2. Efficiency of algorithms

Efficiency of Algorithms, Random Access Machine Model, Function
Growth, Asymptotics [Cormen et al, Kap. 2.2,3,4.2-4.4 |
Ottman/Widmayer, Kap. 1.1]

70

Efficiency of Algorithms

Goals

m Quantify the runtime behavior of an algorithm independent of the
machine.

m Compare efficiency of algorithms.
m Understand dependece on the input size.

Technology Model

Random Access Machine (RAM)

Execution model: instructions are executed one after the other (on
one processor core).

Memory model: constant access time.

Fundamental operations: computations (+,—,-,...) comparisons,
assignment / copy, flow control (jumps)

Unit cost model: fundamental operations provide a cost of 1.

Data types: fundamental types like size-limited integer or floating
point number.

72

Size of the Input Data

Typical: number of input objects (of fundamental type).

Sometimes: number bits for a reasonable / cost-effective
representation of the data.

Asymptotic behavior

An exact running time can normally not be predicted even for small
input data.

m We consider the asymptotic behavior of the algorithm.
m And ignore all constant factors.

An operation with cost 20 is no worse than one with cost 1
Linear growth with gradient 5 is as good as linear growth with
gradient 1.

74

2.1 Function growth

O, 0, Q [Cormen et al, Kap. 3; Ottman/Widmayer, Kap. 1.1]

75

Superficially

Use the asymptotic notation to specify the execution time of
algorithms.

We write ©(n?) and mean that the algorithm behaves for large n like
n?: when the problem size is doubled, the execution time multiplies
by four.

More precise: asymptotic upper bound

provided: a function f : N — R.
Definition:

O(g) ={f ' N—=R|
de>0,npeN:0< f(n) <c-g(n)V¥n>ng}

Notation:

78

Examples

O(g)={f N—=R| Jc¢>0,neN:0< f(n) <c-g(n)V¥n>ng}

f(n) f e O(?) Example

3n + 4 O(n) c=4,ny=4
2n O(n) c=2,n9=0
n? 4+ 100n O(n?) c=2,n9=100
n++n O(n) c=2ny=1

f1€0(g9), € 0(g) = [+ fo € Oyg)

80

Converse: asymptotic lower bound

Given: a function f : N — R.
Definition:

Qg) ={f: N = R|
de>0,ng e N:0<c-g(n) < f(n)Vn >ny}

81

ng

82

Asymptotic tight bound

Given: function f : N — R.
Definition:

Simple, closed form: exercise.

83

Example

Notions of Growth

SCCCCACCTa

bounded

double logarithmic
logarithmic

like the square root
linear

superlinear / loglinear
quadratic

polynomial
exponential

factorial

array access
interpolated binary sorted sort

binary sorted search

naive prime number test

unsorted naive search

good sorting algorithms

simple sort algorithms

matrix multiply

Travelling Salesman Dynamic Programming
Travelling Salesman naively

86

0.8 |

0.6 |
0.4

0.2

0.6 |

0.4

0.2
: : ‘ : n4n2

n
20 40 60 80 100ogn

88

Logarithms

1,000 «
800 |
600 |
400 |

200 |

nlogn

logn
50

89

Time Consumption

Assumption 1 Operation = 1us.

problem size 1 100 10000 108 10°

log, n lus Tus 13us 20us 30us

n 1us 100us 1/100s 1s 17 minutes
nlog, n Lus 7004s 13/100us 20s 8.5 hours
n? lus 1/100s 1.7 minutes 11.5 days 317 centuries
2n lus 10 centuries A 00 A 00 A 00

90

A good strategy?

... Then | simply buy a new machine If today | can solve a problem of
size n, then with a 10 or 100 times faster machine | can solve ...

Komplexitat

(speed x10)

(speed x100)

log, n

n

TL2

271

n — nto
n—10-n
n—316-n

n—n-+ 3.32

n — nt%
n — 100 -n
n—10-n

n— n -+ 6.64

91

Examples

m n € O(n?) correct, but too imprecise:
n € O(n) and even n € O(n).
m 3n? € O(2n?) correct but uncommon:

Omit constants: 3n* € O(n?).

