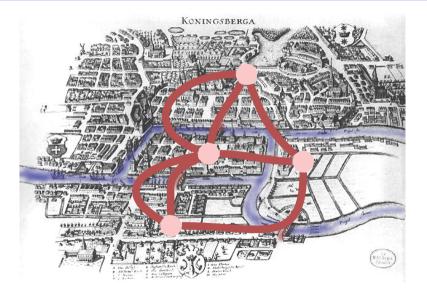
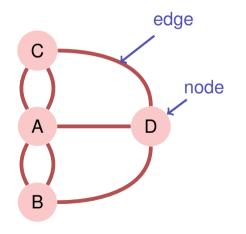
22. Graphs

Reflexive transitive closure, Graph Traversal (DFS, BFS), Connected components, Topological Sorting Ottman/Widmayer, Kap. 9.1 - 9.4,Cormen et al, Kap. 22

Königsberg 1736



Graph



Cycles

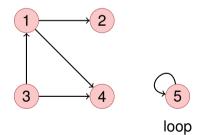
- Is there a cycle through the town (the graph) that uses each bridge (each edge) exactly once?
- Euler (1736): no.
- Such a *cycle* is called *Eulerian path*.
- Eulerian path ⇔ each node provides an even number of edges (each node is of an even degree).

' \Rightarrow " ist straightforward, " \Leftarrow " ist a bit more difficult

C —	
(
A —	D
()	J
В —	

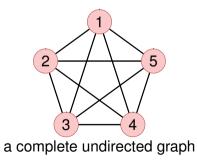
Notation

A *directed graph* consists of a set $V = \{v_1, \ldots, v_n\}$ of nodes (*Vertices*) and a set $E \subseteq V \times V$ of Edges. The same edges may not be contained more than once.



Notation

An *undirected graph* consists of a set $V = \{v_1, \ldots, v_n\}$ of nodes a and a set $E \subseteq \{\{u, v\} | u, v \in V\}$ of edges. Edges may bot be contained more than once.³¹



³¹As opposed to the introductory example – otherwise call it multi-graph.

A graph G = (V, E) with E comprising all edges is called *complete*. A graph where V can be partitioned into disjoint sets U and W such that each $e \in E$ provides a node in U and a node in W is called *bipartite*.

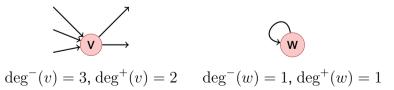
A weighted graph G = (V, E, c) is a graph G = (V, E) with an edge weight function $c : E \to \mathbb{R}$. c(e) is called weight of the edge e.

Notation

For directed graphs G = (V, E)

• $w \in V$ is called adjacent to $v \in V$, if $(v, w) \in E$

- Predecessors of $v \in V$: $N^-(v) := \{u \in V | (u, v) \in E\}$. Successors: $N^+(v) := \{u \in V | (v, u) \in E\}$
- *In-Degree*: deg⁻(v) = $|N^{-}(v)|$, *Out-Degree*: deg⁺(v) = $|N^{+}(v)|$



Notation

For undirected graphs G = (V, E):

- $w \in V$ is called *adjacent* to $v \in V$, if $\{v, w\} \in E$
- Neighbourhood of $v \in V$: $N(v) = \{w \in V | \{v, w\} \in E\}$
- *Degree* of v: deg(v) = |N(v)| with a special case for the loops: increase the degree by 2.

Relationship between node degrees and number of edges

For each graph G = (V, E) it holds

1
$$\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = |E|$$
, for G directed
2 $\sum_{v \in V} \deg(v) = 2|E|$, for G undirected.

Paths

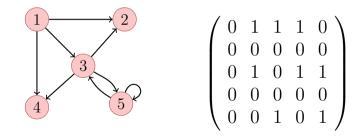
- *Path*: a sequence of nodes $\langle v_1, \ldots, v_{k+1} \rangle$ such that for each $i \in \{1 \ldots k\}$ there is an edge from v_i to v_{i+1} .
- Length of a path: number of contained edges k.
- Weight of a path (in weighted graphs): $\sum_{i=1}^{k} c((v_i, v_{i+1}))$ (bzw. $\sum_{i=1}^{k} c(\{v_i, v_{i+1}\})$)
- Simple path: path without repeating vertices
- Connected: undirected graph where for each pair $v, w \in V$ there is a connecting path.

- Cycle: path $\langle v_1, \ldots, v_{k+1} \rangle$ with $v_1 = v_{k+1}$
- Simple cycle: Cycle with pairwise different v_1, \ldots, v_k , that does not use an edge more than once.
- Acyclic: graph without any cycles.

