27. Parallel Programming |

Moore’s Law and the Free Lunch, Hardware Architectures, Parallel
Execution, Flynn’s Taxonomy, Scalability: Amdahl and Gustafson,
Data-parallelism, Task-parallelism, Scheduling

[Task-Scheduling: Cormen et al, Kap. 27]

The Free Lunch

The free lunch is over 3°

35"The Free Lunch is Over", a fundamental turn toward concurrency in software, Herb Sutter, Dr. Dobb’s Journal, 2005

Moore’s Law

Observation by Gordon E. Moore: Gordon £ Hoore (1929

The number of transistors on integrated circuits doubles
approximately every two years.

Moore’s Law

Microprocessor Transistor Counts 1971-2011 & Moore's Law

16-Care SPARC TS
Sb-Core Corei

2,600,000,000 - SocCore Xeon um\'\. O ———
Duatcore arwam 2 s mecovery
1,000,000,000 o o ¥ Bt Bt
Core 7 (Quad)
Coe 2000
100,000,000 |
pensuma, ®20m
curve shows ransistor (L
E 10000000 gount doubling every i
=1 Pentum il
=] s
© renm
2
@ 1,000,000 iy,
[%]
=
g s
[
100,000
10,000
2,300 -
v : T y |
1971 1980 1990 2000 2011

Date of introduction

15193542

y Wgsimon, https://commons.wikimedia.org/w/index.php?curid=

~B
~

https://commons.wikimedia.org/w/index.php?curid=15193542

For a long time...

m the sequential execution became faster (Instruction Level
Parallelism, Pipelining, Higher Frequencies)

m more and smaller transistors = more performance
m programmers simply waited for the next processor generation

Today

m the frequency of processors does not increase significantly and
more (heat dissipation problems)

m the instruction level parallelism does not increase significantly any
more

m the execution speed is dominated by memory access times (but
caches still become larger and faster)

Trends

10,000,000
1,000,000
100,000
10,000
1,000

100

0

1970

Intel CPU Trends

(sources: Intel, Wikipedia, K. Olukotun)

@ Clock Speed (MHz)
A Power (W)
@ Perf/Clock (ILP)

1975 1980 1985 1990 1995

2000 2005 2010

p://www.gotw.ca/publications/concurrency-ddj.htm

~htt
~N

http://www.gotw.ca/publications/concurrency-ddj.htm

Multicore

m Use transistors for more compute cores
m Parallelism in the software

m Programmers have to write parallel programs to benefit from new
hardware

Forms of Parallel Execution

m Vectorization

m Pipelining

m Instruction Level Parallelism
m Multicore / Multiprocessing
m Distributed Computing

Vectorization

Parallel Execution of the same operations on elements of a vector

(register)

skalar

vector

vector

)@—mc%—y
Y

1

L2

T3

Lq

Y1

Y2

Ys

Ya

T+ Y1 | T2+ Yo

T3+ Y3

Ty + Ya

—®-

x1

x2

x3

Ty

2A1

Y2

Ys

Ya

(z,9)

Home Work

More efficient

T0 T1 T2 T3
sl - |== P
1st batch lo| Ie _:D[@ﬂ' Ie
(Input 0) e
-QZQ\
I1 | -1I1-
2nd batch I

(Input 1)

|1

i

=
=
l

v

Pipeline

Inputs

Time

T0

T1|T2|T3|T4

10

Se

T5

T6

T7

T8

T9

S1

I1

S0

12

I3

a

I4

e

I5

I6

.

-

> <

0

> <

S3

S2

S3

o

Lead In Full Utilization

Lead out

Throughput

m Throughput = Input or output data rate
m Number operations per time unit

m larger througput is better

m Approximation

1

throughput =
TOUBAPIE = ax(computationtime(stages))

ignores lead-in and lead-out times

784

Latency

m Time to perform a computation

m Pipeline latency only constant when Pipeline is balanced: sum of
all operations over all stages

m Unbalanced Pipeline

m First batch as with the balanced pipeline
® In a balanced version, latency= #stages - max(computationtime(stages))

785

Homework Example

Washing Ty = 1h, Drying T1 = 2h, lroning T5 = 1h, Tidy up
T35 = 0.5h

m Latency first batch: L =Ty + 11 + 15 + 13 = 4.5h
m Latency second batch: L =17 + T + 15+ 15 = 5.5h
m In the long run: 1 batch every 2h (0.5/h).

