28. Parallel Programming i

C++ Threads, Shared Memory, Concurrency, Excursion: lock
algorithm (Peterson), Mutual Exclusion Race Conditions [C++
Threads: Anthony Williams, C++ Concurrency in Action|

841

C++11 Threads

void hello(int id){
std::cout << "hello from " << id << "\n";
} L 2

create threads
int main(){ §§§i§:i:::\\\$
std: :vector<std: :thread> tv(3);
int id = 0;
for (auto & t:tv) Ny
oin

t = std::thread(hello, ++id); !
std::cout << "hello from main \n";
for (auto & t:tv)

t.join();
return O;

}

843

C++11 Threads

#include <iostream>
#include <thread>

void hello(){
std::cout << "hello\n";

}

int main(){
// create and launch thread t
std: :thread t(hello);
// wait for termination of t
t.join();
return O;

}

Nondeterministic Execution!

One execution: Other execution:
hello from main hello from 1

hello from 2 hello from main
hello from 1 hello from O

hello from 0 hello from 2

b 4
create thread

hello

join

Other execution:

hello from main

hello from 0

hello from hello from 1
2

842

844

Technical Detail

To let a thread continue as background thread:
void background() ;

void someFunction(){

std::thread t(background);
t.detach();

} // no problem here, thread is detached

845

28.2 Shared Memory, Concurrency

847

More Technical Details

m With allocating a thread, reference parameters are copied, except
explicitly std::ref is provided at the construction.

m Can also run Functor or Lambda-Expression on a thread

m In exceptional circumstances, joining threads should be executed
in a catch block

More background and details in chapter 2 of the book C++ Concurrency in Action,
Anthony Williams, Manning 2012. also available online at the ETH library.

846

Sharing Resources (Memory)

m Up to now: fork-join algorithms: data parallel or
divide-and-conquer

m Simple structure (data independence of the threads) to avoid race
conditions

m Does not work any more when threads access shared memory.

848

Managing state

Managing state: Main challenge of concurrent programming.

Approaches:

m Immutability, for example constants.
m Isolated Mutability, for example thread-local variables, stack.

m Shared mutable data, for example references to shared memory,
global variables

849

Canonical Example

class BankAccount {
int balance = 0;
public:
int getBalance(){ return balance; 7}
void setBalance(int x) { balance = x; }
void withdraw(int amount) {
int b = getBalance();
setBalance(b — amount);
}
// deposit etc.
};

(correct in a single-threaded world)

Protect the shared state

m Method 1: locks, guarantee exclusive access to shared data.

m Method 2: lock-free data structures, exclusive access with a much
finer granularity.

m Method 3: transactional memory (not treated in class)

Bad Interleaving

Parallel call to widthdraw(100) on the same account

Thread 1 Thread 2

int b = getBalance();
int b = getBalance();
setBalance (b—amount) ;

setBalance(b—amount) ;

Tempting Traps

WRONG:

void withdraw(int amount) {
int b = getBalance();
if (b==getBalance())
setBalance(b — amount);

Bad interleavings cannot be solved with a repeated reading

Mutual Exclusion

We need a concept for mutual exclusion

Only one thread may execute the operation withdraw on the same
account at a time.

The programmer has to make sure that mutual exclusion is used.

855

Tempting Traps

also WRONG:

void withdraw(int amount) {
setBalance(getBalance() — amount);

}

Assumptions about atomicity of operations are almost always wrong

More Tempting Traps

class BankAccount {
int balance = 0;
bool busy = false;
public:
void withdraw(int amount) {
while (busy); // spin wait

busy = true; C%%QS

int b = getBalance(); /ZO[

setBalance(b — amount); Lﬁtb-

busy = false; 47
}

// deposit would spin on the same boolean

};

Just moved the problem!

Thread 1 Thread 2

while (busy); //spin

while (busy); //spin
busy = true;

busy = true;
int b = getBalance();

int b = getBalance();

setBalance(b — amount);

setBalance(b — amount);

28.3 Excursion: lock algorithm

859

How ist this correctly implemented?

m We use /ocks (mutexes) from libraries

m They use hardware primitives, Read-Modify-Write (RMW)
operations that can, in an atomic way, read and write depending
on the read result.

m Without RMW Operations the algorithm is non-trivial and requires
at least atomic access to variable of primitive type.

858

Alice’s Cat vs. Bob’s Dog

A A
¥).

