27. Parallel Programming I

Moore's Law and the Free Lunch, Hardware Architectures, Parallel Execution, Flynn's Taxonomy, Scalability: Amdahl and Gustafson, Data-parallelism, Task-parallelism, Scheduling

[Task-Scheduling: Cormen et al, Kap. 27]

The Free Lunch

The free lunch is over 35

³⁵"The Free Lunch is Over", a fundamental turn toward concurrency in software, Herb Sutter, Dr. Dobb's Journal, 2005

Moore's Law

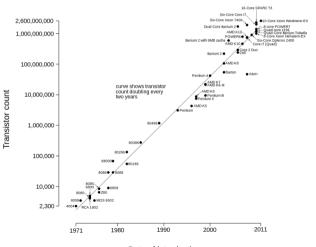
Gordon E. Moore (1929)

Observation by Gordon E. Moore:

The number of transistors on integrated circuits doubles approximately every two years.

Moore's Law

Microprocessor Transistor Counts 1971-2011 & Moore's Law



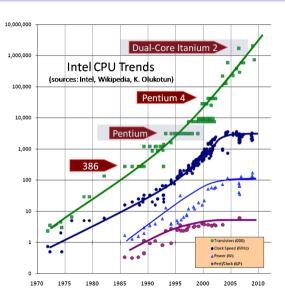
For a long time...

- the sequential execution became faster (Instruction Level Parallelism, Pipelining, Higher Frequencies)
- more and smaller transistors = more performance
- programmers simply waited for the next processor generation

Today

- the frequency of processors does not increase significantly and more (heat dissipation problems)
- the instruction level parallelism does not increase significantly any more
- the execution speed is dominated by memory access times (but caches still become larger and faster)

Trends



Multicore

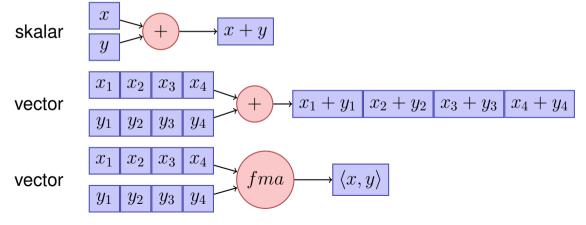
- Use transistors for more compute cores
- Parallelism in the software
- Programmers have to write parallel programs to benefit from new hardware

Forms of Parallel Execution

- Vectorization
- Pipelining
- Instruction Level Parallelism
- Multicore / Multiprocessing
- Distributed Computing

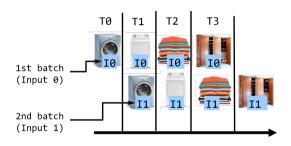
Vectorization

Parallel Execution of the same operations on elements of a vector (register)

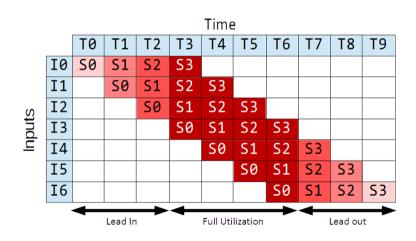


Home Work

More efficient



Pipeline



Throughput

- Throughput = Input or output data rate
- Number operations per time unit
- larger througput is better
- Approximation

throughput =
$$\frac{1}{\max(\text{computationtime(stages)})}$$

ignores lead-in and lead-out times

Latency

- Time to perform a computation
- Pipeline latency only constant when Pipeline is balanced: sum of all operations over all stages
- Unbalanced Pipeline
 - First batch as with the balanced pipeline
 - In a balanced version, latency= #stages · \max (computationtime(stages))

Homework Example

Washing $T_0=1h$, Drying $T_1=2h$, Ironing $T_2=1h$, Tidy up $T_3=0.5h$

- **Latency first batch:** $L = T_0 + T_1 + T_2 + T_3 = 4.5h$
- Latency second batch: $L = T_1 + T_1 + T_2 + T_3 = 5.5h$
- In the long run: 1 batch every 2h (0.5/h).