Conclusion: undirected graphs cannot contain cycles with length 2 (loops have length 1)

Representation using a Matrix

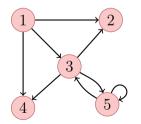
Graph G = (V, E) with nodes $v_1 \dots, v_n$ stored as *adjacency matrix* $A_G = (a_{ij})_{1 \le i,j \le n}$ with entries from $\{0,1\}$. $a_{ij} = 1$ if and only if edge from v_i to v_j .

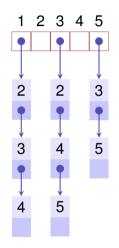


Memory consumption $\Theta(|V|^2)$. A_G is symmetric, if G undirected.

Representation with a List

Many graphs G = (V, E) with nodes v_1, \ldots, v_n provide much less than n^2 edges. Representation with *adjacency list*: Array $A[1], \ldots, A[n], A_i$ comprises a linked list of nodes in $N^+(v_i)$.





Memory Consumption $\Theta(|V| + |E|)$.

Runtimes of simple Operations

Operation	Matrix	List
Find neighbours of $v \in V$	$\Theta(n)$	$\Theta(\deg^+ v)$
find $v \in V$ without neighbour	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
$(u,v) \in E$?	$\mathcal{O}(1)$	$\mathcal{O}(\deg^+ v)$
Insert edge	$\mathcal{O}(1)$	$\mathcal{O}(1)$
Delete edge	$\mathcal{O}(1)$	$\mathcal{O}(\deg^+ v)$

Adjacency Matrix Product

$$B := A_G^2 = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}^2 = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 2 \end{pmatrix}$$

*2

5

Theorem

Let G = (V, E) be a graph and $k \in \mathbb{N}$. Then the element $a_{i,j}^{(k)}$ of the matrix $(a_{i,j}^{(k)})_{1 \le i,j \le n} = A_G^k$ provides the number of paths with length k from v_i to v_j .

Proof

By Induction.

Base case: straightforward for k = 1. $a_{i,j} = a_{i,j}^{(1)}$. **Hypothesis:** claim is true for all $k \le l$ **Step (** $l \rightarrow l + 1$ **):**

$$a_{i,j}^{(l+1)} = \sum_{k=1}^{n} a_{i,k}^{(l)} \cdot a_{k,j}$$

 $a_{k,j} = 1$ iff egde k to j, 0 otherwise. The sum above counts the number of nodes having a direct connection to v_j where a path of length l exists from v_i i.e. all paths with length l + 1.

Question: is there a path from *i* to *j*? How long is the shortest path? *Answer:* exponentiate A_G until for some k < n it holds that $a_{i,j}^{(k)} > 0$. *k* provides the path length of the shortest path. If $a_{i,j}^{(k)} = 0$ for all $1 \le k < n$, then there is no path from *i* to *j*.

Number triangles

Question: How many triangular path does an undirected graph contain?

Answer: Remove all cycles (diagonal entries). Compute A_G^3 . $a_{ii}^{(3)}$ determines the number of paths of length 3 that contain *i*. There are 6 different permutations of a triangular path. Thus for the number of triangles: $\sum_{i=1}^{n} a_{ii}^{(3)}/6$.

Graphs and Relations

Graph G = (V, E) with adjacencies $A_G \cong$ Relation $E \subseteq V \times V$ over V

reflexive \$\implies a_{i,i} = 1\$ for all \$i = 1, ..., n\$. *symmetric* \$\implies a_{i,j} = a_{j,i}\$ for all \$i, j = 1, ..., n\$ (undirected) *transitive* \$\implies (u, v) \$\implies E\$, \$(v, w) \$\implies E\$ \$\Rightarrow (u, w) \$\implies E\$.

Equivalence relation \Leftrightarrow collection of complete, undirected graphs where each element has a loop.

Reflexive transitive closure of $G \Leftrightarrow \text{Reachability relation } E^*$: $(v, w) \in E^*$ iff \exists path from node v to w.

Computation of the Reflexive Transitive Closure

Goal: computation of $B = (b_{ij})_{1 \le i,j \le n}$ with $b_{ij} = 1 \Leftrightarrow (v_i, v_j) \in E^*$ Observation: $a_{ij} = 1$ already implies $(v_i, v_j) \in E^*$. First idea:

- Start with $B \leftarrow A$ and set $b_{ii} = 1$ for each *i* (Reflexivity.).
- Iterate over i, j, k and set $b_{ij} = 1$, if $b_{ik} = 1$ and $b_{kj} = 1$. Then all paths with lenght 1 and 2 taken into account.
- Repeated iteration ⇒ all paths with length 1...4 taken into account.
- $\lceil \log_2 n \rceil$ iterations required.

Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from $\{v_i : i < k\}$. Add node v_k .

