25. Flow in Networks

Flow Network, Maximal Flow, Cut, Rest Network, Max-flow Min-cut
Theorem, Ford-Fulkerson Method, Edmonds-Karp Algorithm,
Maximal Bipartite Matching [Ottman/Widmayer, Kap. 9.7, 9.8.1],
[Cormen et al, Kap. 26.1-26.3]
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Flow Network

m Flow network G = (V, E, ¢): directed

graph with capacities 12
m Antiparallel edges forbidden: r Y % 20
(u,v) € E = (v,u) € E. / \
m Model a missing edge (u, v) by s 4 o |7 Lt
c(u,v) = 0. \ /
. . 13 4
m Source s and sink t: special nodes. V2 ——— s

Every node v is on a path between s
andt:s~»v~t
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Motivation

Modelling flow of fluents, components on conveyors, current in
electrical networks or information flow in communication networks.

Flow

A Flow f : V xV — R fulfills the
following conditions:

m Bounded Capacity:
Forall u,v € V:
0 < f(u,v) < c(u,v).
m Conservation of flow:
Forallu e V' \ {s,t}:

Zf(v,u)—Zf(u,v):().

veV veV

s 4/4 7/6 t
9/4
13/10

Value of the flow:

w(f) = ZUEV f(S,U) _Zvev f(U, 5)'
Here w(f) = 18.

4/4

’Ugﬁvl;

14/10
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How large can a flow possibly be?

Limiting factors: cuts

m cut separating s from t: Partition of V into S and 7" with s € .5,

tel.

m Capacity of acut: ¢(S,T) = > cgyer c(v,0)

m Minimal cut. cut with minimal capacity.

m Flow overthe cut: f(S,T) =3 cguer f(v,0)

Maximal Flow ?

In particular, for each cut (S, 7) of V.

- ZveS,v’eT f(U/, U)
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How large can a flow possibly be?
For each flow and each cut it holds that f(.S,7T") = w(f):

f(8,T) = Z f(v,v')— Z f(vl7v)

veSW ET veSw'eT

= > fwo)- D fw)— D0 fLv+ > )
veESWEV veES,W'ES veES,WEV veSw'es
=Y fs0) = D fWs)

v'ev v'ev

Second equality: amendment, last equality: conservation of flow.

12/12
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Maximal Flow ?

Naive Procedure

12/12 12/12
Vs vy

i3 '3
V 20/14 V \ni
s 1/4 716 t s 1/4 7 t
9/4 9/4
\m 1/4 \k‘ 1/4
Uy W} Vg Uy —) on

12/12 _n2
V] ——— U3 v
V w‘r /’ 20 \ )
s 4,4’ ’7/7 t s
o2
1& /
vy

vy
14/11 J]H

Conclusion: greedy increase of flow does not solve the problem.
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The Method of Ford-Fulkerson

m Start with f(u,v) =0forall u,v € V

m Determine rest network* Gy and expansion path in G's
m Increase flow via expansion path*

m Repeat until no expansion path available.

*Will now be explained

Rest Network

Rest network Gy provided by the edges with positive rest capacity:

Rest networks provide the same kind of properties as flow networks with the exception of permitting antiparallel edges
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Increase of flow, negative!

Let some flow f in the network be given.

Finding:

m Increase of the flow along some edge possible, when flow can be
increased along the edge,i.e. if f(u,v) < ¢(u,v).
Rest capacity cf(u,v) = c¢(u,v) — f(u,v).

m Increase of flow against the direction of the edge possible, if flow

can be reduced along the edge, i.e. if f(u,v) > 0.
Rest capacity c(v, u) = f(u,v).

Observation

Theorem

LetG = (V, E, ¢) be a flow network with source s and sinkt and f a
flow in G. Let G be the corresponding rest networks and let ' be a
flow in G¢. Then f & f' defines a flow in G with value w(f) + w(f").

_ flu,v) + f(u,v) = f(v,u) (u,v) € E
0 (u,v) € E.

