25. Flow in Networks

Flow Network, Maximal Flow, Cut, Rest Network, Max-flow Min-cut
Theorem, Ford-Fulkerson Method, Edmonds-Karp Algorithm,
Maximal Bipartite Matching [Ottman/Widmayer, Kap. 9.7, 9.8.1],
[Cormen et al, Kap. 26.1-26.3]
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Motivation

Modelling flow of fluents, components on conveyors, current in
electrical networks or information flow in communication networks.
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Flow Network

m Flow network G = (V, E, ¢): directed
graph with capacities

m Antiparallel edges forbidden:
(u,v) € B = (v,u) ¢ E.

m Model a missing edge (u, v) by
c(u,v) = 0.

m Source s and sink t: special nodes.
Every node v is on a path between s
andt:s~ vt
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Flow

A Flow f : V x V — R fulfills the

following conditions:

m Bounded Capacity:.
Forall u,v € V:
0 < f(u,v) < c(u,v).
m Conservation of flow:
Forallu e V'\ {s,t}:

s 4/4 716 t
9/4
13/10 4/4

Value of the flow:

w(f) = ZUEV f(S, U) _ZUEV f(v? 5)'

Here w(f) = 18.



How large can a flow possibly be?

Limiting factors: cuts

m cut separating s from t: Partition of V into S and T with s € S,
tefT.

m Capacity of acut: ¢(S,T) = > g er (v, ')
m Minimal cut. cut with minimal capacity.
m Flow overthe cut: f(S,T) =} ,cower f(0,0) =3 cswer f(V,0)



How large can a flow possibly be?
For each flow and each cut it holds that f(S,7") = w(f):

f(SvT) = Z f(v’v/)f Z f(vl,’u)

veSW ET veSwW ET

= Z f(vzvl) - Z f(’U, ’U/) - Z f(vl’ ’U) + Z f(vlz U)
veSw' ev veSw'es veSW' eV veES,WES

= Z f(svv/)f Z f(vlas)
v eV v eV

Second equality: amendment, last equality: conservation of flow.
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Maximal Flow ?

In particular, for each cut (S, 7)) of V.

c(S,T)



Maximal Flow ?

Naive Procedure
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Conclusion: greedy increase of flow does not solve the problem.



The Method of Ford-Fulkerson

m Start with f(u,v) =0forall u,v € V

m Determine rest network™ Gy and expansion path in G
m Increase flow via expansion path*

m Repeat until no expansion path available.

*Will now be explained



Increase of flow, negative!

Let some flow f in the network be given.
Finding:

m Increase of the flow along some edge possible, when flow can be
increased along the edge,i.e. if f(u,v) < c(u,v).
Rest capacity ¢f(u,v) = c(u,v) — f(u,v).

m Increase of flow against the direction of the edge possible, if flow
can be reduced along the edge, i.e. if f(u,v) > 0.
Rest capacity c(v,u) = f(u,v).
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Rest Network

Rest network Gy provided by the edges with positive rest capacity:
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Rest networks provide the same kind of properties as flow networks with the exception of permitting antiparallel edges



Observation

Theorem

LetG = (V, E, c) be a flow network with source s and sinkt and f a
flow in G. Let G be the corresponding rest networks and let f' be a
flow in G;. Then f & f’ defines a flow in G with value w(f) + w(f’).

0 (u,0) ¢ E.

(f ® f)(u,v) = {f(%U) + f'(u,v) — f'(v,u) (u,v) €F




Proof

Limit of capacity:

(f D f/)(uvv) - f(uvv) + f/(u7v) - fl(v7u)
> Fluro) + fuv) — fluv) = Flu,v) > 0

(f D f/)<u7 U) = f(u,v) + f/(uvv) - f/(va u)
< fluv) + f'(u, v)
< f(u7 U) + Cf(“? U)
= f(u,v) + c(u,v) — f(u,v) = c(u,v).



