
25. Flow in Networks

Flow Network, Maximal Flow, Cut, Rest Network, Max-flow Min-cut
Theorem, Ford-Fulkerson Method, Edmonds-Karp Algorithm,
Maximal Bipartite Matching [Ottman/Widmayer, Kap. 9.7, 9.8.1],
[Cormen et al, Kap. 26.1-26.3]
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Motivation

Modelling flow of fluents, components on conveyors, current in
electrical networks or information flow in communication networks.
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Flow Network

Flow network G = (V,E, c): directed
graph with capacities
Antiparallel edges forbidden:
(u, v) ∈ E ⇒ (v, u) 6∈ E.
Model a missing edge (u, v) by
c(u, v) = 0.
Source s and sink t: special nodes.
Every node v is on a path between s
and t : s v  t
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Flow

A Flow f : V × V → R fulfills the
following conditions:

Bounded Capacity:
For all u, v ∈ V :
0 ≤ f(u, v) ≤ c(u, v).
Conservation of flow:
For all u ∈ V \ {s, t}:
∑

v∈V
f(v, u)−

∑

v∈V
f(u, v) = 0.
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Value of the flow:
w(f) =

∑
v∈V f(s, v)−∑

v∈V f(v, s).
Here w(f) = 18.

722



How large can a flow possibly be?

Limiting factors: cuts

cut separating s from t: Partition of V into S and T with s ∈ S,
t ∈ T .
Capacity of a cut: c(S, T ) =

∑
v∈S,v′∈T c(v, v

′)

Minimal cut: cut with minimal capacity.
Flow over the cut: f(S, T ) =

∑
v∈S,v′∈T f(v, v

′)−∑
v∈S,v′∈T f(v

′, v)
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How large can a flow possibly be?
For each flow and each cut it holds that f(S, T ) = w(f):

f(S, T ) =
∑

v∈S,v′∈T
f(v, v′)−

∑

v∈S,v′∈T
f(v′, v)

=
∑

v∈S,v′∈V
f(v, v′)−

∑

v∈S,v′∈S
f(v, v′)−

∑

v∈S,v′∈V
f(v′, v) +

∑

v∈S,v′∈S
f(v′, v)

=
∑

v′∈V
f(s, v′)−

∑

v′∈V
f(v′, s)

Second equality: amendment, last equality: conservation of flow.
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Maximal Flow ?
In particular, for each cut (S, T ) of V .

f(S, T ) ≤
∑

v∈S,v′∈T
c(v, v′) = c(S, T )

Will discover that equality holds for minS,T c(S, T ).
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c = 23
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Maximal Flow ?

Naive Procedure
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Conclusion: greedy increase of flow does not solve the problem.
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The Method of Ford-Fulkerson

Start with f(u, v) = 0 for all u, v ∈ V

Determine rest network* Gf and expansion path in Gf

Increase flow via expansion path*
Repeat until no expansion path available.

*Will now be explained
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Increase of flow, negative!

Let some flow f in the network be given.

Finding:

Increase of the flow along some edge possible, when flow can be
increased along the edge,i.e. if f(u, v) < c(u, v).
Rest capacity cf(u, v) = c(u, v)− f(u, v).
Increase of flow against the direction of the edge possible, if flow
can be reduced along the edge, i.e. if f(u, v) > 0.
Rest capacity cf(v, u) = f(u, v).
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Rest Network

Rest network Gf provided by the edges with positive rest capacity:
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Rest networks provide the same kind of properties as flow networks with the exception of permitting antiparallel edges
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Observation

Theorem
Let G = (V,E, c) be a flow network with source s and sink t and f a
flow in G. Let Gf be the corresponding rest networks and let f ′ be a
flow in Gf . Then f ⊕ f ′ defines a flow in G with value w(f) + w(f ′).

(f ⊕ f ′)(u, v) =

{
f(u, v) + f ′(u, v)− f ′(v, u) (u, v) ∈ E

0 (u, v) 6∈ E.
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Proof

Limit of capacity:

(f ⊕ f ′)(u, v) = f(u, v) + f ′(u, v)− f ′(v, u)

≥ f(u, v) + f ′(u, v)− f(u, v) = f ′(u, v) ≥ 0

(f ⊕ f ′)(u, v) = f(u, v) + f ′(u, v)− f ′(v, u)

≤ f(u, v) + f ′(u, v)

≤ f(u, v) + cf(u, v)

= f(u, v) + c(u, v)− f(u, v) = c(u, v).
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Proof

Conservation of flow
∑

u∈V
(f ⊕ f ′)(u, v) =

∑

u∈V
f(u, v) +

∑

u∈V
f ′(u, v)−

∑

u∈V
f ′(v, u)

(Flow conservation of f and f ′)
=

∑

u∈V
f(v, u) +

∑

u∈V
f ′(v, u)−

∑

u∈V
f ′(u, v)

=
∑

u∈V
(f ⊕ f ′)(v, u)
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Beweis
Value of f ⊕ f ′ (in the sequel N+ := N+(s), N− := N−(s)):

w(f ⊕ f ′) =
∑

v∈N+

(f ⊕ f ′)(s, v)−
∑

v∈N−
(f ⊕ f ′)(v, s)

=
∑

v∈N+

f(s, v) + f ′(s, v)− f ′(v, s)−
∑

v∈N−
f(v, s) + f ′(v, s)− f ′(s, v)

=
∑

v∈N+

f(s, v)−
∑

v∈N−
f(v, s) +

∑

v∈N+∪N−
f ′(s, v) +

∑

v∈N+∪N−
f ′(v, s)

=
∑

v∈V
f(s, v)−

∑

v∈V
f(v, s) +

∑

v∈V
f ′(s, v) +

∑

v∈V
f ′(v, s)

= w(f) + w(f ′).