786

Throughput vs. Latency

m Increasing throughput can increase latency

m Stages of the pipeline need to communicate and synchronize:
overhead

Pipelines in CPUs

Fetch Decode Execute Data Fetch Writeback

Multiple Stages

m Every instruction takes 5 time units (cycles)
m In the best case: 1 instruction per cycle, not always possible
(“stalls”)

Paralellism (several functional units) leads to faster execution.

ILP - Instruction Level Parallelism

Modern CPUs provide several hardware units and execute
independent instructions in parallel.

m Pipelining

m Superscalar CPUs (multiple instructions per cycle)

m Out-Of-Order Execution (Programmer observes the sequential
execution)

m Speculative Execution

789

27.2 Hardware Architectures

Shared vs. Distributed Memory

Shared Memory Distributed Memory
CPU||CPU || CPU CPU||CPU CPU
Mem

Mem | | Mem | Mem

Interconnect

Shared vs. Distributed Memory Programming

m Categories of programming interfaces

m Communication via message passing
m Communication via memory sharing

m It is possible:

m to program shared memory systems as distributed systems (e.g. with
message passing MPI)

m program systems with distributed memory as shared memory systems
(e.g. partitioned global address space PGAS)

792

Shared Memory Architectures

m Multicore (Chip Multiprocessor - CMP)

m Symmetric Multiprocessor Systems (SMP)
m Simultaneous Multithreading (SMT = Hyperthreading)

m one physical core, Several Instruction Streams/Threads: several virtual
cores

m Between ILP (several units for a stream) and multicore (several units for
several streams). Limited parallel performance.

m Non-Uniform Memory Access (NUMA)

Same programming interface

793

Overview

core

core

CPU

CPU

[uTul]
}

CPU

CPU

Memory

CMP

SMP

CPU

CPU

NUMA

An Example

AMD Bulldozer:
tween CMP and SMT

m 2x integer core

be-

m 1x floating point core

Instruction

Module block
(incl. 2 cores)

Format | Format
Docode | Docode

Echsdn\sr

Rl

L1 data cache
16k four-wa

Ress

Core Interface Unit

L2 Data Cache
2048KB (shared,Max)

JWikipedia

Flynn’s Taxonomy

Single-Core Fault-Tolerance

SISD MISD

|Instruction| |Instruction | Instructionllnstructionl
} | |
| Data | | Data |

SIMD MIMD
| Instruction | |InstructionlInstmctionllnstruction|
! | l
| Data | Data I Data | | Data | Data | Data |

Vector Computing / GPU Multi-Core

Massively Parallel Hardware

[General Purpose] Graphical Processing
Units ([GP]GPUs)
m Revolution in High Performance
Computing
m Calculation 4.5 TFlops vs. 500 GFlops

m Memory Bandwidth 170 GB/s vs. 40
GB/s

m SIMD

m High data parallelism
m Requires own programming model. Z.B.
CUDA / OpenCL

rrrrrrrrrrrrrrrr

27.3 Multi-Threading, Parallelism and Concurrency

Processes and Threads

m Process: instance of a program

B each process has a separate context, even a separate address space
m OS manages processes (resource control, scheduling, synchronisation)

m Threads: threads of execution of a program

m Threads share the address space
m fast context switch between threads

799

Why Multithreading?

m Avoid “polling” resources (files, network, keyboard)
m Interactivity (e.g. responsivity of GUI programs)

m Several applications / clients in parallel

m Parallelism (performance!)