Algorithm ReflexiveTransitiveClosure(A_G)

Input : Adjacency matrix $A_G = (a_{ij})_{i,j=1}^n$ **Output** : Reflexive transitive closure $B = (b_{ij})_{i,j=1}^n$ of G

// Reflexivity

// All paths via v_k

return B

Runtime $\Theta(n^3)$.

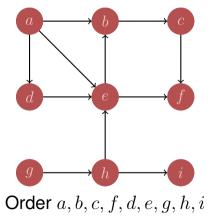
Correctness of the Algorithm (Induction)

Invariant (k): all paths via nodes with maximal index < k considered.

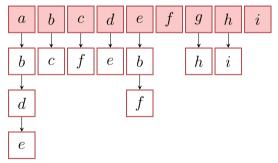
- Base case (k = 1): All directed paths (all edges) in A_G considered.
- Hypothesis: invariant (*k*) fulfilled.
- Step $(k \rightarrow k + 1)$: For each path from v_i to v_j via nodes with maximal index k: by the hypothesis $b_{ik} = 1$ and $b_{kj} = 1$. Therefore in the k-th iteration: $b_{ij} \leftarrow 1$.

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.



Adjazenzliste



Algorithm Depth First visit DFS-Visit(G, v)

```
Input : graph G = (V, E), Knoten v.
Mark v visited
foreach (v, w) \in E do
if \neg(w \text{ visited}) then
DFS-Visit(w)
```

Depth First Search starting from node v. Running time (without recursion): $\Theta(\deg^+ v)$

Algorithm Depth First visit DFS-Visit(G)

```
Input : graph G = (V, E)
foreach v \in V do
if \neg(v \text{ visited}) then
\_ DFS-Visit(G,v)
```

Depth First Search for all nodes of a graph. Running time: $\Theta(|V| + \sum_{v \in V} (\deg^+(v) + 1)) = \Theta(|V| + |E|).$

Problem with recursion?

With large graphs a stack overflow can happen.

Iterative DFS-Visit(G, v)

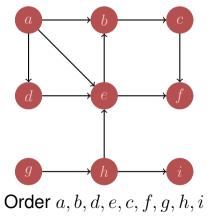
```
Input : graph G = (V, E)
Stack S \leftarrow \emptyset; push(S, v)
while S \neq \emptyset do
     w \leftarrow \mathsf{pop}(S)
     if \neg(w \text{ visited}) then
          mark w visited
          foreach (w, c) \in E do // (in reverse order, potentially)
               if \neg(c \text{ visited}) then
          \mathsf{push}(S,x)
```

Stack size up to |E|, for each node an extra of $\Theta(\deg^+(w) + 1)$ operations. Overal: $\mathcal{O}(|V| + |E|)$

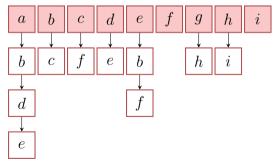
Including all calls from the above main program: $\Theta(|V| + |E|)$

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.



Adjazenzliste



Iterative BFS-Visit(G, v)

```
Input : graph G = (V, E)
Queue Q \leftarrow \emptyset
Mark v as active
enqueue(Q, v)
while Q \neq \emptyset do
     w \leftarrow \mathsf{dequeue}(Q)
     mark w visited
     foreach (w, c) \in E do
          if \neg(c \text{ visited } \lor c \text{ active}) then
                Mark c as active
            enqueue(Q, c)
```

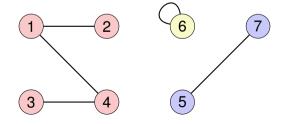
Algorithm requires extra space of O(|V|).(Why does that simple approach not work with DFS?)

■ Running time including main program: Θ(|V| + |E|).

Connected Components

Connected components of an undirected graph G: equivalence classes of the reflexive, transitive closure of G. Connected component = subgraph G' = (V', E'), $E' = \{\{v, w\} \in E | v, w \in V'\}$ with

 $\{\{v, w\} \in E | v \in V' \lor w \in V'\} = E = \{\{v, w\} \in E | v \in V' \land w \in V'\}$



Graph with connected components $\{1, 2, 3, 4\}, \{5, 7\}, \{6\}.$

Computation of the Connected Components

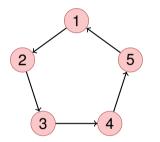
- Computation of a partitioning of V into pairwise disjoint subsets V_1, \ldots, V_k
- **u** such that each V_i contains the nodes of a connected component.
- Algorithm: depth-first search or breadth-first search. Upon each new start of DFSSearch(G, v) or BFSSearch(G, v) a new empty connected component is created and all nodes being traversed are added.