�
733

Flow in Gf

expansion path p: path from s to t in the rest network Gf .

Rest capacity cf(p) = min{cf(u, v) : (u, v) edge in p}
Theorem
The mapping fp : V × V → R,

fp(u, v) =

{
cf(p) if (u, v) edge in p

0 otherwise

provides a flow in Gf with value w(fp) = cf(p) > 0.

[Proof: exercise]
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Consequence

Strategy for an algorithm:

With an expansion path p in Gf the flow f ⊕ fp defines a new flow
with value w(f ⊕ fp) = w(f) + w(fp) > w(f)
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Max-Flow Min-Cut Theorem

Theorem
Let f be a flow in a flow network G = (V,E, c) with source s and
sink t. The following statementsa are equivalent:

1 f is a maximal flow in G

2 The rest network Gf does not provide any expansion paths
3 It holds that w(f) = c(S, T ) for a cut (S, T ) of G.
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Proof

(3)⇒ (1):
It holds that w(f) ≤ c(S, T ) for all cuts S, T . From w(f) = c(S, T )
it follows that w(f) is maximal.
(1)⇒ (2):
f maximal Flow in G. Assumption: Gf has some expansion path
w(f ⊕ fp) = w(f) + w(fp) > w(f). Contradiction.

737

Proof (2)⇒ (3)
Assumption: Gf has no expansion path. Define
S = {v ∈ V : there is a path s v in Gf}. (S, T ) := (S, V \ S) is a cut:
s ∈ S, t 6∈ S. Let u ∈ S and v ∈ T .

If (u, v) ∈ E, then f(u, v) = c(u, v), otherwise it would hold that (u, v) ∈ Ef .

If (v, u) ∈ E, then f(v, u) = 0, otherwise it would hold that
cf (u, v) = f(v, u) > 0 and (u, v) ∈ Ef

If (u, v) 6∈ E and (v, u) 6∈ E, then f(u, v) = f(v, u) = 0.

Thus

w(f) = f(S, T ) =
∑

u∈S

∑

v∈T
f(u, v)−

∑

v∈T

∑

u∈s
f(v, u)

=
∑

u∈S

∑

v∈T
c(u, v)−

∑

v∈T

∑

u∈s
0 =

∑

u∈S

∑

v∈T
c(u, v) = c(S, T ).
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Algorithm Ford-Fulkerson(G, s, t)

Input : Flow network G = (V,E, c)
Output : Maximal flow f .

for (u, v) ∈ E do
f(u, v)← 0

while Exists path p : s t in rest network Gf do
cf (p)← min{cf (u, v) : (u, v) ∈ p}
foreach (u, v) ∈ p do

if (u, v) ∈ E then
f(u, v)← f(u, v) + cf (p)

else
f(v, u)← f(u, v)− cf (p)
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Analysis

The Ford-Fulkerson algorithm does not
necessarily have to converge for irrational
capacities. For integers or rational numbers it
terminates.
For an integer flow, the algorithms requires
maximally w(fmax) iterations of the while loop.
Search a single increasing path (e.g. with
DFS or BFS O(|E|)) Therefore O(fmax|E|).
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With an unlucky choice the al-
gorithm may require up to 2000
iterations here.
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Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in Gf the
expansion path of shortest possible length (e.g. with BFS)
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Edmonds-Karp Algorithm

Theorem
When the Edmonds-Karp algorithm is applied to some integer
valued flow network G = (V,E) with source s and sink t then the
number of flow increases applied by the algorithm is in O(|V | · |E|)

[Without proof]
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Application: maximal bipartite matching
Given: bipartite undirected graph G = (V,E).

Matching M : M ⊆ E such that |{m ∈M : v ∈ m}| ≤ 1 for all v ∈ V .

Maximal Matching M : Matching M , such that |M | ≥ |M ′| for each
matching M ′.
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Corresponding flow network
Construct a flow network that corresponds to the partition L,R of a
bipartite graph with source s and sink t, with directed edges from s
to L, from L to R and from R to t. Each edge has capacity 1.

L R

s t

L R
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Integer number theorem

Theorem
If the capacities of a flow network are integers, then the maximal
flow generated by the Ford-Fulkerson method provides integer
numbers for each f(u, v), u, v ∈ V .

[without proof]

Consequence: Ford-Fulkerson generates for a flow network that
corresponds to a bipartite graph a maximal matching
M = {(u, v) : f(u, v) = 1}.
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