Proof

Conservation of flow

Y (fe uwo)=> fluv)+> fwv) =Y f(vu)

ucV ucV ucV ueV
—E:ffuu—i-EfUu Ef/(uﬂf)
FI tion of f and
(Flow conservation of f and f’) eV uev ucV

—ZfGBf v, u)

ueV



Beweis

Value of f @ f' (in the sequel N* := N*(s), N~ := N~ (s)):

wife )= (f&f)(sv) -

S (fo f)w,

veENT vEN—

= fls0)+ fi(s,v)— f

veNt
=2 s = I
veNt vEN—

veV veV

= w(f) +u(f)

)
= Y fv,s)+ f(v,5) = f(s,0)

vEN—

v, S) Z f(s,0) + Z f'(v,s)

veEN+TUN— veNtTUN—

_Zfsv vas+2fsv+2fvs
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Flow in G'¢

expansion path p: path from s to ¢ in the rest network G/;.
Rest capacity c¢;(p) = min{cy(u,v) : (u,v) edge in p}
Theorem

The mapping f, : V xV = R,

c if (u,v) edge in
fp(u,v): f(p) ( ) g p
0 otherwise

provides a flow in Gy with value w(f,) = c;(p) > 0.

[Proof: exercise]



Consequence

Strategy for an algorithm:

With an expansion path p in G the flow f @ f, defines a new flow
with value w(f @ f,) = w(f) +w(f,) > w(f)



Max-Flow Min-Cut Theorem

Theorem
Let f be a flow in a flow network G = (V, E, ¢) with source s and
sink t. The following statementsa are equivalent:

f is a maximal flow in G
The rest network Gy does not provide any expansion paths
It holds that w(f) = ¢(S,T) fora cut (S,T) of G.




Proof

m (3)= (1):
It holds that w(f) < ¢(S,T) for all cuts S, T. From w(f) = ¢(S,T)
it follows that w( f) is maximal.

m (1) = (2):
f maximal Flow in G. Assumption: Gy has some expansion path
w(f @ f,) =w(f)+ w(f,) > w(f). Contradiction.



Proof (2) = (3)

Assumption: Gy has no expansion path. Define
S={veV: thereisapath s~ vinG}. (S,T) = (S,V\ 9)is a cut:
seS,tgS. Letue Sandv € T.

m If (u,v) € E, then f(u,v) = c(u, v), otherwise it would hold that (u,v) € Ey.

m If (v,u) € E, then f(v,u) = 0, otherwise it would hold that
ce(u,v) = f(v,u) >0and (u,v) € Ey
)

m If (u,v) € Fand (v,u) € E, then f(u,v) = f(v,u) = 0.
Thus

w(f)=FS,T) =" flu,0) =Y Y fv,u)

ueS veT veT u€s

:ZZduﬂ)) —ZZOIZZC(U,U) :C(S,T).

ueS veT veET u€s ueS veT



Algorithm Ford-Fulkerson((, s, t)

Input : Flow network G = (V, E, ¢)
Output : Maximal flow f.

for (u,v) € E do
- flu,v) <0

while Exists path p : s ~» t in rest network Gy do
cs(p) < min{cs(u,v) : (u,v) € p}
foreach (u,v) € p do

if (u,v) € E then

- fluv) = f(u,v) + ¢4 (p)
else

- f(v,u) = f(u,v) —cs(p)
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Analysis

m The Ford-Fulkerson algorithm does not
necessarily have to converge for irrational
capacities. For integers or rational numbers it
terminates.

m For an integer flow, the algorithms requires

maximally w( fi.ax) iterations of the while loop.

Search a single increasing path (e.g. with
DFS or BFS O(|E|)) Therefore O( finax|E|).

1()()>\4 A)()()

(%

With an unlucky choice the al-
gorithm may require up to 2000
iterations here.
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Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in G+ the
expansion path of shortest possible length (e.g. with BFS)



Edmonds-Karp Algorithm

When the Edmonds-Karp algorithm is applied to some integer
valued flow network G = (V, E) with source s and sink t then the

number of flow increases applied by the algorithm is in O(|V| - | E|)

[Without proof]



Application: maximal bipartite matching

Given: bipartite undirected graph G = (V, E).
M: M C Esuchthat|{me M:vem}| <lforallvelV.
Maximal Matching M: Matching M, such that |M| > |M’| for each

matching M.
\ T
/ /



Corresponding flow network

Construct a flow network that corresponds to the partition L, R of a
bipartite graph with source s and sink ¢, with directed edges from s
to L, from L to R and from R to ¢t. Each edge has capacity 1.

_— >
s <>

/N



Integer number theorem

If the capacities of a flow network are integers, then the maximal
flow generated by the Ford-Fulkerson method provides integer
numbers for each f(u,v), u,v € V.

[without proof]

Consequence: Ford-Fulkerson generates for a flow network that
corresponds to a bipartite graph a maximal matching

M = {(u,v) : f(u,v) = 1}.
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