(f® f)(u,v)
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Proof
Limit of capacity:

(f & Hu,v) = f(u,v) + f'(u,v) — f'(v,u)

(f @ f)(u,v) = flu,v) + f'(u,v) = f'(v,u)
< flu,0) + f'(u,v
< f(u,v) + cf(u,v
= f(u,v) + c(u,v) — f(u,v) = c(u,v)
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Beweis
Value of f @ f’ (inthe sequel N := N*(s), N~ := N~ (s)):

w(f & f) =Y (fof)sv)— Y (f&f)(vs)

veNt vEN™

=Y o)+ fls0) = flv,s) = Y f,8)+ f(v,8) = f(s,0)
veENT vEN—
= Zf(57v)_ Zf(v7s)+ Z f/(S,U)+ Z f/(U,S)
vEN+ vEN— vEN+TUN— vENTUN—
:Zf(su vas+2fsv+2fvs
veV veV veV
Zw(f)+w(f)
|
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Proof

Conservation of flow

S(fo M) =Y fluv)+> fluv) =Y f(v,u)

ueV ueV ueV ueV
| = 300+ 300 = 3
(Flow conservation of f and f’) ey eV
- Z fef)wu

ueV

Flowin G

expansion path p: path from s to ¢ in the rest network G/;.
Rest capacity cy(p) = min{cs(u,v) : (u,v) edge in p}

Theorem
The mapping f, : V xV = R,

ce(p) if(u,v) edgeinp
fp(U, U) _ f( ) ( )
0 otherwise

provides a flow in Gy with value w(f,) = c(p) > 0.

[Proof: exercise]

732

734



Consequence

Strategy for an algorithm:

With an expansion path p in G the flow f @ f, defines a new flow
with value w(f & f,) = w(f) +w(f,) > w(f)

Proof

m (3)= (1):
It holds that w(f) < ¢(S,T) for all cuts S, T". From w(f) = ¢(S,T)
it follows that w(f) is maximal.

m (1) = (2):
f maximal Flow in G. Assumption: Gy has some expansion path
w(f & f,) =w(f)+w(f, >w(f). Contradiction.

Max-Flow Min-Cut Theorem

Theorem
Let f be a flow in a flow network G = (V, E, ¢) with source s and
sink t. The following statementsa are equivalent:
f is a maximal flow in G
The rest network Gy does not provide any expansion paths
It holds that w(f) = ¢(S,T) foracut (S,T) of G.

Proof (2) = (3)

Assumption: G has no expansion path. Define

S={veV: thereisapath s~ vinG}. (5,T):=(S,V\S)isacut:
seStgS. Letue SandveT.

m If (u,v) € E, then f(u,v) = ¢(u,v), otherwise it would hold that (u,v) € Ey.

m If (v,u) € E, then f(v,u) = 0, otherwise it would hold that
cp(u,v) = f(v,u) > 0and (u,v) € Ey
)

m If (u,v) € Eand (v,u) € E, then f(u,v) = f(v,u) = 0.
Thus

w(f)=f(S,T) :ZZf(uvv) _ZZf(Uﬂu)

ueS veT veT ues

:ZZc(u,v)—ZZO:ZZC(u,U) =c(S,T).

ueS veT veT u€Es ueS veT
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Algorithm Ford-Fulkerson((, s, t)

Input : Flow network G = (V, E, ¢)
Output : Maximal flow f.

for (u,v) € E do
- flu,v0) 0

while Exists path p : s ~~ t in rest network Gy do
cs(p) « min{eg(u,v) : (u,v) € p}
foreach (u,v) € p do

if (u,v) € E then

- f(u,v) < f(u,v) +cp(p)
else

- fu) = f(u,0) = cf(p)
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Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in G the
expansion path of shortest possible length (e.g. with BFS)

Analysis

m The Ford-Fulkerson algorithm does not , u
necessarily have to converge for irrational 1000/ \1000
capacities. For integers or rational numbers it s ] .

terminates. \ /
1000 1000

m For an integer flow, the algorithms requires
maximally w( fim.x) iterations of the while loop. Y
Search a single increasing path (e.g. with
DFS or BFS O(|E|)) Therefore O( fuax| E])-

With an unlucky choice the al-
gorithm may require up to 2000
iterations here.
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Edmonds-Karp Algorithm

When the Edmonds-Karp algorithm is applied to some integer
valued flow network G = (V, E) with source s and sink t then the
number of flow increases applied by the algorithm is in O(|V'| - |E|)

[Without proof]
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Application: maximal bipartite matching Corresponding flow network

Given: bipartite undirected graph G = (V, E). Construct a flow network that corresponds to the partition L, R of a
Matching M: M C Esuchthat |{m € M :v e m}| < lforallv e V. bipartite graph with source s and sink ¢, with directed edges from s

: : , , to L, from L to R and from R to ¢t. Each edge has capacity 1.
Maximal Matching M: Matching M, such that |M| > |M’| for each

matching M. -
~ = § é
= = -
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Integer number theorem

If the capacities of a flow network are integers, then the maximal
flow generated by the Ford-Fulkerson method provides integer
numbers for each f(u,v), u,v € V.

[without proof]

Consequence: Ford-Fulkerson generates for a flow network that
corresponds to a bipartite graph a maximal matching

M ={(u,v) : f(u,v) = 1}.
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