22. Graphs

Reflexive transitive closure, Graph Traversal (DFS, BFS), Connected
components, Topological Sorting Ottman/Widmayer, Kap. 9.1 -
9.4,Cormen et al, Kap. 22

Konigsberg 1736

KONINGSBERGA

603

edge

604

Cycles

m Is there a cycle through the town (the
graph) that uses each bridge (each edge)
exactly once?

m Euler (1736): no.

m Such a cycle is called Eulerian path.

m Eulerian path < each node provides an
even number of edges (each node is of an
even degree).

‘=" ist straightforward, “<” ist a bit more difficult

Notation

A directed graph consists of aset V' = {vy,...,v,} of nodes
(Vertices) and a set E C V' x V of Edges. The same edges may not
be contained more than once.

Notation

An undirected graph consists of a set V' = {vy,...,v,} of nodes a
and aset £ C {{u,v}|u,v € V'} of edges. Edges may bot be
contained more than once.?'

a complete undirected graph

31As opposed to the introductory example — otherwise call it multi-graph.

Notation

A graph G = (V, E) with E comprising all edges is called complete.

A graph where V' can be partitioned into disjoint sets U and T such
that each e € E provides a node in U and a node in Wis called
bipartite.

A weighted graph G = (V, E, ¢) is a graph G = (V, E) with an edge
weight function ¢ : E — R. c¢(e) is called weight of the edge e.

Notation

For directed graphs G = (V. E)

m w € Viscalled adjacentto v € V, if (v,w) € £

m Predecessorsof v € V: N~ (v) := {u € V|(u,v) € E}.
Successors: Nt (v) :={u € V|(v,u) € E}

m /n-Degree: deg™ (v) = [N~ (v)],
Out-Degree: deg™ (v) = [N (v)|

S G

deg™(v) = 3,deg™(v) =2 deg (w) =1, deg™ (w) = 1

Notation

For undirected graphs G = (V, E):

m w € Viscalled adjacenttov € V,if {v,w} € £
m Neighbourhoodof v € V: N(v) = {w € V|{v,w} € E}

m Degree of v: deg(v) = |N(v)| with a special case for the loops:
increase the degree by 2.

Ny G

deg(v) =5 deg(w) =2

Relationship between node degrees and number of
edges

For each graph G = (V, FE) it holds

ey deg”(v) = >, oy deg”(v) = | E|, for G directed
> ey deg(v) = 2|E|, for G undirected.

Paths

m Path: a sequence of nodes (vy, ..., vx11) such that for each
i€ {1...k} thereis an edge from v; to v; 1 .

m Length of a path: number of contained edges k.

m Weight of a path (in weighted graphs): Zle c((vi, vi11)) (bzw.
> e({vi, viga})

m Simple path: path without repeating vertices

m Connected: undirected graph where for each pair v, w € V there
is a connecting path.

Cycles

m Cycle: path (vy, ..., v51) With v; = v

m Simple cycle: Cycle with pairwise different vy, ..., v, that does
not use an edge more than once.

m Acyclic: graph without any cycles.

Conclusion: undirected graphs cannot contain cycles with length 2
(loops have length 1)

Representation using a Matrix

Graph G = (V, E) with nodes v, . .., v, stored as adjacency matrix
Ag = (aij)1<ij<n With entries from {0, 1}. a;; = 1 if and only if edge
from v; to v;.

OO OO
OO = O =
_ o O O
SO = O =
— O = O O

Memory consumption O(|V'|?). Ag is symmetric, if G undirected.

Representation with a List

Many graphs G = (V,E) with nodes
v1,...,v, provide much less than n?
edges. Representation with adjacency
list. Array A[l],..., Aln], A; comprises a
linked list of nodes in N (v;).

Ol«<—0 W«——7"T0 O’

A—0 W0 N —7F0 —
Q<0 h<—0 ND<—0| W

Memory Consumption ©(|V| + |E]).

Runtimes of simple Operations

Operation Matrix List

Find neighbours of v € V O(n) O(deg'v)
find v € V without neighbour O(n?) O(n)
(u,v) € E? O(1) O(deg™ v)
Insert edge o) 0O()
Delete edge O(1) O(deg" v)

Adjacency Matrix Product

|

01011
00000
00101
00000
01112

I

01110
00000
B=A,=|01011
00000
00101

617

Interpretation

LetG = (V, F) be a graph and k € N. Then the element ag? of the

matrix (ag?)lgmgn = A¥, provides the number of paths with length k
from v; to Vj .

Proof

By Induction.

Base case: straightforward for k = 1. a; ; = a
Hypothesis: claim is true for all £ <[

Step(l — 1+ 1):

(1)

(N

=Yl
k=1
ar,; = 1 iff egde & to j, O otherwise. The sum above counts the
number of nodes having a direct connection to v; where a path of
length [exists from v; i.e. all paths with length [+ 1.