Multithreading conceptually

Thread 1 ----- - [[
Single Core Thread 2 --------- - -
Thread 3 -------------- - -
Thread 1 ----- I - - - -
Multi Core Thread 2 ----- I, - - - -
Thread 3 ----- I - - - -

Thread switch on one core (Preemption)

thread 1 thread 2
busyl |
Interrupt ! idll
i > Store State t; (e
I) 2
! Load State ¢
idle i busy
i Interrupt
! Store State 5 < r
: ¥ !
I : idle

¢ Load State t;
busyl

Parallelitat vs. Concurrency

m Farallelism: Use extra resources to solve a problem faster
m Concurrency: Correctly and efficiently manage access to shared

resources
m Begriffe Uberlappen offensichtlich. Bei parallelen Berechnungen

besteht fast immer Synchronisierungsbedarf.

Parallelism Concurrency

Work Requests

S7INS N7

Resources Resources

Thread Safety

Thread Safety means that in a concurrent application of a program
this always yields the desired results.

Many optimisations (Hardware, Compiler) target towards the correct
execution of a sequential program.

Concurrent programs need an annotation that switches off certain
optimisations selectively.

Example: Caches

m Access to registers faster than to
shared memory.

m Principle of locality.
m Use of Caches (transparent to the
programmer)

If and how far a cache coherency is guar-
anteed depends on the used system.

27.4 Scalability: Amdahl and Gustafson

Scalability

In parallel Programming:

m Speedup when increasing number p of processors
m What happens if p — co?
m Program scales linearly: Linear speedup.

807

Parallel Performance

Given a fixed amount of computing work T/ (number computing
steps)

Sequential execution time T

Parallel execution time on p CPUs

m Perfection: T, =11 /p
m Performance loss: T, > T} /p (usual case)
m Sorcery: T, < T /p

Parallel Speedup

Parallel speedup S, on p CPUs:

w/T, Th
Sp=—"— = —.
w/T, T,
m Perfection: linear speedup .S, = p
m Performance loss: sublinear speedup 7, > 17 /p (the usual case)
m Sorcery: superlinear speedup 7, < T /p

Efficiency:E, = S,/p

Reachable Speedup?

Parallel Program

Parallel Part Seq. Part
80% 20%
T =10
Ty =7
Ty = 10'80'8+10-0.2:1+2:3
7 10

Sq=—=—=23.33

p—— o~

Amdahl’s Law: Ingredients

Computational work ¥ falls into two categories

m Paralellisable part W,

m Not parallelisable, sequential part IV,

Assumption: W can be processed sequentially by one processor in
W time units (17 = W):

T =W, + W,
T,>Ws+W,/p

Amdahl’s Law

=

Amdahl’s Law

With sequential, not parallelizable fraction A\: W, = AW,
W, =(1-X\W:
1

A4 =2

S, <

Thus

n
8
I
> =

lllustration Amdahl’s Law

W,

W,

Amdahl’s Law is bad news

All non-parallel parts of a program can cause problems

815

Gustafson’s Law

m Fix the time of execution

m Vary the problem size.

m Assumption: the sequential part stays constant, the parallel part
becomes larger

817

Gustafson’s Law
Work that can be executed by one processor in time T
Ws+W,=T
Work that can be executed by p processors in time T':
Ws+p-Wy=AX-T+p-(1—-XN)-T
Speedup:

PTTW, W, pr1=A)+

=p—Alp—1)

Amdahl vs. Gustafson

Amdabhl

p:

4

p:

Gustafson

4

27.5 Task- and Data-Parallelism

Parallel Programming Paradigms

m Jask Parallel: Programmer explicitly defines parallel tasks.

m Data Parallel: Operations applied simulatenously to an aggregate
of individual items.

