25. Flüsse in Netzen

Flussnetzwerk, Maximaler Fluss, Schnitt, Restnetzwerk, Max-flow Min-cut Theorem, Ford-Fulkerson Methode, Edmonds-Karp Algorithmus, Maximales Bipartites Matching [Ottman/Widmayer, Kap. 9.7, 9.8.1], [Cormen et al, Kap. 26.1-26.3]

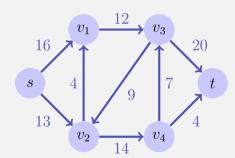
Motivation

Modelliere Fluss von Flüssigkeiten, Bauteile auf Fliessbändern, Strom in elektrischen Netwerken oder Information in Kommunikationsnetzwerken.

Flussnetzwerk

- Flussnetzwerk G = (V, E, c): gerichteter Graph mit Kapazitäten
- Antiparallele Kanten verboten: $(u, v) \in E \implies (v, u) \notin E$.
- Fehlen einer Kante (u, v) auch modelliert durch c(u, v) = 0.
- Quelle s und Senke t: spezielle Knoten. Jeder Knoten v liegt auf einem Pfad zwischen s und t:

$$s \leadsto v \leadsto t$$

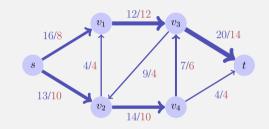


Fluss

Ein *Fluss* $f: V \times V \to \mathbb{R}$ erfüllt folgende Bedingungen:

- **Kapazitätsbeschränkung**: Für alle $u, v \in V$: $0 \le f(u, v) \le c(u, v)$.
- Flusserhaltung: Für alle $u \in V \setminus \{s, t\}$:

$$\sum_{v \in V} f(v, u) - \sum_{v \in V} f(u, v) = 0.$$



Wert w des Flusses: $w(f) = \sum_{v \in V} f(s,v) - \sum_{v \in V} f(v,s).$ Hier w(f) = 18.

Wie gross kann ein Fluss sein?

Begrenzende Faktoren: Schnitte

- s von t trennender Schnitt: Partitionierung von V in S und T mit $s \in S$, $t \in T$.
- **Kapazität** eines Schnittes: $c(S,T) = \sum_{v \in S, v' \in T} c(v,v')$
- Minimaler Schnitt: Schnitt mit minimaler Kapazität.
- Fluss über Schnitt:

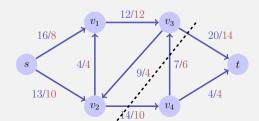
$$f(S,T) = \sum_{v \in S, v' \in T} f(v,v') - \sum_{v \in S, v' \in T} f(v',v)$$

Wie gross kann ein Fluss sein?

Es gilt für jeden Fluss und jeden Schnitt, dass f(S,T) = w(f):

$$\begin{split} f(S,T) &= \sum_{v \in S, v' \in T} f(v,v') - \sum_{v \in S, v' \in T} f(v',v) \\ &= \sum_{v \in S, v' \in V} f(v,v') - \sum_{v \in S, v' \in S} f(v,v') - \sum_{v \in S, v' \in V} f(v',v) + \sum_{v \in S, v' \in S} f(v',v) \\ &= \sum_{v' \in V} f(s,v') - \sum_{v' \in V} f(v',s) \end{split}$$

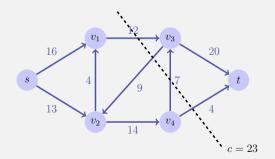
Zweite Gleichheit: Ergänzung, letzte Gleichheit: Flusserhaltung.

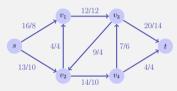


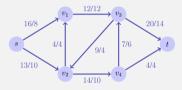
Es gilt insbesondere für alle Schnitte (S,T) von V.

$$f(S,T) \le \sum_{v \in S, v' \in T} c(v,v') = c(S,T)$$

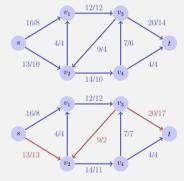
Werden sehen, dass Gleicheit gilt für $\min_{S,T} c(S,T)$.

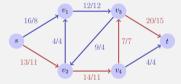


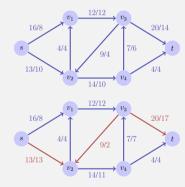


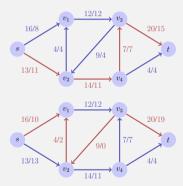


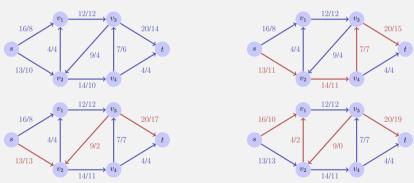












Folgerung: Greedy Flusserhöhung löst das Problem nicht.

Die Ford-Fulkerson Methode

- Starte mit f(u,v)=0 für alle $u,v\in V$
- lacktriangle Bestimme Restnetzwerk* G_f und Erweiterungspfad in G_f
- Erhöhe Fluss über den Erweiterungspfad*
- Wiederholung bis kein Erweiterungspfad mehr vorhanden.

