4. Searching

Linear Search, Binary Search, Interpolation Search, Lower Bounds
[Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems
2.1-3,2.2-3,2.3-5]

119



The Search Problem

Provided

m A set of data sets

examples
telephone book, dictionary, symbol table

m Each dataset has a key k.

m Keys are comparable: unique answer to the question k; < k- for
keys ]ﬁ, k2.

Task: find data set by key k.



The Selection Problem

Provided
m Set of data sets with comparable keys k.

Wanted: data set with smallest, largest, middle key value. Generally:
find a data set with :-smallest key.



Search in Array

Provided

m Array A with n elements (A[1],..., A[n]).
m Key b

Wanted: index k, 1 < k < n with A[k] = b or "not found”.

22 120 | 32 | 10 | 35 | 24 | 42 | 38 | 28 | 41

1 2 3 4 5 6 7 8 9 10



Linear Search

Traverse the array from A[1] to Aln].

m Best case: 1 comparison.
m Worst case: n comparisons.

m Assumption: each permutation of the n keys with same
probability. Expected number of comparisons:

I~ n+1
E;Z: 9 .




Search in a Sorted Array

Provided

m Sorted array A with n elements (A[1],. .., A[n]) with
Al < A2] < - < Aln).

m Keyb

Wanted: index k, 1 < k < n with A[k] = b or "not found”.

10

20

22

24

28

32

35

38

41

42

1

2

3

4

5

6

7

8

9

10

124



Divide and Conquer!

Search b = 23.
10 | 20 | 22 | 24 2|8 32 | 35 | 38 | 41 | 42
1 2 3 4 5 6 7 8 9 10
10 | 20 |22 | 24 | 28 | 32 | 35 | 38 | 41 | 42
1 2 3 4 5 6 7 8 9 10
10 |20 | 22 | 24 | 28 | 32 | 35 | 38 | 41 | 42
1 2 3 4 5 6 7 8 9 10
10 |20 |22 | M | 28 | 32 | 35 | 38 | 41 | 42
1 2 3 4 5 6 7 8 9 10
10 | 20 | 22 | 24 | 28 | 32 | 35 | 38 | 41 | 42

1

b < 28

b> 20

b> 22

b< 24

erfolglos



Binary Search Algorithm BSearch (A,b,1,r)

Input : Sorted array A of n keys. Key b. Bounds 1 <1 <r <n orl > r beliebig.
Output : Index of the found element. 0, if not found.
m < (I +71)/2]
if [ > r then // Unsuccessful search
. return 0
else if b = A[m] then// found
- return m
else if b < A[m] then// element to the left
. return BSearch(A,b,1,m — 1)
else // b > A[m]|: element to the right
. return BSearch(A,b,m +1,7)



Analysis (worst case)

Recurrence (n = 2%)

d fallsn =1
T(TL) _ alls n )
T(n/2)+c fallsn> 1.

Compuite:
T(n) :T(%) +c:T(%> + 2
=T <%> +1i-c
=T E) + logyn - c.
n
= Assumption: T'(n) = d + clogyn



Analysis (worst case)

d ifn=1,
T(n) = {T(n/Q) +c ifn>1.

Guess : T'(n) = d + c-logyn
Proof by induction:

m Base clause: 7'(1) = d.
m Hypothesis: T'(n/2) = d + ¢ -logyn/2
m Step: (n/2 — n)

Tn)=Tn/2)+c=d+c-(loggn — 1)+ c=d+ clogyn.



Result

The binary sorted search algorithm requires ©(log n) fundamental
operations.




lterative Binary Search Algorithm

Input : Sorted array A of n keys. Key b.

Output : Index of the found element. 0, if unsuccessful.

[+ 1. r<n

while [ < r do

m < |(I+7)/2]

if Ajm| =0 then
. return m

else if Ajm] < b then
Clem+1

else

‘ r<—m-—1

return O;



Correctness

Algorithm terminates only if A is empty or b is found.

Invariant: If b is in A then b is in domain A, ..., 7]
Proof by induction

m Base clause b € A[l, .., n] (oder nicht)
m Hypothesis: invariant holds after : steps.

m Step:
b<Am|=be All,..,m—1]
b>Am]=be Am+1,..,7]



Can this be improved?

Assumption: values of the array are uniformly distributed.

