25. Flow in Networks

Flow Network, Maximal Flow, Cut, Rest Network, Max-flow Min-cut Theorem, Ford-Fulkerson Method, Edmonds-Karp Algorithm, Maximal Bipartite Matching [Ottman/Widmayer, Kap. 9.7, 9.8.1], [Cormen et al, Kap. 26.1-26.3]

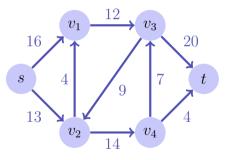
Motivation

Modelling flow of fluents, components on conveyors, current in electrical networks or information flow in communication networks.

Flow Network

Flow network G = (V, E, c): directed graph with *capacities*

- Antiparallel edges forbidden: $(u,v) \in E \Rightarrow (v,u) \notin E.$
- Model a missing edge (u, v) by c(u, v) = 0.
- Source s and sink t: special nodes. Every node v is on a path between s and t : s → v → t

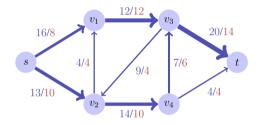


Flow

A *Flow* $f: V \times V \rightarrow \mathbb{R}$ fulfills the following conditions:

- Bounded Capacity: For all $u, v \in V$: $0 \le f(u, v) \le c(u, v)$.
 Conservation of flow:
 - For all $u \in V \setminus \{s, t\}$:

$$\sum_{v \in V} f(v, u) - \sum_{v \in V} f(u, v) = 0.$$



Value of the flow: $w(f) = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s).$ Here w(f) = 18.

How large can a flow possibly be?

Limiting factors: cuts

• cut separating s from t: Partition of V into S and T with $s \in S$, $t \in T$.

- Capacity of a cut: $c(S,T) = \sum_{v \in S, v' \in T} c(v,v')$
- Minimal cut: cut with minimal capacity.

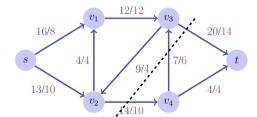
Flow over the cut: $f(S,T) = \sum_{v \in S, v' \in T} f(v,v') - \sum_{v \in S, v' \in T} f(v',v)$

How large can a flow possibly be?

For each flow and each cut it holds that f(S,T) = w(f):

$$\begin{split} f(S,T) &= \sum_{v \in S, v' \in T} f(v,v') - \sum_{v \in S, v' \in T} f(v',v) \\ &= \sum_{v \in S, v' \in V} f(v,v') - \sum_{v \in S, v' \in S} f(v,v') - \sum_{v \in S, v' \in V} f(v',v) + \sum_{v \in S, v' \in S} f(v',v) \\ &= \sum_{v' \in V} f(s,v') - \sum_{v' \in V} f(v',s) \end{split}$$

Second equality: amendment, last equality: conservation of flow.



Maximal Flow ?

In particular, for each cut (S,T) of V.

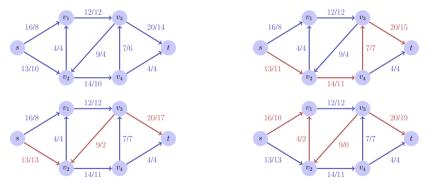
$$f(S,T) \le \sum_{v \in S, v' \in T} c(v,v') = c(S,T)$$

Will discover that equality holds for $\min_{S,T} c(S,T)$.



Maximal Flow ?

Naive Procedure



Conclusion: greedy increase of flow does not solve the problem.

The Method of Ford-Fulkerson

- Start with f(u, v) = 0 for all $u, v \in V$
- Determine rest network* G_f and expansion path in G_f
- Increase flow via expansion path*
- Repeat until no expansion path available.

*Will now be explained

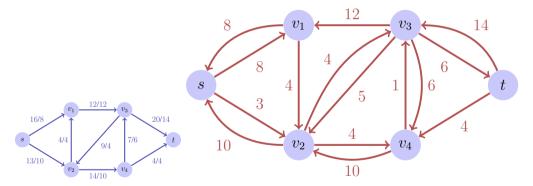
Let some flow f in the network be given.

