \cdot n + q \cdot c \cdot n + T(q^2 \cdot n) = \ldots = c \cdot n \sum_{i=0}^{\log_q(n)-1} q^i + T(1) \\ &\leq c \cdot n \sum_{i=0}^{\infty} q^i = c \cdot n \cdot \frac{1}{1-q} = \mathcal{O}(n) \end{split}$$

How can we achieve this?

Randomness to our rescue (Tony Hoare, 1961). In each step choose a random pivot.

Probability for a good pivot in one trial: $\frac{1}{2} =: \rho$.

Probability for a good pivot after k trials: $(1 - \rho)^{k-1} \cdot \rho$.

Expected value of the geometric distribution: $1/\rho = 2$

[Expected value of the Geometric Distribution]

Random variable $X \in \mathbb{N}^+$ with $\mathbb{P}(X=k) = (1-p)^{k-1} \cdot p$. Expected value

$$\mathbb{E}(X) = \sum_{k=1}^{\infty} k \cdot (1-p)^{k-1} \cdot p = \sum_{k=1}^{\infty} k \cdot q^{k-1} \cdot (1-q)$$

$$= \sum_{k=1}^{\infty} k \cdot q^{k-1} - k \cdot q^k = \sum_{k=0}^{\infty} (k+1) \cdot q^k - k \cdot q^k$$

$$= \sum_{k=0}^{\infty} q^k = \frac{1}{1-q} = \frac{1}{p}.$$

Algorithm Quickselect (A[l..r], i)

Input : Array A with length n. Indices $1 \le l \le i \le r \le n$, such that for all $x \in A[l..r]$ it holds $|\{j|A[j] < x\}| > l$ and $|\{j|A[j] < x\}| < r$.

Output : Partitioniertes Array A, so dass $|\{j|A[j] \leq A[i]\}| = i$

if l=r then return;

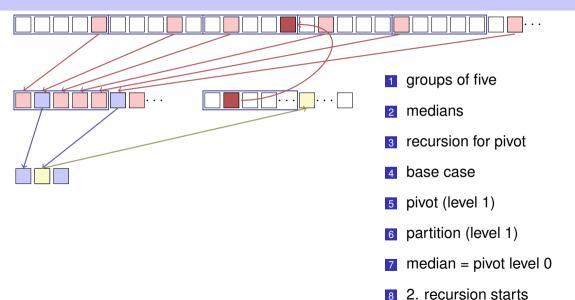
repeat

```
choose a random pivot x \in A[l..r]
p \leftarrow l
\text{for } j = l \text{ to } r \text{ do}
| \text{ if } A[j] \le x \text{ then } p \leftarrow p + 1
```

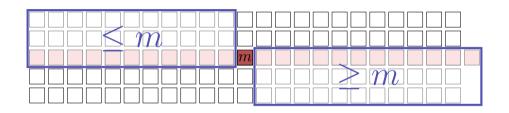
until $\frac{l+r}{4} \le p \le \frac{3(l+r)}{4}$ $m \leftarrow \mathsf{Partition}(A[l..r], x)$ if i < m then

| quickselect(A[l..m], i)
else

quickselect(A[m..r], i)


Median of medians

Goal: find an algorithm that even in worst case requires only linearly many steps.


Algorithm Select (k-smallest)

- Consider groups of five elements.
- Compute the median of each group (straighforward)
- Apply Select recursively on the group medians.
- Partition the array around the found median of medians. Result: i
- If i = k then result. Otherwise: select recursively on the proper side.

Median of medians

How good is this?

Number points left / right of the median of medians (without median group and the rest group) $\geq 3 \cdot (\lceil \frac{1}{2} \lceil \frac{n}{5} \rceil \rceil - 2) \geq \frac{3n}{10} - 6$ Second call with maximally $\lceil \frac{7n}{10} + 6 \rceil$ elements.

Analysis

Recursion inequality:

$$T(n) \le T\left(\left\lceil \frac{n}{5}\right\rceil\right) + T\left(\left\lceil \frac{7n}{10} + 6\right\rceil\right) + d \cdot n.$$

with some constant d.

Claim:

$$T(n) = \mathcal{O}(n).$$

Proof

Base clause: choose c large enough such that

$$T(n) \le c \cdot n$$
 für alle $n \le n_0$.

Induction hypothesis:

$$T(i) \leq c \cdot i$$
 für alle $i < n$.

Induction step:

$$T(n) \le T\left(\left\lceil \frac{n}{5}\right\rceil\right) + T\left(\left\lceil \frac{7n}{10} + 6\right\rceil\right) + d \cdot n$$
$$= c \cdot \left\lceil \frac{n}{5}\right\rceil + c \cdot \left\lceil \frac{7n}{10} + 6\right\rceil + d \cdot n.$$

Proof

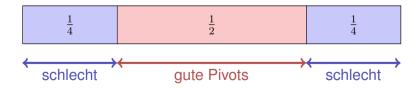
Induction step:

$$T(n) \le c \cdot \left\lceil \frac{n}{5} \right\rceil + c \cdot \left\lceil \frac{7n}{10} + 6 \right\rceil + d \cdot n$$

$$\le c \cdot \frac{n}{5} + c + c \cdot \frac{7n}{10} + 6c + c + d \cdot n = \frac{9}{10} \cdot c \cdot n + 8c + d \cdot n.$$

Choose $c \geq 80 \cdot d$ and $n_0 = 91$.

$$T(n) \le \frac{72}{80} \cdot c \cdot n + 8c + \frac{1}{80} \cdot c \cdot n = c \cdot \underbrace{\left(\frac{73}{80}n + 8\right)}_{\leq n \text{ für } n > n_0} \le c \cdot n.$$


Result

Theorem

The k-the element of a sequence of n elements can be found in at most $\mathcal{O}(n)$ steps.

Overview

- 1. Repeatedly find minimum $\mathcal{O}(n^2)$
- 2. Sorting and choosing A[i] $\mathcal{O}(n \log n)$
- 3. Quickselect with random pivot O(n) expected
- 4. Median of Medians (Blum) $\mathcal{O}(n)$ worst case