2 :)
m 2n° € O(n) iswrong: - =2n — oo !

m O(n) C O(n?) is correct
m O(n) C O(n?) iswrong n ¢ Q(n?) D O(n?)

92

Useful Tool

Let f,g: N — R™ be two functions, then it holds that
B lim, o 28 = 0= f € O(g), O(f) € O(g).
lim,, o0 %) C > 0 (C constant) = f € O(g).
Y - o0=ge0(f), 0lg) ¢ O).

93

About the Notation

Common notation

f=0(g)
should be read as f € O(yg).
Clearly it holds that

fi=0(g), fo = 0(9)% fL = fo!

Beispiel

n = O(n?),n? = O(n?) but naturally n # n?.

94

Algorithms, Programs and Execution Time

Program: concrete implementation of an algorithm.

Execution time of the program: measurable value on a concrete
machine. Can be bounded from above and below.

Beispiel
3GHz computer. Maximal number of operations per cycle (e.g. 8). = lower bound.
A single operations does never take longer than a day =- upper bound.

From an asymptotic point of view the bounds coincide.

95

Complexity

Complexity of a problem P: minimal (asymptotic) costs over all
algorithms A that solve P.

Complexity of the single-digit multiplication of two numbers with n
digits is Q2(n) and O(n'°#:2) (Karatsuba Ofman).

Example:

Problem
Algorithm

Program

Complexity O(n) O(n) O(n?
T T T

Costs? 3n—4 O(n) O(n?
) 7 7

Execution O(n) O(n) O(n?

time

96

3. Design of Algorithms

Maximum Subarray Problem [Ottman/Widmayer, Kap. 1.3]
Divide and Conquer [Ottman/Widmayer, Kap. 1.2.2. S.9; Cormen et
al, Kap. 4-4.1]

97

Algorithm Design

Inductive development of an algorithm: partition into subproblems,
use solutions for the subproblems to find the overal solution.

Goal: development of the asymptotically most efficient (correct)
algorithm.

Efficiency towards run time costs (# fundamental operations) or /and
memory consumption.

98

Maximum Subarray Problem

Given: an array of n rational numbers (ay, ..., a,).
Wanted: interval i, 7], 1 < i < j < n with maximal positive sum

i V-
Example: a = (7, —11, 15, 110, —23, —3, 127, —12, 1)

100 [~

50 [~

e
- gk

®

©

Zk aj, = max

99

Naive Maximum Subarray Algorithm

Input : A sequence of n numbers (ay, as, ..., a,)
Output : I, J such that 3>7_, a; maximal.

M+—0;,I1+1;,J+0
foric{1,...,n} do
for j € {i,...,n} do
me= 3
if m > M then
M my [0 J g

return [, J

Analysis

The naive algorithm for the Maximum Subarray problem executes
O(n?®) additions.

Beweis:
ZZ(]—@):Z jzzzjzzz(n—i)(g—i+l)
=1 j=i i=1 j=0 i=1 j=1 i1
n—1 n—1 n—1
:ZZ (Z;Ll)—%(Ziz%-Zz)
1=0 i=0

102

<)
T
NG
A A
~—
<
_ S
2 = L:n
S =~
. — P [
~ Il .
k teS
(\ S
I
=
3

Observation
Prefix sums

Maximum Subarray Algorithm with Prefix Sums

Input : A sequence of n numbers (ay,as, ..., a,)
Output : I, J such that 377 a;, maximal.
SO 0
forie {1,...,n} do // prefix sum
L Sl < 81;1 + a;

M<+—0;1+1;,J+0
forie {1,...,n} do
for j € {i,...,n} do
m:Sj—SZ-_l
if m > M then
M my [0 g

Analysis

The prefix sum algorithm for the Maximum Subarray problem
conducts ©(n?) additions and subtractions.

Beweis:

Zl+221_n+z n—i+1 :n—l—i:z’:@nz
=1

=1 j=t

divide et impera

Divide and Conquer

Divide the problem into subproblems that contribute to the simplified
computation of the overal problem.

Pyy —— Sy

Problem P Solution

\ /P12—>512 /

Maximum Subarray - Divide

m Divide: Divide the problem into two (roughly) equally sized halves:
(ar,...,an) = (G1,..., G2, Anj2)41s---501)
m Simplifying assumption: n = 2% for some k € N.

