
30. Parallel Programming IV

Futures, Read-Modify-Write Instructions, Atomic Variables, Idea of
lock-free programming

933



Futures: Motivation

Up to this point, threads have been functions without a result:
void action(some parameters){

...
}

std::thread t(action, parameters);
...
t.join();
// potentially read result written via ref−parameters

934



Futures: Motivation

Now we would like to have the following
T action(some parameters){

...
return value;

}

std::thread t(action, parameters);
...
value = get_value_from_thread();

main

action

da
ta

935



We can do this already!

We make use of the producer/consumer pattern, implemented
with condition variables
Start the thread with reference to a buffer
We get the result from the buffer.
Synchronisation is already implemented

936



Reminder
template <typename T>
class Buffer {

std::queue<T> buf;
std::mutex m;
std::condition_variable cond;

public:
void put(T x){ std::unique_lock<std::mutex> g(m);

buf.push(x);
cond.notify_one();

}
T get(){ std::unique_lock<std::mutex> g(m);

cond.wait(g, [&]{return (!buf.empty());});
T x = buf.front(); buf.pop(); return x;

}
};

937



Application
void action(Buffer<int>& c){

// some long lasting operation ...
c.put(42);

}

int main(){
Buffer<int> c;
std::thread t(action, std::ref(c));
t.detach(); // no join required for free running thread
// can do some more work here in parallel
int val = c.get();
// use result
return 0;

}

main

action

da
ta

938



With features of C++11
int action(){

// some long lasting operation
return 42;

}

int main(){
std::future<int> f = std::async(action);
// can do some work here in parallel
int val = f.get();
// use result
return 0;

}

main

action

da
ta

939



30.2 Read-Modify-Write

940



Example: Atomic Operations in Hardware

941



Read-Modify-Write

Concept of Read-Modify-Write: Read, modify and write back at one
point in time (atomic).

942



Example: Test-And-Set

bool TAS(bool& variable){
bool old = variable;
variable = true;
return old;

}

at
om

ic

943



Application example TAS in C++11

class SpinLock{
std::atomic_flag taken {false};
public:

void lock(){
while (taken.test_and_set());

}

void unlock(){
taken.clear();

}
};

944



30.3 Lock-Free Programming

945



Compare-And-Swap

bool CAS(int& variable, int& expected, int desired){
if (variable == expected){

variable = desired;
return true;

}
else{

expected = variable;
return false;

}
}

at
om

ic

946



Lock-free programming

Data structure is called

lock-free: at least one thread always makes progress in bounded
time even if other algorithms run concurrently. Implies
system-wide progress but not freedom from starvation.
wait-free: all threads eventually make progress in bounded time.
Implies freedom from starvation.

947



Progress Conditions

Non-Blocking Blocking

Everyone makes
progress

Wait-free Starvation-free

Someone makes
progress

Lock-free Deadlock-free

948



Implication

Programming with locks: each thread can block other threads
indefinitely.
Lock-free: failure or suspension of one thread cannot cause
failure or suspension of another thread !

949



Lock-free programming: how?

Beobachtung:

RMW-operations are implemented wait-free by hardware.
Every thread sees his result of a CAS or TAS in bounded time.

Idea of lock-free programming: read the state of a data sructure and
change the data structure atomically if and only if the previously read
state remained unchanged meanwhile.

950



Example: lock-free stack

Simplified variant of a stack in the following

pop prüft nicht, ob der Stack leer ist
pop gibt nichts zurück

951



(Node)

Nodes:
struct Node {

T value;

Node<T>∗ next;
Node(T v, Node<T>∗ nxt): value(v), next(nxt) {}

};

value
next

value
next

value
next

value
next

952



(Blocking Version)
template <typename T>
class Stack {

Node<T> ∗top=nullptr;
std::mutex m;

public:
void push(T val){ guard g(m);

top = new Node<T>(val, top);
}
void pop(){ guard g(m);

Node<T>∗ old_top = top;
top = top−>next;
delete old_top;

}
};

value
next

value
next

value
next

value
next

top

953



Lock-Free
template <typename T>
class Stack {

std::atomic<Node<T>∗> top {nullptr};
public:

void push(T val){
Node<T>∗ new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node−>next, new_node));

}
void pop(){

Node<T>∗ old_top = top;
while (!top.compare_exchange_weak(old_top, old_top−>next));
delete old_top;

}
};

954



Push
void push(T val){

Node<T>∗ new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node−>next, new_node));

}

2 Threads:

top

new

new

955



Pop
void pop(){

Node<T>∗ old_top = top;
while (!top.compare_exchange_weak(old_top, old_top−>next));
delete old_top;

}

2 Threads:

top

old

old

956



Lock-Free Programming – Limits

Lock-Free Programming is complicated.
If more than one value has to be changed in an algorithm
(example: queue), it is becoming even more complicated: threads
have to “help each other” in order to make an algorithm lock-free.
The ABA problem can occur if memory is reused in an algorithm.

957


	Parallel Programming IV
	C++ Futures
	Read-Modify-Write
	Lock-Free Programming