Shortest Path

Question: is there a path from 7 to 7 How long is the shortest path?
()
J

Answer: exponentiate A¢ until for some k < n it holds that a; ; > 0.

k provides the path length of the shortest path. If agi.) = 0 for all

1 < k < n, then there is no path from 7 to ;.

Number triangles

Question: How many triangular path does an undirected graph

contain?

Answer: Remove all cycles (diagonal entries). Compute A?.. agf)

determines the number of paths of length 3 that contain 2. There are
6 different permutations of a triangular path. Thus for the number of

triangles: 7, a” /6.

3

001 1 1 41488 8
001 1 1 41488 8 B
L1011 | -|sssgsgs | =2406=4
11100 3 8 8 4 4 | Dreiecke.

11100 88 8 4 4

Graphs and Relations

Graph G = (V, E) with adjacencies Az = Relation £ C V x V over
v

m reflexive & a;; = 1foralle=1,...,n.

W symmelric < a; ; = a;,; foralli,7 = 1,...,n (undirected)

m fransitive < (u,v) € E, (v,w) € £ = (u,w) € F,

Equivalence relation < collection of complete, undirected graphs
where each element has a loop.

Reflexive transitive closure of G < Reachability relation E*:
(v,w) € E*iff 3 path from node v to w.

Computation of the Reflexive Transitive Closure

Goal: computation of B = (b;;)1<i j<n With b;; = 1 & (v;,v;) € E*
Observation: a;; = 1 already implies (v;,v,) € E*.
First idea:

m Start with B < A and set b;; = 1 for each i (Reflexivity.).

m lterate over i, j, k and setb;; = 1, if b, = 1 and b;; = 1. Then all
paths with lenght 1 and 2 taken into account.

m Repeated iteration = all paths with length 1. . .4 taken into
account.

m [log, n| iterations required.

Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {v; : i < k}.
Add node v.

Algorithm ReflexiveTransitiveClosure(A;)

Input : Adjacency matrix Ag = (a;;)!

ij=1
Output : Reflexive transitive closure B = (by)7;—; of G
B+ AG
for k < 1 ton do
agr < 1 // Reflexivity

for i <~ 1 ton do
for j + 1 ton do
L bij < max{bi;, by - by} // All paths via vy,

return B

Runtime ©(n?).

Correctness of the Algorithm (Induction)

Invariant (k): all paths via nodes with maximal index < k considered.

m Base case (k = 1): All directed paths (all edges) in Ag
considered.

m Hypothesis: invariant (k) fulfilled.

m Step (k — k£ + 1): For each path from v; to v; via nodes with
maximal index k: by the hypothesis b;, = 1 and b;; = 1. Therefore
in the k-th iteration: b;; < 1.

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

o Adjazenzliste
allbllcldlellf|l9
| |
bllcl| fillelbd h
| |
d f
|
e

o0 0

Order a,b,c, f,d,e, g, h,t

Algorithm Depth First visit DFS-Visit(G', v)

Input : graph G = (V, E), Knoten wv.

Mark v visited
foreach (v,w) € E do
if —(w visited) then
| DFS-Visit(w)

Depth First Search starting from node v. Running time (without
recursion): ©(deg™ v)

Algorithm Depth First visit DFS-Visit(G)

Input : graph G = (V, E)

foreach v € V do
if —(v visited) then
. DFS-Visit(G,v)

Depth First Search for all nodes of a graph. Running time:
O(IV] + X ev(deg” (v) + 1)) = (V| + | E)).

Problem with recursion?

With large graphs a stack overflow can happen.

lterative DFS-Visit(G, v)
Input : graph G = (V, E)

Stack S < 0; push(S,v)
while S # () do
w < pop(S)
if —(w visited) then
mark w visited
foreach (w,c) € E do // (in reverse order, potentially)
if —(c visited) then
L push(S,z)

Stack size up to | E|, for each node an extra of ©(deg™ (w) + 1)
operations. Overal: O(|V| + | E|)

Including all calls from the above main program: O(|V| + |E|) -

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

Adjazenzliste

b

Cc

d

l

l

|

le—|

Cc

S

e

e
@ 090

QD e Qe S [2

Order a,b,d, e, c, f, g,

S
~.

~ e e D

lterative BFS-Visit(G, v)

Input : graph G = (V, E)
Queue Q <+ ()

Mark v as active

enqueue(Q, v)

while Q # () do

w < dequeue(Q)

mark w visited

foreach (w,c) € £ do

if —(c visited V ¢ active) then
L Mark ¢ as active

enqueue(Q, ¢)

m Algorithm requires extra
space of O(|V]).(Why
does that simple
approach not work with
DFS?)

m Running time including
main program:

(V] + [E]).

