26. Geometrische Algorithmen

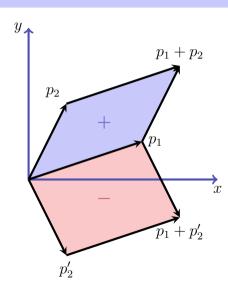
Lage von Strecken, Schnitt vieler Strecken, Konvexe Hülle, Dichtestes Punktepaar [Ottman/Widmayer, Kap. 8.2,8.3,8.8.2, Cormen et al, Kap. 33]

Eigenschaften von Strecken

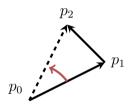
Kreuzprodukt zweier Vektoren $p_1=(x_1,y_1),\,p_2=(x_2,y_2)$ in der Ebene

$$p_1 \times p_2 = \det \begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix} = x_1 y_2 - x_2 y_1$$

Vorzeichenbehafteter Flächeninhalt des Parallelogramms

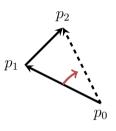


Abbiegerichtung



nach links:

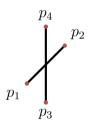
$$(p_1 - p_0) \times (p_2 - p_0) > 0$$

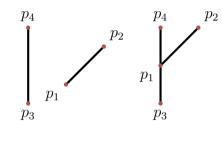


nach rechts:

$$(p_1 - p_0) \times (p_2 - p_0) < 0$$

Schnitt zweier Strecken



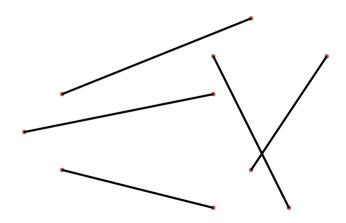




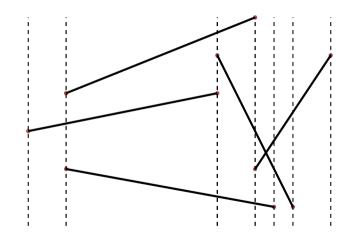
Kein Schnitt: p_1 und p_2 auf der gleichen Seite von $\overline{p_3p_4}$

Schnitt: p_1 auf $\overline{p_3p_4}$

Schnittpunkt vieler Strecken



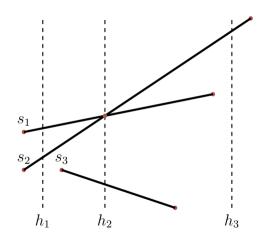
Sweepline Prinzip



Vereinfachende Annahmen

- Keine Strecke verläuft senkrecht
- Jeder Schnittpunkt wird von maximal zwei Strecken gebildet.

Anordnen von Strecken



Quasiordnung (Halbordnung ohne Antisymmetrie)

$$s_2 \preccurlyeq_{h_1} s_1$$

$$s_1 \preccurlyeq_{h_2} s_2$$

$$s_2 \preccurlyeq_{h_2} s_1$$

$$s_3 \preccurlyeq_{h_2} s_2$$

Bzgl. h_3 sind die Strecken unvergleichbar.

Sweep-Line bewegen

- Sweep-Line Status: Beziehung der durch Sweep-Line geschnittenen Objekte
- *Ereignisliste*: Folge von Ereignispunkten, nach *x*-Koordinate geordnet. Sweepline wandert von links nach rechts und hält an jedem Ereignispunkt.

Sweep-Line Status

Vorordnung T der geschnittenen Strecken Benötigte Operationen:

- Insert(T, s) Füge Strecke s in T ein
- Delete(T, s) Entferne s von T
- **Above**(T, s) Rückgabe Strecke unmittelbar oberhalb von s in T
- **Below**(T, s) Rückgabe Strecke unmittelbar unterhalb von s in T

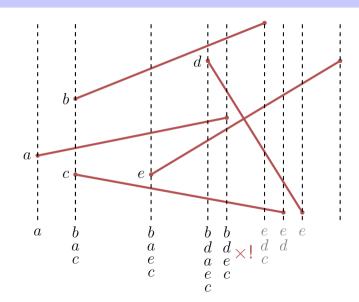
Mögliche Implementation: Balancierter Baum (AVL-Baum, Rot-Schwarz Baum etc.)