Finding:

- Increase of the flow along some edge possible, when flow can be increased along the edge,i.e. if f(u, v) < c(u, v).
 Rest capacity c_f(u, v) = c(u, v) f(u, v).
- Increase of flow *against the direction* of the edge possible, if flow can be reduced along the edge, i.e. if f(u, v) > 0. Rest capacity c_f(v, u) = f(u, v).

Rest Network

Rest network G_f provided by the edges with positive rest capacity:



Rest networks provide the same kind of properties as flow networks with the exception of permitting antiparallel edges

Theorem

Let G = (V, E, c) be a flow network with source s and sink t and f a flow in G. Let G_f be the corresponding rest networks and let f' be a flow in G_f . Then $f \oplus f'$ defines a flow in G with value w(f) + w(f').

$$(f \oplus f')(u, v) = \begin{cases} f(u, v) + f'(u, v) - f'(v, u) & (u, v) \in E \\ 0 & (u, v) \notin E. \end{cases}$$

Proof

Limit of capacity:

$$(f \oplus f')(u, v) = f(u, v) + f'(u, v) - f'(v, u)$$

 $\geq f(u, v) + f'(u, v) - f(u, v) = f'(u, v) \geq 0$

$$(f \oplus f')(u, v) = f(u, v) + f'(u, v) - f'(v, u) \leq f(u, v) + f'(u, v) \leq f(u, v) + c_f(u, v) = f(u, v) + c(u, v) - f(u, v) = c(u, v).$$

Proof

Conservation of flow

$$\begin{split} \sum_{u \in V} (f \oplus f')(u, v) &= \sum_{u \in V} f(u, v) + \sum_{u \in V} f'(u, v) - \sum_{u \in V} f'(v, u) \\ \text{(Flow conservation of } f \text{ and } f') &= \sum_{u \in V} f(v, u) + \sum_{u \in V} f'(v, u) - \sum_{u \in V} f'(u, v) \\ &= \sum_{u \in V} (f \oplus f')(v, u) \end{split}$$

Beweis

Value of $f \oplus f'$ (in the sequel $N^+ := N^+(s)$, $N^- := N^-(s)$):

$$\begin{split} w(f \oplus f') &= \sum_{v \in N^+} (f \oplus f')(s, v) - \sum_{v \in N^-} (f \oplus f')(v, s) \\ &= \sum_{v \in N^+} f(s, v) + f'(s, v) - f'(v, s) - \sum_{v \in N^-} f(v, s) + f'(v, s) - f'(s, v) \\ &= \sum_{v \in N^+} f(s, v) - \sum_{v \in N^-} f(v, s) + \sum_{v \in N^+ \cup N^-} f'(s, v) + \sum_{v \in N^+ \cup N^-} f'(v, s) \\ &= \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \sum_{v \in V} f'(s, v) + \sum_{v \in V} f'(v, s) \\ &= w(f) + w(f'). \end{split}$$

Flow in G_f

expansion path p: path from s to t in the rest network G_f .

Rest capacity $c_f(p) = \min\{c_f(u, v) : (u, v) \text{ edge in } p\}$

Theorem

The mapping $f_p: V \times V \to \mathbb{R}$,

$$f_p(u,v) = \begin{cases} c_f(p) & \text{if } (u,v) \text{ edge in } p \\ 0 & \text{otherwise} \end{cases}$$

provides a flow in G_f with value $w(f_p) = c_f(p) > 0$.

[Proof: exercise]

Strategy for an algorithm:

With an expansion path p in G_f the flow $f \oplus f_p$ defines a new flow with value $w(f \oplus f_p) = w(f) + w(f_p) > w(f)$

Max-Flow Min-Cut Theorem

Theorem

Let f be a flow in a flow network G = (V, E, c) with source s and sink t. The following statements are equivalent:

- **1** f is a maximal flow in G
- **2** The rest network G_f does not provide any expansion paths
- It holds that w(f) = c(S,T) for a cut (S,T) of G.