Throughput vs. Latency

- Increasing throughput can increase latency
- Stages of the pipeline need to communicate and synchronize: overhead

Pipelines in CPUs

Fetch

Decode

Execute

Data Fetch

Writeback

Multiple Stages

- Every instruction takes 5 time units (cycles)
- In the best case: 1 instruction per cycle, not always possible ("stalls")

Paralellism (several functional units) leads to faster execution.

ILP – Instruction Level Parallelism

Modern CPUs provide several hardware units and execute independent instructions in parallel.

- Pipelining
- Superscalar CPUs (multiple instructions per cycle)
- Out-Of-Order Execution (Programmer observes the sequential execution)
- Speculative Execution

27.2 Hardware Architectures

Shared vs. Distributed Memory

Shared Memory Distributed Memory CPU CPU Mem Mem Mem Interconnect

Shared vs. Distributed Memory Programming

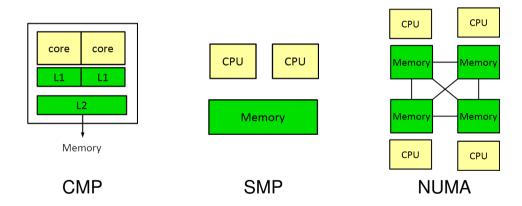
- Categories of programming interfaces
 - Communication via message passing
 - Communication via memory sharing
- It is possible:
 - to program shared memory systems as distributed systems (e.g. with message passing MPI)
 - program systems with distributed memory as shared memory systems (e.g. partitioned global address space PGAS)

Shared Memory Architectures

- Multicore (Chip Multiprocessor CMP)
- Symmetric Multiprocessor Systems (SMP)
- Simultaneous Multithreading (SMT = Hyperthreading)
 - one physical core, Several Instruction Streams/Threads: several virtual cores
 - Between ILP (several units for a stream) and multicore (several units for several streams). Limited parallel performance.
- Non-Uniform Memory Access (NUMA)

Same programming interface

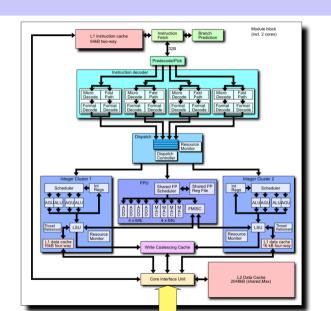
Overview



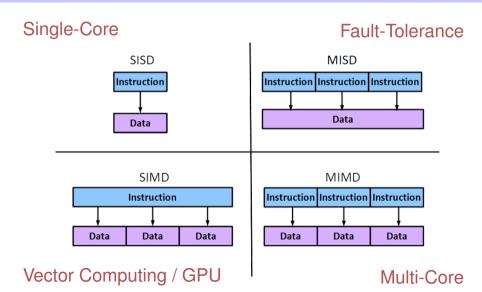
An Example

AMD Bulldozer: between CMP and SMT

- 2x integer core
- 1x floating point core



Flynn's Taxonomy



796

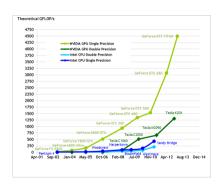
Massively Parallel Hardware

[General Purpose] Graphical Processing Units ([GP]GPUs)

- Revolution in High Performance Computing
 - Calculation 4.5 TFlops vs. 500 GFlops
 - Memory Bandwidth 170 GB/s vs. 40 GB/s

SIMD

- High data parallelism
- Requires own programming model. Z.B. CUDA / OpenCL



27.3 Multi-Threading, Parallelism and Concurrency

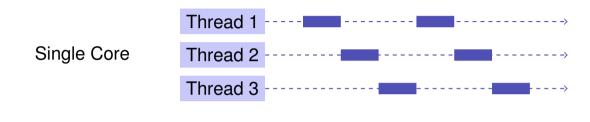
Processes and Threads

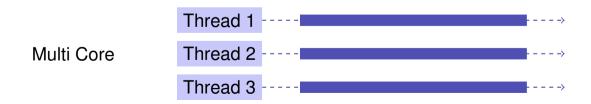
- Process: instance of a program
 - each process has a separate context, even a separate address space
 - OS manages processes (resource control, scheduling, synchronisation)
- Threads: threads of execution of a program
 - Threads share the address space
 - fast context switch between threads

Why Multithreading?