Search for "Becker” at the very beginning of a telephone book while
search for "Wawrinka" rather close to the end.
Binary search always starts in the middle.

Binary search always takes m = |l + 5*].



Interpolation search

Expected relative position of b in the search interval [/, r|

b— All

:m € [0,1]

New 'middle’: [+ p - (r — )
Expected number of comparisons O(loglogn) (without proof).

@ Would you always prefer interpolation search?

® No: worst case number of comparisons €2(n).



Exponential search

Assumption: key b is located somewhere at the beginning of the
Array A. n very large.

Exponential procedure:
Determine search domainl = r, r = 1.
Double 7 until » > n or A[r] > b.
Set r <~ min(r, n).
Conduct a binary search with [ < r/2, r.



Analysis of the Exponential Search

Let m be the wanted index.

Number steps for the doubling of : maximally log, m.
Binary search then also O(log, m).

Worst case number of steps overall O(log, n).

@ When does this procedure make sense?

@ It m << n. For example if positive pairwise different keys and
b << N (N: largest key value).



Lower Bounds

Binary and exponential Search (worst case): ©(log n) comparisons.

Does for any search algorithm in a sorted array (worst case) hold
that number comparisons = 2(logn)?



Decision tree

3
b< V YAB]
1 5

X> Alll b< A[\EV Yf A
2 4 6

=

[5]

m For any input b = A[i] the
algorithm must succeed =
decision tree comprises at
least n nodes.

m Number comparisons in
worst case = height of the
tree = maximum number
nodes from root to leaf.



Decision Tree

Binary tree with height i has at most
20 ol 4. 2l =20 1 < 2" nodes.

At least n nodes in a decision tree with height h.
n < 2" = h > log, n.
Number decisions = Q(logn).

Any search algorithm on sorted data with length n requires in the
worst case ((logn) comparisons.




Lower bound for Search in Unsorted Array

Any search algorithm with unsorted data of length n requires in the
worst case €2(n) comparisons.




Attempt

@ Correct?

"Proof”: to find b in A, b must be compared with each of the n
elements Afi] (1 < i <mn).

©) Wrong argument! It is still possible to compare elements within A.




Better Argument

N | S

1 B

S~
\

/

m Consider ¢ comparisons without b and e comparisons with b.

m Comparisons geenrate g groups. Initially g = n.

m To connect two groups at least one comparison is needed:

n—g<i.

m At least one element per group must be compared with b.

m Number comparisons i +e >n—g+ g =n.




5. Selection

The Selection Problem, Randomised Selection, Linear Worst-Case
Selection [Ottman/Widmayer, Kap. 3.1, Cormen et al, Kap. 9]

142



Min and Max

@10 separately find minimum an maximum in (A[1], ..., A[n]), 2n
comparisons are required. (How) can an algorithm with less than 2n
comparisons for both values at a time can be found?

@ Possible with %N comparisons: compare 2 elemetns each and
then the smaller one with min and the greater one with max.



The Problem of Selection

Input

m unsorted array A = (A4, ..., A,) with pairwise different values
m Number1l < k <n.

Output A[i] with |[{j : A[j] < A[i]}| =k —1

Special cases

k = 1: Minimum: Algorithm with n comparison operations trivial.
k = n: Maximum: Algorithm with n comparison operations trivial.
k = |n/2]: Median.

144



Approaches

m Repeatedly find and remove the minimum O(k - n).
Median: O(n?)

m Sorting (covered soon): O(nlogn)

m Use a pivot O(n) !



Use a pivot

Choose a pivot p
Partition A in two parts, thereby determining the rank of p.
Recursion on the relevant part. If £ = r then found.