860

Required: Mutual Exclusion

A

R

Communication Types

m Transient: Parties participate at the same time

£ & P

m Persistent: Parties participate at different times

U@'” E .
beris ‘
beck! .

Required: No Lockout When Free

A A
A X

861 862

Communication Idea 1

Dog is
allowed
in yard

dog cat

&

863 864

Access Protocol

Problem!

Access Protocol 2.1

Different Scenario Problem: No Mutual Exclusion

»x o

Checking Flags Twice: Deadlock Access Protocol 2.2

=

XX

Access Protocol 2.2:Provably Correct

x B

Final Solution

P
ﬁ ol

Weniger schwerwiegend: Starvation

CORNC)

General Problem of Locking remains

Peterson’s Algorithm>°

for two processes is provable correct and free from starvation

non—critical section

flag[me]l = true // I am interested
victim = me // but you go first
// spin while we are both interested and you go first:
while (fla ou] && victim == me ;
(g [Y]) {} > The code assumes that the access to flag
/ victim is atomic and particularly lineariz-
critical section able or sequential consistent. An assump-
tion that — as we will see below —is not nec-
essarily given for normal variables. The

flag [me] = false Peterson-lock is not used on modern hard-
ware.

36not relevant for the exam
877

Critical Sections and Mutual Exclusion

Critical Section
Piece of code that may be executed by at most one process (thread)
at a time.

Mutual Exclusion
Algorithm to implement a critical section
acquire_mutex(); // entry algorithm\\

/I critical section
release_mutex(); // exit algorithm

28.4 Mutual Exclusion

Required Properties of Mutual Exclusion

Correctness (Safety) (d l
m At most one process executes the

critical section code

Liveness

m Acquiring the mutex must terminate in
finite time when no process executes
in the critical section

878

Almost Correct

class BankAccount {

int balance = 0;

std::mutex m; // requires #include <mutex>
public:

void withdraw(int amount) {
m.lock();
int b = getBalance();
setBalance(b — amount);
m.unlock();

}
};

What if an exception occurs?

Reentrant Locks

N G
thread

-
count

Reentrant Lock (recursive lock)

m remembers the currently affected thread;
m provides a counter

m Call of lock: counter incremented
m Call of unlock: counter is decremented. If counter = 0 the lock is released.

881

883

RAII Approach

class BankAccount {
int balance = 0;
std::mutex m;
public:

void withdraw(int amount) {
std: :lock_guard<std::mutex> guard(m);
int b = getBalance();
setBalance(b — amount);
} // Destruction of guard leads to unlocking m

};
What about getBalance / setBalance?

882

Account with reentrant lock

class BankAccount {
int balance = 0;
std: :recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;
public:
int getBalance(){ guard g(m); return balance;
}
void setBalance(int x) { guard g(m); balance = x;
}
void withdraw(int amount) { guard g(m);
int b = getBalance();
setBalance(b — amount);
}
};

884

28.5 Race Conditions

Example: Stack

Stack with correctly synchronized access:

template <typename T>
class stack{

std: :recursive_mutex m;

885

using guard = std::lock_guard<std::recursive_mutex>;

public:

bool isEmpty(){ guard g(m); ... }
void push(T value){ guard g(m);

T popO{ guard g(m); ...}

+;

.}

887

Race Condition

m A race condition occurs when the result of a computation depends
on scheduling.

m We make a distinction between bad interleavings and data races

m Bad interleavings can occur even when a mutex is used.

Peek

Forgot to implement peek. Like this?

template <typename T>

T peek (stack<T> &s){ /széé
T value = s.popQ); /‘@
s.push(value); aOiS
return value; 52@3,

}

Despite its questionable style the code is correct in a sequential
world. Not so in concurrent programming.

886

888

Bad Interleaving!

Initially empty stack s, only shared between threads 1 and 2.

Thread 1 pushes a value and checks that the stack is then
non-empty. Thread 2 reads the topmost value using peek().

Thread 1 Thread 2

s.push(5);
int value = s.pop();
¢ assert(!s.isEmpty());
s.push(value);

return value;

Bad Interleavings

Race conditions as bad interleavings can happen on a high level of
abstraction

In the following we consider a different form of race condition: data
race.