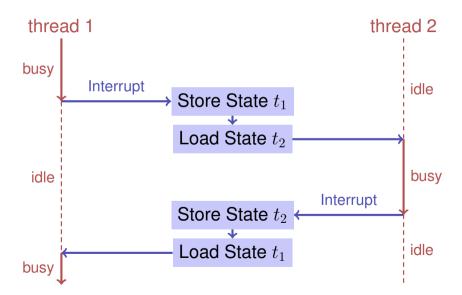
- Avoid "polling" resources (files, network, keyboard)
- Interactivity (e.g. responsivity of GUI programs)
- Several applications / clients in parallel
- Parallelism (performance!)

Multithreading conceptually



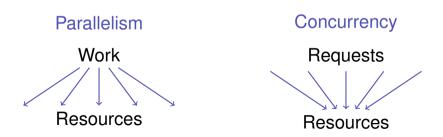


Thread switch on one core (Preemption)



Parallelität vs. Concurrency

- Parallelism: Use extra resources to solve a problem faster
- Concurrency: Correctly and efficiently manage access to shared resources
- Begriffe überlappen offensichtlich. Bei parallelen Berechnungen besteht fast immer Synchronisierungsbedarf.



Thread Safety

Thread Safety means that in a concurrent application of a program this always yields the desired results.

Many optimisations (Hardware, Compiler) target towards the correct execution of a *sequential* program.

Concurrent programs need an annotation that switches off certain optimisations selectively.

Example: Caches

- Access to registers faster than to shared memory.
- Principle of locality.
- Use of Caches (transparent to the programmer)

If and how far a cache coherency is guaranteed depends on the used system.

27.4 Scalability: Amdahl and Gustafson

Scalability

In parallel Programming:

- \blacksquare Speedup when increasing number p of processors
- What happens if $p \to \infty$?
- Program scales linearly: Linear speedup.

Parallel Performance

Given a fixed amount of computing work \boldsymbol{W} (number computing steps)

Sequential execution time T_1

Parallel execution time on p CPUs

- Perfection: $T_p = T_1/p$
- Performance loss: $T_p > T_1/p$ (usual case)
- Sorcery: $T_p < T_1/p$

Parallel Speedup

Parallel speedup S_p on p CPUs:

$$S_p = \frac{W/T_p}{W/T_1} = \frac{T_1}{T_p}.$$

- Perfection: linear speedup $S_p = p$
- Performance loss: sublinear speedup $T_p > T_1/p$ (the usual case)
- lacksquare Sorcery: superlinear speedup $T_p < T_1/p$

Efficiency: $E_p = S_p/p$

Reachable Speedup?

Parallel Program

Parallel Part	Seq. Part
80%	20%

$$T_1 = 10$$
 $T_8 = ?$

$$T_8 = \frac{10 \cdot 0.8}{8} + 10 \cdot 0.2 = 1 + 2 = 3$$

$$S_8 = \frac{T_1}{T_1} = \frac{10}{3} = 3.33$$

Amdahl's Law: Ingredients

Computational work ${\cal W}$ falls into two categories

- \blacksquare Paralellisable part W_p
- lacksquare Not parallelisable, sequential part W_s

Assumption: W can be processed sequentially by one processor in W time units ($T_1 = W$):

$$T_1 = W_s + W_p$$
$$T_p \ge W_s + W_p/p$$

Amdahl's Law

$$S_p = \frac{T_1}{T_p} \le \frac{W_s + W_p}{W_s + \frac{W_p}{p}}$$

Amdahl's Law

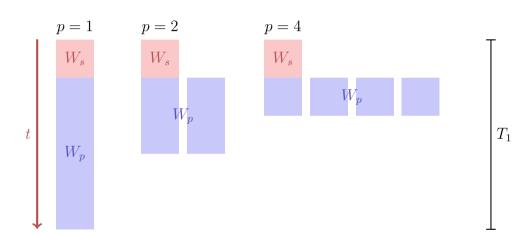
With sequential, not parallelizable fraction λ : $W_s = \lambda W$, $W_p = (1 - \lambda)W$:

$$S_p \le \frac{1}{\lambda + \frac{1-\lambda}{p}}$$

Thus

$$S_{\infty} \le \frac{1}{\lambda}$$

Illustration Amdahl's Law



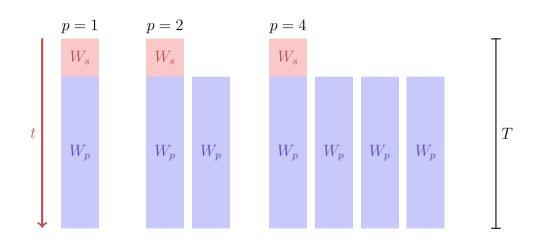
Amdahl's Law is bad news

All non-parallel parts of a program can cause problems

Gustafson's Law

- Fix the time of execution
- Vary the problem size.
- Assumption: the sequential part stays constant, the parallel part becomes larger

Illustration Gustafson's Law



Gustafson's Law

Work that can be executed by one processor in time *T*:

$$W_s + W_p = T$$

Work that can be executed by p processors in time T:

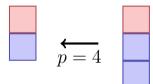
$$W_s + p \cdot W_p = \lambda \cdot T + p \cdot (1 - \lambda) \cdot T$$

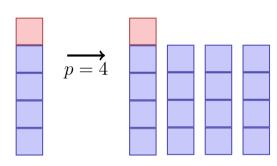
Speedup:

$$S_p = \frac{W_s + p \cdot W_p}{W_s + W_p} = p \cdot (1 - \lambda) + \lambda$$
$$= p - \lambda(p - 1)$$

Amdahl vs. Gustafson

Amdahl





27.5 Task- and Data-Parallelism

Parallel Programming Paradigms

- Task Parallel: Programmer explicitly defines parallel tasks.
- Data Parallel: Operations applied simulatenously to an aggregate of individual items.

Example Data Parallel (OMP)

```
double sum = 0, A[MAX];
#pragma omp parallel for reduction (+:ave)
for (int i = 0; i < MAX; ++i)
   sum += A[i];
return sum;</pre>
```

Example Task Parallel (C++11 Threads/Futures)

```
double sum(Iterator from, Iterator to)
 auto len = from - to;
 if (len > threshold){
   auto future = std::async(sum, from, from + len / 2);
   return sumS(from + len / 2, to) + future.get();
 else
   return sumS(from, to):
```

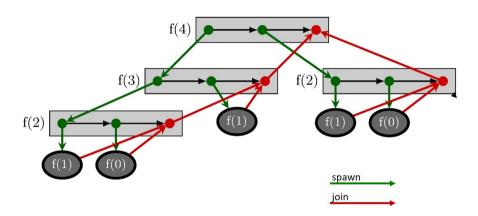
Work Partitioning and Scheduling

- Partitioning of the work into parallel task (programmer or system)
 - One task provides a unit of work
 - Granularity?
- Scheduling (Runtime System)
 - Assignment of tasks to processors
 - Goal: full resource usage with little overhead

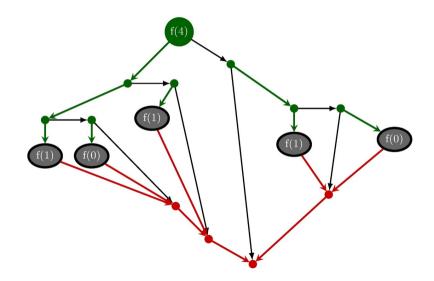
Example: Fibonacci P-Fib

```
\begin{array}{l} \textbf{if} \ n \leq 1 \ \textbf{then} \\ \textbf{return} \ n \\ \textbf{else} \\ x \leftarrow \textbf{spawn} \ \text{P-Fib}(n-1) \\ y \leftarrow \textbf{spawn} \ \text{P-Fib}(n-2) \\ \textbf{sync} \\ \textbf{return} \ x + y; \end{array}
```

P-Fib Task Graph

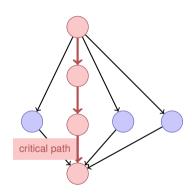


P-Fib Task Graph



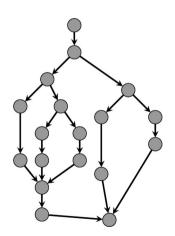
Question

- Each Node (task) takes 1 time unit.
- Arrows depict dependencies.
- Minimal execution time when number of processors = ∞ ?