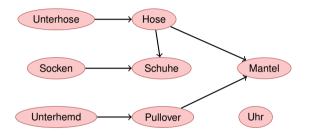
Topological Sorting of an acyclic directed graph G = (V, E): Bijective mapping

 $\operatorname{ord}: V \to \{1, \dots, |V|\} \quad | \quad \operatorname{ord}(v) < \operatorname{ord}(w) \; \forall \; (v, w) \in E.$

Can identify *i* with v_i . Topological sorting $\hat{=} \langle v_1, \ldots, v_{|V|} \rangle$.

(Counter-)Examples





Cyclic graph: cannot be sorted topologically.

A possible toplogical sorting of the graph: Unterhemd,Pullover,Unterhose,Uhr,Hose,Mantel,Socken,Schuhe

Theorem

A directed graph G = (V, E) permits a topological sorting if and only if it is acyclic.

Proof " \Rightarrow ": If *G* contains a cycle it cannot permit a topological sorting, because in a cycle $\langle v_{i_1}, \ldots, v_{i_m} \rangle$ it would hold that $v_{i_1} < \cdots < v_{i_m} < v_{i_1}$.

Inductive Proof Opposite Direction

- Base case (n = 1): Graph with a single node without loop can be sorted topologically, set $ord(v_1) = 1$.
- Hypothesis: Graph with n nodes can be sorted topologically ■ Step $(n \rightarrow n+1)$:
 - **1** *G* contains a node v_q with in-degree $deg^-(v_q) = 0$. Otherwise iteratively follow edges backwards after at most n + 1 iterations a node would be revisited. Contradiction to the cycle-freeness.
 - 2 Graph without node v_q and without its edges can be topologically sorted by the hypothesis. Now use this sorting and set $\operatorname{ord}(v_i) \leftarrow \operatorname{ord}(v_i) + 1$ for all $i \neq q$ and set $\operatorname{ord}(v_q) \leftarrow 1$.

Preliminary Sketch of an Algorithm

Graph G = (V, E). $d \leftarrow 1$

- **1** Traverse backwards starting from any node until a node v_q with in-degree 0 is found.
- If no node with in-degree 0 found after n stepsm, then the graph has a cycle.
- **3** Set $\operatorname{ord}(v_q) \leftarrow d$.
- **4** Remove v_q and his edges from G.
- 5 If $V \neq \emptyset$, then $d \leftarrow d + 1$, go to step 1.

Worst case runtime: $\Omega(|V|^2)$.

Idea?

Compute the in-degree of all nodes in advance and traverse the nodes with in-degree 0 while correcting the in-degrees of following nodes.

Algorithm Topological-Sort(G)

```
Input : graph G = (V, E).
Output : Topological sorting ord
Stack S \leftarrow \emptyset
foreach v \in V do A[v] \leftarrow 0
foreach (v, w) \in E do A[w] \leftarrow A[w] + 1 / / Compute in-degrees
foreach v \in V with A[v] = 0 do push(S, v) / / Memorize nodes with in-degree 0
i \leftarrow 1
while S \neq \emptyset do
    v \leftarrow \mathsf{pop}(S); \operatorname{ord}[v] \leftarrow i; i \leftarrow i+1 // Choose node with in-degree 0
    foreach (v, w) \in E do // Decrease in-degree of successors
         A[w] \leftarrow A[w] - 1
      if A[w] = 0 then push(S, w)
```

if i = |V| + 1 then return ord else return "Cycle Detected"

Algorithm Correctness

Theorem

Let G = (V, E) be a directed acyclic graph. Algorithm TopologicalSort(G) computes a topological sorting ord for G with runtime $\Theta(|V| + |E|)$.

Proof: follows from previous theorem:

- **1** Decreasing the in-degree corresponds with node removal.
- 2 In the algorithm it holds for each node v with A[v] = 0 that either the node has in-degree 0 or that previously all predecessors have been assigned a value $\operatorname{ord}[u] \leftarrow i$ and thus $\operatorname{ord}[v] > \operatorname{ord}[u]$ for all predecessors u of v. Nodes are put to the stack only once.
- 3 Runtime: inspection of the algorithm (with some arguments like with graph traversal)

Algorithm Correctness

Theorem

Let G = (V, E) be a directed graph containing a cycle. Algorithm TopologicalSort(G) terminates within $\Theta(|V| + |E|)$ steps and detects a cycle.

Proof: let $\langle v_{i_1}, \ldots, v_{i_k} \rangle$ be a cycle in *G*. In each step of the algorithm remains $A[v_{i_j}] \ge 1$ for all $j = 1, \ldots, k$. Thus *k* nodes are never pushed on the stack und therefore at the end it holds that $i \le V + 1 - k$.

The runtime of the second part of the algorithm can become shorter. But the computation of the in-degree costs already $\Theta(|V| + |E|)$.