IA
IN
IN
IA
IN
©
V
V
\Y,
\Y,




Algorithmus Partition(A[l..7], p)

Input : Array A, that contains the sentinel p in the interval [/, ] at least once.
Output : Array A partitioned in [l..r] around p. Returns position of p.
while [ < r do
while A[l] < p do
L+l +1
while A[r] > p do
Cor+r—1
swap(A[l], A[r])
if A[l] = A[r| then
L+l +1

return |-1



Correctness: Invariant

Invariant I: A; <pVi € [0,1), A; >pVie (r,n], Ik €[l,r] : Ay = p.
while [ < r do

while A[l] < p do
Ll +1
while A[r] > p do
Corsr—1
swap(A[l], Alr])
if A[l] = A[r| then

| I« 1l+1
L I

return |-1

1

T'und A[l] > p

Tund A[r] <p
Tund A[l] < p < Alr]




Correctness: progress

while [ < r do

while A[l] < p do
Ll 1+1

while A[r] > p do
| r<r—1
swap(A[l], A[r])

if A[l] = A[r] then
ol l+1

return |-1

progress if A[l] <p
progress if A[r|] > p

progress if A[l] > p oder A[r] <p
progress if A[l] = A[r] =p



Choice of the pivot.

The minimum is a bad pivot: worst case ©(n?)

b1 D2 b3 D4 D5

A good pivot has a linear number of elements on both sides.




Analysis

Partitioning with factor ¢ (0 < ¢ < 1): two groups with ¢ - n and
(1 — q) - n elements (without loss of generality g > 1 — g).

Tn)<T(g-n)+c-n

=c-nt+q-cn+T(@ n)=..=c-n Z q' +T(1)

<c-n iz:;q :c-n-l_q:(’)(n)

geom. Reihe



How can we achieve this?

Randomness to our rescue (Tony Hoare, 1961). In each step
choose a random pivot.

N

NI
=

V) N\l (W) (§

" schlecht gute Pivots " schlecht

Probability for a good pivot in one trial: 3 =: p.
Probability for a good pivot after k trials: (1 — p)*~1 - p.
Expected value of the geometric distribution: 1/p = 2



[Expected value of the Geometric Distribution]

Random variable X € N* with P(X = k) = (1 — p)* . p.
Expected value

k=1 k=1
=Y kd" =kt =) (k1) kg
k=1 k=0



Algorithm Quickselect (A[l..7], 7)

Input : Array A with length n. Indices 1 <[ < i <r <mn, such that for all
xz € A[l..r] it holds [{j|A[j] < z}| >l and [{j|A[j] < z}| <.

Output : Partitioniertes Array A, so dass |{j|A[j] < A[i]}| =
if |=r then return;
repeat

choose a random pivot = € A[l..r]

p <1

for j = tor do

| if Alj] <z then p <+ p+1

until 21 < p < 3D

m < Partition(A[l..r], z)
if © <m then
. quickselect(A[l..m], 1)

else
| quickselect(A[m..r], 1)



Median of medians

Goal: find an algorithm that even in worst case requires only linearly
many steps.

Algorithm Select (k-smallest)

m Consider groups of five elements.

m Compute the median of each group (straighforward)

m Apply Select recursively on the group medians.

m Partition the array around the found median of medians. Result:

m If : = k then result. Otherwise: select recursively on the proper
side.



Median of medians
(T = O A

groups of five
medians

recursion for pivot
base case

pivot (level 1)
partition (level 1)

@ median = pivot level 0

B 2. recursion starts



How good is this?

NN
NN

I I
L LI

I O

N < 0
N O O

N
N

Number points left / right of the median of medians (without median
group and the rest group) >3- ([3[2]] —2) > 32 — 6

Second call with maximally [22 + 6] elements.



Analysis

Recursion inequality:

T(n)gTd

with some constant d.
Claim:

n

5

Der(]

™
— +6
10+

[)+a-n



Proof

Base clause: choose c large enough such that

T(n) <c-nfirallen < nyg.

Induction hypothesis:

T(i) <c-iflrallei <n.

Induction step:



Proof

Induction step:

7
T(n)<c- [g-‘ +c- {1—34—6—‘ +d-n

7 9
Sc-g+c+c-£+60+c+d-n=l—o-c-n+80+d-n.

Choose ¢ > 80 - d and ny = 91.

2 1
T(n)Sg—O-c-n+80+%-C-n=C- <£n+8) <c-n.
————

<nflirn > ng



Result

The k-the element of a sequence of n elements can be found in at
most O(n) steps.




Overview

1. Repeatedly find minimum O(n?)

2. Sorting and choosing A[:] O(nlogn)

3. Quickselect with random pivot O(n) expected
4. Median of Medians (Blum) O(n) worst case

=

N

=

V) N\l (W) (§

" schlecht gute Pivots " schlecht ~




	Searching
	Selection