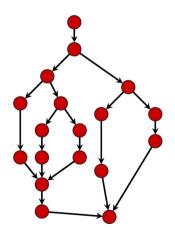
Performance Model

- p processors
- Dynamic scheduling
- T_p : Execution time on p processors



Performance Model

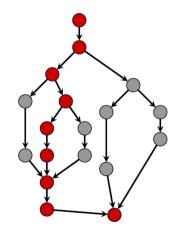
- T_p : Execution time on p processors
- T_1 : work: time for executing total work on one processor
- \blacksquare T_1/T_p : Speedup



Performance Model

- T_∞ : span: critical path, execution time on ∞ processors. Longest path from root to sink.
- T_1/T_∞ : *Parallelism:* wider is better
- Lower bounds:

$$T_p \geq T_1/p$$
 Work law $T_p \geq T_\infty$ Span law



Greedy Scheduler

Greedy scheduler: at each time it schedules as many as availbale tasks.

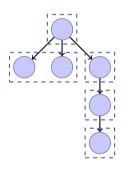
Theorem

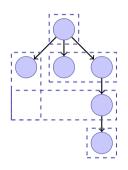
On an ideal parallel computer with p processors, a greedy scheduler executes a multi-threaded computation with work T_1 and span T_{∞} in time

$$T_p \le T_1/p + T_\infty$$

Beispiel

Assume p=2.





$$T_p = 5$$

$$T_p = 4$$

Proof of the Theorem

Assume that all tasks provide the same amount of work.

- Complete step: p tasks are available.
- \blacksquare incomplete step: less than p steps available.

Assume that number of complete steps larger than $\lfloor T_1/p \rfloor$. Executed work $\geq P \cdot (\lfloor T_1/p \rfloor \cdot p) = T_1 - T_1 \mod p + p \geq T_1$. Contradiction. Therefore maximally $\lfloor T_1/p \rfloor$ complete steps.

Each incomplete step executed at any time all available tasks t with $\deg^-(t)=0$ and decreases the length of the span. Otherwise the chosen span would not have been maximal. Number of incomplete steps thus maximally T_∞ .

Consequence

if $p \ll T_1/T_{\infty}$, i.e. $T_{\infty} \ll T_1/p$, then $T_p \approx T_1/p$.

Example Fibonacci

 $T_1(n)/T_\infty(n) = \Theta(\phi^n/n)$. For moderate sizes of n we can use a lot of processors yielding linear speedup.

- #Tasks = #Cores?
- Problem if a core cannot be fully used
- Example: 9 units of work. 3 core. Scheduling of 3 sequential tasks.

Exclusive utilization:

P1 s1 P2 s2 P3 s3

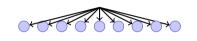
Execution Time: 3 Units

Foreign thread disturbing:

P1 s1 P2 s2 s1 P3 s3

Execution Time: 5 Units

- #Tasks = Maximum?
- Example: 9 units of work. 3 cores. Scheduling of 9 sequential tasks.



Exclusive utilization:

P1	s1	s4	s7
P2	s2	s5	s8
P3	s3	s6	s9

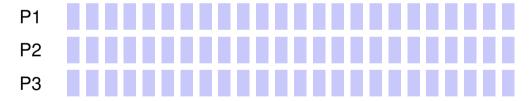
Execution Time: $3 + \varepsilon$ Units

Foreign thread disturbing:

P1	s1				
P2	s2	s4	s5	s8	
P3	s3	s6	s7	s9	

Execution Time: 4 Units. Full utilization.

- #Tasks = Maximum?
- **Example:** 10^6 tiny units of work.



Execution time: dominiert vom Overhead.

Answer: as many tasks as possible with a sequential cutoff such that the overhead can be neglected.

Example: Parallelism of Mergesort

- Work (sequential runtime) of Mergesort $T_1(n) = \Theta(n \log n)$.
- Span $T_{\infty}(n) = \Theta(n)$
- Parallelism $T_1(n)/T_\infty(n) = \Theta(\log n)$ (Maximally achievable speedup with $p = \infty$ processors)