Maximum Subarray — Conquer

If 2 and j are indices of a solution = case by case analysis:

Solution in left half 1 < i < j < n/2 = Recursion (left half)
Solution in right half n/2 < ¢ < j < n = Recursion (right half)

Solution in the middle 1 < i < n/2 < j < n = Subsequent observation

(1) (3) (2)
1 n/2ln/2 +1 n

Maximum Subarray — Observation

Assumption: solution inthe middle 1 <i <n/2 < j<n

J n/2
Shax = mnax = max g ay + g ag
1<i<n/2 1<i<n/2
n/2<j<n k=i n/2<j<n k=n/2+1
n/2 j
= max ar + max E ag
1<i<n /2 n/2<j<n
sisn/2 [2<isn, n/2+1

= max S, — S 1+ max S;— 9,
1<i<n /2 o —— n/2<]<nA/_/
suffix sum prefix sum

Maximum Subarray Divide and Conquer Algorithm

Input : A sequence of n numbers (ay,as, ..., a,)
Output : Maximal Z{;:l, a.
if n =1 then
. return max{a;,0}
else
Divide a = (a1,...,a,) in Ay = (a1,...,an/2) und Ay = (anja41,- .-, an)

Recursively compute best solution W7 in A
Recursively compute best solution W5 in A,
Compute greatest suffix sum S in A
Compute greatest prefix sum P in A,

Let W3« S+ P

return max{Wy, Wy, W3}

Analysis

The divide and conquer algorithm for the maximum subarray sum
problem conducts a number of ©(n log n) additions and
comparisons.

Analysis

Input : A sequence of n numbers (aq,as, ..., a,)
Output : Maximal Zf;zz, ay.
if n =1 then
O(l1) return max{a,,0}
else

)

T(n/2)
T'(n/2) Recursively compute best solution W5 in Ay

)

)

)

o
C)
©

(
(
o(

ol
1

Recursively compute best solution W in A

n) Compute greatest suffix sum S in A;
Compute greatest prefix sum P in A,
1) Let W3+ S+ P

1) return max{Wy, Wy, W5}

Divide a = (a1,...,a,) in Ay = (a1,...,an/2) und Ay = (an/o41, - -

Analysis

Recursion equation

T(n)= {

c ifn=1
2T(5) +a-n ifn>1

112

Analysis

Mit n, = 2°:
— if b =
T(k) = o o
2Tk —1)4+a-2% ifk>0
Solution:
k—1
T(k)y=2"-c+> 2-a-2""=c-2"+a- k-2 =0(k- 2"
=0
also

T(n) =©(nlogn)

Maximum Subarray Sum Problem - Inductively

Assumption: maximal value M;_; of the subarray sum is known for
(CL17 . ,ai_l) (1 <1< n)

scan

a;. generates at most a better interval at the right bound (prefix sum).
R,_1=R;, = max{Ri_l + a;, 0}

Inductive Maximum Subarray Algorithm

Input : A sequence of n numbers (ay,as, ..., a,).
Output : max{0, max; ; > 1, Q.
M+ 0
R0
fori=1...ndo

R+ R+ a;

if R <0 then

_ R+ 0

if R > M then
| M+ R

return M

Analysis

The inductive algorithm for the Maximum Subarray problem
conducts a number of ©(n) additions and comparisons.

Complexity of the problem?

Can we improve over O(n)?

Every correct algorithm for the Maximum Subarray Sum problem
must consider each element in the algorithm.

Assumption: the algorithm does not consider a;.

The algorithm provides a solution including a;. Repeat the
algorithm with a; so small that the solution must not have
contained the point in the first place.

The algorithm provides a solution not including a;. Repeat the

algorithm with a; so large that the solution must have contained
the point in the first place.

Complexity of the maximum Subarray Sum Problem

The Maximum Subarray Sum Problem has Complexity ©(n).

Beweis: Inductive algorithm with asymptotic execution time O(n).

Every algorithm has execution time Q2(n).
Thus the complexity of the problem is 2(n) N O(n) = O(n).

	Efficiency of algorithms
	Function growth

	Design of Algorithms