Example Data Parallel (OMP)

double sum = 0, A[MAX];
#pragma omp parallel for reduction (+:ave)
for (int i = 0; i< MAX; ++i)
sum += A[i];
return sum;

Example Task Parallel (C++11 Threads/Futures)

double sum(Iterator from, Iterator to)
{
auto len = from — to;
if (len > threshold){
auto future = std::async(sum, from, from + len / 2);
return sumS(from + len / 2, to) + future.get();
}
else
return sumS(from, to);

Work Partitioning and Scheduling

m Partitioning of the work into parallel task (programmer or system)

m One task provides a unit of work
m Granularity?

m Scheduling (Runtime System)

m Assignment of tasks to processors
m Goal: full resource usage with little overhead

Example: Fibonacci P-Fib

if n <1 then
| return n

else
x < spawn P-Fib(n — 1)
y < spawn P-Fib(n — 2)
sync
.~ return z + y;

825

P-Fib Task Graph

£(4)

(2)| g—>9—ye7

P-Fib Task Graph

Question

m Each Node (task) takes 1 time unit.
m Arrows depict dependencies.

m Minimal execution time when number
of processors = 00?

critical path

Performance Model

B D Processors
m Dynamic scheduling
m 7,: Execution time on p processors

Performance Model

m 7,: Execution time on p processors

m 7: work: time for executing total work
on one processor

m 7 /T,: Speedup

Performance Model

m T.: span: critical path, execution time
on oo processors. Longest path from
root to sink.

m 71 /T.: Parallelism: wider is better
m Lower bounds:

T, >Ti/p Work law
T, > T, Spanlaw

Greedy Scheduler

Greedy scheduler: at each time it schedules as many as availbale
tasks.

Theorem

On an ideal parallel computer with p processors, a greedy scheduler
executes a multi-threaded computation with work T7 and span I, in
time

Tp S Tl/p"'Too

Assume p = 2.

833

Proof of the Theorem

Assume that all tasks provide the same amount of work.

m Complete step: p tasks are available.
m incomplete step: less than p steps available.

Assume that number of complete steps larger than |77 /p].
Executed work > P - (|T1/p| -p) =T — Ty mod p+p > T1.
Contradiction. Therefore maximally |7} /p| complete steps.

Each incomplete step executed at any time all available tasks ¢ with
deg™ (t) = 0 and decreases the length of the span. Otherwise the
chosen span would not have been maximal. Number of incomplete
steps thus maximally 77,..

Consequence

ifp < Ti/Tw,ie. Too < T1/p, then T, = T1/p.

Example Fibonacci

Ti(n)/Tx(n) = ©(¢"/n). For moderate sizes of n we can use a lot
of processors yielding linear speedup.

Granularity: how many tasks?

m #Tasks = #Cores?

m Example: 9 units of work. 3 core.

m Problem if a core cannot be fully used %

Scheduling of 3 sequential tasks.

Exclusive utilization:

P1 s
P2 s2
P3 s3

Execution Time: 3 Units

Foreign thread disturbing:

P1 s
P2 s2 s
P3 s3

Execution Time: 5 Units

Granularity: how many tasks?

m #Tasks = Maximum?

m Example: 9 units of work. 3 cores. e

Scheduling of 9 sequential tasks.

Exclusive utilization: Foreign thread disturbing:

P1 s1 s4 s7 P1 si

P2 s2 s5 s8 P2 s2 s4 s5 s8

P3 s3 s6 s9 P3 s3 s6 s7 s9
Execution Time: 3 4 ¢ Units Execution Time: 4 Units. Full uti-

lization.

837

Granularity: how many tasks?

m #Tasks = Maximum?

m Example: 10 tiny units of work.
P1
P2
P3

Execution time: dominiert vom Overhead.

Granularity: how many tasks?

Answer: as many tasks as possible with a sequential cutoff such that
the overhead can be neglected.

Example: Parallelism of Mergesort

m Work (sequential runtime) of
Mergesort T1(n) = O(nlogn).

m Span T (n) = O(n)

m Parallelism T31(n)/Tx(n) = ©(logn)
(Maximally achievable speedup with
p = 00 Processors)

merge

	Parallel Programming I
	Parallel Execution
	Hardware Architectures
	Multi-Threading, Parallelism and Concurrency
	Scalability: Amdahl and Gustafson
	Task- and Data-Parallelism