*Wird nun erklärt

Flusserhöhung, negativ

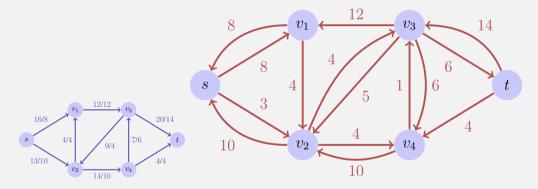
Sei ein Fluss f im Netzwerk gegeben.

Erkenntnis:

- Flusserhöhung in Richtung einer Kante möglich, wenn Fluss entlang der Kante erhöht werden kann, also wenn f(u,v) < c(u,v). Restkapazität $c_f(u,v) = c(u,v) f(u,v)$.
- Flusserhöhung *entgegen* der Kantenrichtung möglich, wenn Fluss entlang der Kante verringert werden kann, also wenn f(u,v) > 0. Restkapazität $c_f(v,u) = f(u,v)$.

Restnetzwerk

Restnetzwerk G_f gegeben durch alle Kanten mit Restkapazität:



Restnetzwerke haben dieselben Eigenschaften wie Flussnetzwerke, ausser dass antiparallele Kanten zugelassen sind.

Beobachtung

Theorem

Sei G = (V, E, c) ein Flussnetzwerk mit Quelle s und Senke t und f ein Fluss in G. Sei G_f das dazugehörige Restnetzwerk und sei f' ein Fluss in G_f . Dann definiert $f \oplus f'$ einen Fluss in G mit Wert w(f) + w(f').

$$(f \oplus f')(u,v) = \begin{cases} f(u,v) + f'(u,v) - f'(v,u) & (u,v) \in E \\ 0 & (u,v) \notin E. \end{cases}$$

Kapazitätsbeschränkung:

$$(f \oplus f')(u, v) = f(u, v) + f'(u, v) - f'(v, u) \ge f(u, v) + f'(u, v) - f(u, v) = f'(u, v) \ge 0$$

$$(f \oplus f')(u, v) = f(u, v) + f'(u, v) - f'(v, u)$$

$$\leq f(u, v) + f'(u, v)$$

$$\leq f(u, v) + c_f(u, v)$$

$$= f(u, v) + c(u, v) - f(u, v) = c(u, v).$$

Flusserhaltung

$$\sum_{u \in V} (f \oplus f')(u,v) = \sum_{u \in V} f(u,v) + \sum_{u \in V} f'(u,v) - \sum_{u \in V} f'(v,u)$$
 (Flusserhaltung von f und f')
$$= \sum_{u \in V} f(v,u) + \sum_{u \in V} f'(v,u) - \sum_{u \in V} f'(u,v)$$

$$= \sum_{u \in V} (f \oplus f')(v,u)$$

Wert von $f \oplus f'$ (im Folgenden $N^+ := N^+(s)$, $N^- := N^-(s)$):

$$\begin{split} w(f \oplus f') &= \sum_{v \in N^+} (f \oplus f')(s, v) - \sum_{v \in N^-} (f \oplus f')(v, s) \\ &= \sum_{v \in N^+} f(s, v) + f'(s, v) - f'(v, s) - \sum_{v \in N^-} f(v, s) + f'(v, s) - f'(s, v) \\ &= \sum_{v \in N^+} f(s, v) - \sum_{v \in N^-} f(v, s) + \sum_{v \in N^+ \cup N^-} f'(s, v) + \sum_{v \in N^+ \cup N^-} f'(v, s) \\ &= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{v \in V} f'(s, v) + \sum_{v \in V} f'(v, s) \\ &= w(f) + w(f'). \end{split}$$

Fluss in G_f

Erweiterungspfad p: Pfad von s nach t im Restnetzwerk G_f .

Restkapazität $c_f(p) = \min\{c_f(u, v) : (u, v) \text{ Kante in } p\}$

Theorem

Die Funktion $f_p: V \times V \to \mathbb{R}$,

$$f_p(u,v) = egin{cases} c_f(p) & \textit{wenn}\ (u,v) \ \textit{Kante in}\ p \ 0 & \textit{sonst} \end{cases}$$

ist ein Fluss in G_f mit dem Wert $w(f_p) = c_f(p) > 0$.

[Beweis: Übung]

Folgerung

Strategie für den Algorithmus:

Mit einem Erweiterungspfad p in G_f definiert $f\oplus f_p$ einen neuen Fluss mit Wert $w(f\oplus f_p)=w(f)+w(f_p)>w(f)$

Max-Flow Min-Cut Theorem

Theorem

Wenn f ein Fluss in einem Flussnetzwerk G=(V,E,c) mit Quelle s und Senke t is, dann sind folgende Aussagen äquivalent:

- $\mathbf{1}$ f ist ein maximaler Fluss in G
- $oldsymbol{2}$ Das Restnetzwerk G_f enthält keine Erweiterungspfade
- **Solution Es gilt** w(f) = c(S,T) für einen **Schnitt** (S,T) **von** G.