Algorithmus Any-Segments-Intersect(S)

```
Input: Liste von Strecken S
\mathbf{Output}: Rückgabe ob S schneidende Strecken enthält
T \leftarrow \emptyset
Sortiere Endpunkte der Strecken in S von links nach rechts (links vor rechts und
 unten vor oben)
for Sortierte Endpunkte p do
    if p linker Endpunkt einer Strecke s then
         Insert(T, s)
         if Above(T,s) \cap s \neq \emptyset \vee \mathsf{Below}(T,s) \cap s \neq \emptyset then return true
    if p rechter Endpunkt einer Strecke s then
         if \mathsf{Above}(T,s) \cap \mathsf{Below}(T,s) \neq \emptyset then return true
          Delete(T, s)
```

return false;

Illustration



757

Analyse

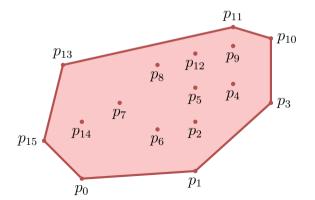
Laufzeit des Algorithmus Any-Segments-Intersect

- Sortieren $\mathcal{O}(n \log n)$
- n Iterationen der For-Schleife. Jede Operation auf dem balancierten Baum $\mathcal{O}(\log n)$

Insgesamt $\mathcal{O}(n \log n)$

Konvexe Hülle

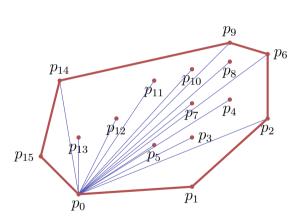
Konvexe Hülle CH(Q) einer Menge Q von Punkten: kleinstes konvexes Polygon P, so dass jeder Punkt entweder auf dem Rand oder im Inneren liegt.



Algorithmus Graham-Scan

```
Input: Menge von Punkten Q
Output: Stack S von Punkten der konvexen Hülle von Q
p_0: Punkt mit minimaler y- (gegebenenfalls zusätzlich minimaler x-) Koordinate
(p_1, \ldots, p_m) restlichen Punkte sortiert nach Polarwinkel gegen Uhrzeigersinn relativ
 zu p_0; Wenn Punkte mit gleichem Polarwinkel vorhanden, verwerfe alle ausser dem
 mit maximalen Abstand von p_0
S \leftarrow \emptyset
if m < 2 then return S
Push(S, p_0); Push(S, p_1); Push(S, p_2)
for i \leftarrow 3 to m do
    while Winkel (NextToTop(S), Top(S), p_i) nicht nach links gerichtet do
        \mathsf{Pop}(S);
    Push(S, p_i)
return S
```

Illustration Graham-Scan



Stack:

 p_{15} p_{14} p_{9} p_{6} p_{2} p_{1} p_{0}

Analyse

Laufzeit des Algorithmus Graham-Scan

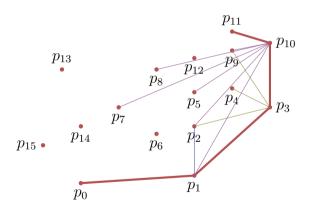
- Sortieren $\mathcal{O}(n \log n)$
- n Iterationen der For-Schleife
- Amortisierte Analyse des Multipop beim Stapel: amortisiert konstante Laufzeit des Multipop, ebenso hier: amortisiert konstante Laufzeit der While-Schleife.