Connected Components

Connected components of an undirected graph G: equivalence
classes of the reflexive, transitive closure of G. Connected
component = subgraph G' = (V' E'), E' = {{v,w} € Elv,w € V'}
with

{H{v,wy e EveV'VvweV'} =E={{v,w} e Elve V' AweV'}

a—@ ©

Graph with connected compo-
9 9 nents {1,2,3,4}, {5,7}, {6}.

Computation of the Connected Components

m Computation of a partitioning of V' into pairwise disjoint subsets
‘/17 SR Vk
m such that each V; contains the nodes of a connected component.

m Algorithm: depth-first search or breadth-first search. Upon each
new start of DFSSearch(G, v) or BESSearch(G, v) a new empty
connected component is created and all nodes being traversed
are added.

Topological Sorting

Topological Sorting of an acyclic directed graph G = (V, E):
Bijective mapping

ord: V —{1,...,|V]} | ord(v) <ord(w)V (v,w) € E.

Can identify 7 with v;. Topological sorting = (v1, ..., vy)).

(Counter-)Examples

Cyclic graph: cannot be sorted topologically.

Unternose ——— Hoso)
Gosend>——Cooune D CHania)
CUntatemd >——sCPulover > (Une)

A possible toplogical sorting of the graph:
Unterhemd,Pullover,Unterhose,Uhr,Hose,Mantel,Socken,Schuhe

Observation

A directed graph G = (V, E') permits a topological sorting if and only
if it is acyclic.

Proof “=": If G contains a cycle it cannot permit a topological
sorting, because in a cycle (v;,,...,v;) it would hold that
Vi, < e <0 < Uy

1

Inductive Proof Opposite Direction

m Base case (n = 1): Graph with a single node without loop can be
sorted topologically, setord(v;) = 1.

m Hypothesis: Graph with n nodes can be sorted topologically
m Step (n — n + 1):

G contains a node v, with in-degree deg™ (v,) = 0. Otherwise iteratively
follow edges backwards — after at most n + 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.

Graph without node v, and without its edges can be topologically sorted
by the hypothesis. Now use this sorting and set ord(v;) < ord(v;) + 1 for
all i # ¢ and set ord(v,) < 1.

Preliminary Sketch of an Algorithm

Graph G = (V, E). d + 1
Traverse backwards starting from any node until a node v, with
in-degree 0 is found.

If no node with in-degree 0 found after n stepsm, then the graph
has a cycle.

Set ord(v,) + d.
Remove v, and his edges from G.
IfV #£0,thend < d+1, go to step 1.

Worst case runtime: Q(|V]?).

Improvement

Idea?

Compute the in-degree of all nodes in advance and traverse the
nodes with in-degree 0 while correcting the in-degrees of following
nodes.

Algorithm Topological-Sort(()

Input : graph G = (V, E).
Output : Topological sorting ord

Stack S «+)
foreach v € V do Afv] <~ 0
foreach (v,w) € E do A[w] - AJw] +1 // Compute in-degrees
foreach v € V' with A[v] =0 do push(S,v) // Memorize nodes with in-degree 0
141
while S # () do
v < pop(S); ord[v] < i; i <— i+ 1 // Choose node with in-degree 0
foreach (v,w) € £ do // Decrease in-degree of successors
Alw] = Afw] -
if Ajw|]=0 then push (.S, w)

if i = |V|+ 1 then return ord else return “Cycle Detected”

Algorithm Correctness

Let G = (V, FE) be a directed acyclic graph. Algorithm
TopologicalSort(G) computes a topological sorting ord for G with
runtime ©(|V| + |E)).

Proof: follows from previous theorem:

Decreasing the in-degree corresponds with node removal.

In the algorithm it holds for each node v with A[v] = 0 that either the node
has in-degree 0 or that previously all predecessors have been assigned a
value ord[u] + i and thus ord[v] > ord[u] for all predecessors u of v. Nodes
are put to the stack only once.

Runtime: inspection of the algorithm (with some arguments like with graph
traversal)

Algorithm Correctness

Let G = (V, F) be a directed graph containing a cycle. Algorithm
TopologicalSort(G) terminates within ©(|V | + |E|) steps and detects

a cycle.

Proof: let (v;,,...,v;,) be acyclein G. In each step of the algorithm remains
Alv;;,] > 1forall j =1,..., k. Thus k nodes are never pushed on the stack und
therefore atthe end it holds that: < V + 1 — k.

The runtime of the second part of the algorithm can become shorter. But the
computation of the in-degree costs already O(|V| + | E]).

	Graphs
	graphs
	Representation of graphs
	Graphs and Relations
	Graph Traversal
	Connected Components
	Topological Sorting