- $(3) \Rightarrow (1)$: Es gilt $w(f) \leq c(S,T)$ für alle Schnitte S,T. Aus w(f) = c(S,T) folgt also w(f) maximal.
- $(1) \Rightarrow (2)$: f maximaler Fluss in G. Annahme: G_f habe einen Erweiterungsfad. Dann gilt $w(f \oplus f_p) = w(f) + w(f_p) > w(f)$. Widerspruch.

Beweis $(2) \Rightarrow (3)$

Annahme: G_f habe keinen Erweiterungsfad. Definiere

 $S=\{v\in V: \text{ es existiert Pfad } s\leadsto v \text{ in } G_f\}. \ (S,T):=(S,V\setminus S) \text{ ist ein Schnitt: } s\in S,t\not\in S.$ Sei $u\in S$ und $v\in T.$

- Wenn $(u, v) \in E$, dann f(u, v) = c(u, v), sonst wäre $(u, v) \in E_f$.
- Wenn $(v, u) \in E$, dann f(v, u) = 0, sonst wäre $c_f(u, v) = f(v, u) > 0$ und $(u, v) \in E_f$
- Wenn $(u, v) \notin E$ und $(v, u) \notin E$, dann f(u, v) = f(v, u) = 0.

Also

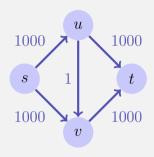
$$w(f) = f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{v \in T} \sum_{u \in s} f(v,u)$$
$$= \sum_{u \in S} \sum_{v \in T} c(u,v) - \sum_{v \in T} \sum_{u \in s} 0 = \sum_{u \in S} \sum_{v \in T} c(u,v) = c(S,T).$$

Algorithmus Ford-Fulkerson(G, s, t)

```
Input : Flussnetzwerk G = (V, E, c)
Output: Maximaler Fluss f.
for (u,v) \in E do
    f(u,v) \leftarrow 0
while Existiert Pfad p: s \leadsto t im Restnetzwerk G_f do
    c_f(p) \leftarrow \min\{c_f(u,v) : (u,v) \in p\}
    foreach (u,v) \in p do
         if (u,v) \in E then
             f(u,v) \leftarrow f(u,v) + c_f(p)
         else
      f(v,u) \leftarrow f(u,v) - c_f(p)
```

Analyse

- Der Ford-Fulkerson Algorithmus muss für irrationale Kapazitäten nicht einmal terminieren! Für ganze oder rationale Zahlen terminiert der Algorithmus.
- Für ganzzahligen Fluss benötigt der Algorithmus maximal $w(f_{\max})$ Durchläufe der While-Schleife. Suche einzelner zunehmender Weg (z.B. mit Tiefensuche oder Breitensuche $\mathcal{O}(|E|)$). Also $\mathcal{O}(f_{\max}|E|)$.



Bei schlecht gewählter Strategie benötigt der Algorithmus hier bis zu 2000 Iterationen.

Edmonds-Karp Algorithmus

Wähle in der Ford-Fulkerson-Methode zum Finden eines Pfades in G_f jeweils einen Erweiterungspfad kürzester Länge (z.B. durch Breitensuche).

Edmonds-Karp Algorithmus

Theorem

Wenn der Edmonds-Karp Algorithmus auf ein ganzzahliges Flussnetzwerk G=(V,E) mit Quelle s und Senke t angewendet wird, dann ist die Gesamtanzahl der durch den Algorithmus angewendete Flusserhöhungen in $\mathcal{O}(|V|\cdot|E|)$

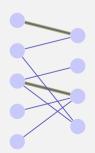
[Ohne Beweis]

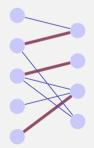
Anwendung: Maximales bipartites Matching

Gegeben: bipartiter ungerichteter Graph G = (V, E).

Matching M: $M \subseteq E$ so dass $|\{m \in M : v \in m\}| \le 1$ für alle $v \in V$.

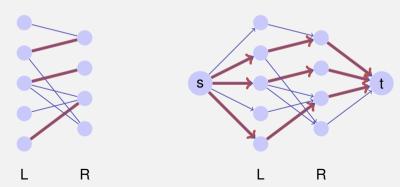
Maximales Matching M: Matching M, so dass $|M| \ge |M'|$ für jedes Matching M'.





Korrespondierendes Flussnetzwerk

Konstruiere zur einer Partition L,R eines bipartiten Graphen ein korrespondierendes Flussnetzwerk mit Quelle s und Senke t, mit gerichteten Kanten von s nach L, von L nach R und von R nach t. Jede Kante bekommt Kapazität 1.



Ganzzahligkeitstheorem

Theorem

Wenn die Kapazitäten eines Flussnetzwerks nur ganzzahlige Werte anehmen, dann hat der durch Ford-Fulkerson erzeugte maximale Fluss die Eigenschaft, dass der Wert von f(u,v) für alle $u,v\in V$ eine ganze Zahl ist.

[ohne Beweis]

Folgerung: Ford Fulkerson erzeugt beim zum bipartiten Graph gehörenden Flussnetzwerk ein maximales Matching $M = \{(u, v) : f(u, v) = 1\}.$