Insgesamt $\mathcal{O}(n \log n)$

Jarvis Marsch / Gift Wrapping Algorithmus

- Starte mit Extrempunkt (z.B. unterster Punkt) $p=p_0$
- Suche Punkt q, so dass \overline{pq} am weitesten rechts liegende Gerade, d.h. jeder andere Punkt liegt links von der Geraden \overline{pq} (oder auf der Geraden näher bei p).
- **3** Fahre mit $p \leftarrow q$ bei (2) weiter, bis $p = p_0$.

Illustration Jarvis



Analyse Gift-Wrapping

- Sei *h* die Anzahl Eckpunkte der konvexen Hülle.
- Laufzeit des Algorithmus $\mathcal{O}(h \cdot n)$.

Dichtestes Punktepaar

Euklidischer Abstand d(s,t) zweier Punkte s und t:

$$d(s,t) = ||s - t||_{2}$$

$$= \sqrt{(s_{x} - t_{x})^{2} + (s_{y} - t_{y})^{2}}$$

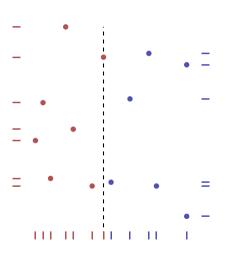
Problem: Suche Punkte p und q aus Q, für welche gilt

$$d(p,q) \le d(s,t) \ \forall \ s,t \in Q, s \ne t.$$

Naiv: alle $\binom{n}{2} = \Theta(n^2)$ Punktepaare.

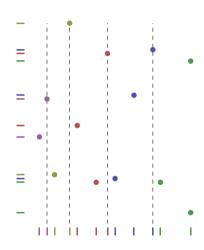
Divide And Conquer

- Punktmenge P, zu Beginn $P \leftarrow Q$
- Arrays X und Y, welche die Punkte aus P enthalten, sortiert nach x- bzw. nach y-Koordinate.
- Teile Punktmenge ein in zwei (annähernd) gleich grosse Mengen P_L und P_R , getrennt durch vertikale Gerade durch einen Punkt von P.
- Teile Arrays X und Y entsprechend in X_L , X_R . Y_L und Y_R .



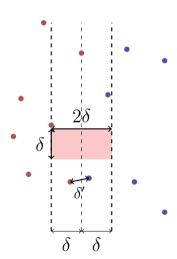
Divide And Conquer

- Rekursiver Aufruf jeweils mit P_L, X_L, Y_L und P_R, X_R, Y_R . Erhalte minimale Abstände δ_L, δ_R .
- (Wenn nur noch $k \le 3$ Punkte: berechne direkt minimalen Abstand)
- Nach reukrsivem Aufruf $\delta = \min(\delta_L, \delta_R)$. Kombiniere (nächste Folie) und gib bestes Resultat zurück.



Kombinieren

- Erzeuge Array Y' mit y-sortierten Punkten aus Y, die innerhalb des 2δ Streifens um die Trennlinie befinden
- Betrachte für jeden Punkt $p \in Y'$ die sieben* (!) auf p folgenden Punkte. Berechne minimale Distanz δ' .
- Wenn $\delta' < \delta$, dann noch dichteres Paar in P als in P_L und P_R gefunden. Rückgabe der minimalen Distanz.



 $^{^*}$ Man kann zeigen, dass maximal acht Punkte aus P im gezeigten Rechteck liegen können. Hier ohne Beweis.

Implementation

- Ziel: Rekursionsgleichung (Laufzeit) $T(n) = 2 \cdot T(\frac{n}{2}) + \mathcal{O}(n)$.
- Konsequenz: in den Schritten ist das Sortieren verboten!
- Nichttrivial: nur Arrays Y und Y'
- Idee: Merge umgekehrt: durchlaufe (nach y-Koordinate vorsortiertes) Y und hänge dem Auswahlkriterium der x-Koordinate folgend an Y_L und Y_R an. Genauso für Y'. Laufzeit $\mathcal{O}(|Y|)$.

Gesamtlaufzeit: $\mathcal{O}(n \log n)$.