889

891

The fix

Peek must be protected with the same lock as the other access
methods

890

How about this?

class counterq{
int count = 0;
std: :recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;
public:
int increase(){
guard g(m); return ++count;
}
int get(O{
return count;
} N0t thr, eaa-

S
) afg]

892

Why wrong?

It looks like nothing can go wrong because the update of count
happens in a “tiny step”.

But this code is still wrong and depends on
language-implementation details you cannot assume.
This problem is called Data-Race

Moral: Do not introduce a data race, even if every interleaving you
can think of is correct. Don’t make assumptions on the memory
order.

893

We look deeper

class C {
int x = 0; There is no interleaving of f and g that
int y = 0; would cause the assertion to fail:
public:
void £() { m ABCDV
@ x=1; m ACBDV
R m AGDBV
void g { m CABDV
© int a =y; m CCDBV
© inmt b = x; m CDABV

assert(b >= a);
} I

} Can this fail> 't can nevertheless faill

895

A bit more formal

Data Race (low-level Race-Conditions) Erroneous program behavior
caused by insufficiently synchronized accesses of a shared resource
by multiple threads, e.g. Simultaneous read/write or write/write of
the same memory location

Bad Interleaving (High Level Race Condition) Erroneous program
behavior caused by an unfavorable execution order of a
multithreaded algorithm, even if that makes use of otherwise well
synchronized resources.

894

One Resason: Memory Reordering

Rule of thumb: Compiler and hardware allowed to make changes
that do not affect the semantics of a sequentially executed program

void £() { void £() {
x=1; x =1;
y = x+1; z = x+1;
z = x+1; sequentially equivalent y = x+1;
} }

896

From a Software-Perspective

Modern compilers do not give guarantees that a global ordering of
memory accesses is provided as in the sourcecode:

m Some memory accesses may be even optimized away completely!

m Huge potential for optimizations — and for errors, when you make
the wrong assumptions

897

Compilation

Source

int x; // shared

Without optimisation | With optimisation

wait:
movl $0x1, x

test:
jmp t e;b always

wait:
void wait(){ movl $0x1, x

x =1; test:
while(x == 1); mov X, heax
} cmp $O;;::£;;;:>fewa
je test

void arrive(){
X = 2;

}

arrive
movl $0x2, x

arrive:
movl $0x2, x

899

Example: Self-made Rendevouz

int x; // shared

void wait(){ Assume thread 1 calls wait, later thread 2

x =1; calls arrive. What happens?
while(x == 1);
} thread 1 —— wait —
thread 2 arrive —

void arrive(){
X = 2;

3

898

Hardware Perspective

Modern multiprocessors do not enforce global ordering of all
instructions for performance reasons:

m Most processors have a pipelined architecture and can execute
(parts of) multiple instructions simultaneously. They can even
reorder instructions internally.

m Each processor has a local cache, and thus loads/stores to shared
memory can become visible to other processors at different times

900

Memory Hierarchy
Registers

L1 Cache

L2 Cache

System Memory

Schematic

CPU 1

Core 1 Core 2

Registers Registers

L1 L1

L2

fast,low latency, high cost, low capacity

slow, high latency,low cost,high capacity

901

CPU 2

Core 1 Core 2

Registers Registers

L1 L1

L2

L> System Bus 4—1

System Memory

903

An Analogy

ANna global data
C e A =C \4 @H
n %\"\m h=§
Beat Zoe
2=V
1: A" 2 > [oLFHHT]

/ Wait WKL Q40

> [T e V=02

local data

Memory Models

When and if effects of memory operations become visible for
threads, depends on hardware, runtime system and programming
language.

A memory model (e.g. that of C++) provides minimal guarantees for
the effect of memory operations

m |eaving open possibilities for optimisation

m containing guidelines for writing thread-safe programs

For instance, C++ provides guarantees when synchronisation with a
mutex is used.

904

Fixed

class C {
int x = 0;
int y = 0;
std: :mutex m;
public:
void £() {
m.lock(); x = 1; m.unlock();
m.lock(); y = 1; m.unlock();
}
void g0 {
m.lock(); int a = y; m.unlock();
m.lock(); int b = x; m.unlock();
assert(b >= a); // cannot happen
}
};

905

Atomic

Here also possible:
class C {

std::atomic_int x{0}; // requires #include <atomic>

std::atomic_int y{0};
public:
void £() {
x = 1;
y=1;
}
void g() {
int a = y;
int b = x;
assert(b >= a); // cannot happen
}
};

906