- (3) ⇒ (1): It holds that $w(f) \le c(S,T)$ for all cuts S,T. From w(f) = c(S,T) it follows that w(f) is maximal.
- (1) \Rightarrow (2): f maximal Flow in G. Assumption: G_f has some expansion path $w(f \oplus f_p) = w(f) + w(f_p) > w(f)$. Contradiction.

$$\mathbf{Proof}\left(2\right) \Rightarrow (3)$$

Assumption: G_f has no expansion path. Define $S = \{v \in V : \text{ there is a path } s \rightsquigarrow v \text{ in } G_f\}. (S,T) := (S, V \setminus S) \text{ is a cut:}$ $s \in S, t \notin S.$ Let $u \in S$ and $v \in T.$

If $(u, v) \in E$, then f(u, v) = c(u, v), otherwise it would hold that $(u, v) \in E_f$.

- If $(v, u) \in E$, then f(v, u) = 0, otherwise it would hold that $c_f(u, v) = f(v, u) > 0$ and $(u, v) \in E_f$
- $\blacksquare \ \text{ If } (u,v) \not\in E \text{ and } (v,u) \not\in E \text{, then } f(u,v) = f(v,u) = 0.$

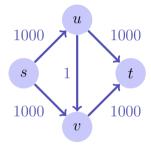
Thus

$$\begin{split} w(f) &= f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v) - \sum_{v \in T} \sum_{u \in s} f(v,u) \\ &= \sum_{u \in S} \sum_{v \in T} c(u,v) - \sum_{v \in T} \sum_{u \in s} 0 = \sum_{u \in S} \sum_{v \in T} c(u,v) = c(S,T). \end{split}$$

Algorithm Ford-Fulkerson(G, s, t)

```
Input : Flow network G = (V, E, c)
Output : Maximal flow f.
for (u, v) \in E do
 f(u,v) \leftarrow 0
while Exists path p: s \rightsquigarrow t in rest network G_f do
    c_f(p) \leftarrow \min\{c_f(u, v) : (u, v) \in p\}
    foreach (u, v) \in p do
         if (u, v) \in E then
             f(u,v) \leftarrow f(u,v) + c_f(p)
         else
      f(v,u) \leftarrow f(u,v) - c_f(p)
```

- The Ford-Fulkerson algorithm does not necessarily have to converge for irrational capacities. For integers or rational numbers it terminates.
- For an integer flow, the algorithms requires maximally $w(f_{\text{max}})$ iterations of the while loop. Search a single increasing path (e.g. with DFS or BFS $\mathcal{O}(|E|)$) Therefore $\mathcal{O}(f_{\text{max}}|E|)$.



With an unlucky choice the algorithm may require up to 2000 iterations here.

Choose in the Ford-Fulkerson-Method for finding a path in G_f the expansion path of shortest possible length (e.g. with BFS)

Edmonds-Karp Algorithm

Theorem

When the Edmonds-Karp algorithm is applied to some integer valued flow network G = (V, E) with source s and sink t then the number of flow increases applied by the algorithm is in $O(|V| \cdot |E|)$

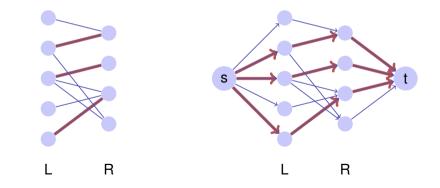
[Without proof]

Application: maximal bipartite matching

Given: bipartite undirected graph G = (V, E). Matching $M: M \subseteq E$ such that $|\{m \in M : v \in m\}| \le 1$ for all $v \in V$. Maximal Matching M: Matching M, such that $|M| \ge |M'|$ for each matching M'.

Corresponding flow network

Construct a flow network that corresponds to the partition L, R of a bipartite graph with source s and sink t, with directed edges from s to L, from L to R and from R to t. Each edge has capacity 1.



Theorem

If the capacities of a flow network are integers, then the maximal flow generated by the Ford-Fulkerson method provides integer numbers for each f(u, v), $u, v \in V$.

[without proof]

Consequence: Ford-Fulkerson generates for a flow network that corresponds to a bipartite graph a maximal matching $M = \{(u, v) : f(u, v) = 1\}.$