21. Greedy Algorithms

Activity Selection, Fractional Knapsack Problem, Huffman Coding
Cormen et al, Kap. 16.1, 16.3

Activity Selection

Coordination of activities that use a common resource exclusively.

Activities S = {ay, as, .. ., a,} with start- and finishing times
0 <s; < f; < oo, increasingly sorted by finishing times.
a1 = (1,4) I

az = (3,5) I
as = (0,6)

a10 = (2, 14) |
a1l = (12,16) I

Activity Selection Problem: Find a maximal subset of compatible
(non-intersecting) activities.

Dynamic Programming Approach?

Let Sij = {ak : fi < s A fir. < s,}. Let A;; be a maximal subset of
compatible activities from S;;. Moreover, let a;, € A;; and
Az’k; = Szk; N Aij! Akz = Skj N Aij, thus Aij = Azk + {ak} + Ak:j-

A a Apj
fi Sj

Straightforward: A;, and A;; must be maximal, otherwise
A = Air + {ar} + Ax; would not be maximal.

Dynamic Programming Approach?

Let ¢;; = | A;;|. Then the following recursion holds ¢;; = ¢, + cx; + 1,
therefore

0 falls S7J = @7
Cii =
T Y maxg,es, {cin+ cxy + 1} falls Sy # 0.

Could now try dynamic programming.

Greedy

Intuition: choose the activity that provides the earliest end time (a,).
That leaves maximal space for other activities.

Remaining problem: activities that start after a; ends. (There are no
activites that can end before a; starts.)

585

Greedy

Given: Subproblem Sy, a,, an activity from S;. with earliest end time.
Then a,, is contained in a maximal subset of compatible activities

from S;..

Let A, be a maximal subset with compatible activities from S and
a; be an activity from A;, with earliest end time. If a; = a,,, = done.
If a; # a,,. Then consider A}, = A, — {a;} U {ax}. A conists of
compatible activities and is also maximal because |A} | = |Ax|.

Algorithm RecursiveActivitySelect(s, f, £, n)

Input : Sequence of start and end points (s;, fi), 1 <i <mn, s; < f;,
figfzqu for all 3. 1§k§n
Output : Set of all compatible activitivies.

m<+—k+1
while m <n and s, < f; do
‘ m<+— m-+1

if m <n then
- return {a,,} U RecursiveActivitySelect(s, f,m,n)
else
. return ()

Algorithm lterativeActivitySelect(s, f, n)

Input : Sequence of start and end points (s;, fi), 1 <i <mn, s; < f;,
fi < fi+1 for all 7.

Output : Maximal set of compatible activities.

A {al}

k<1

for m < 2 to n do

if s, > fi. then
A+~ AU{an}

k+m

return A

Runtime of both algorithms: ©(n)

The Fractional Knapsack Problem

set of n € Nitems {1,...,n} Each item i has value v; € N and
weight w; € N. The maximum weight is given as W € N. Input is

—1y...

Wanted: Fractions 0 < ¢; < 1 (1 <12 < n) that maximise the sum
> i1 @i viunder Y g w; < WL

Greedy heuristics

Sort the items decreasingly by value per weight v; /w;.
Assumption v; /w; > vi1 /Wi

Let j = max{0 < k <n:>" w; < W}. Set
mg=1foralll <: <.

B gj+1 = %ﬁ‘llwl

mqg=0forall:>j+1.

That is fast: ©(nlogn) for sorting and ©(n) for the computation of
the qi-

Correctness

Assumption: optimal solution (7;) (1 < i < n).

The knapsack is full: >, r; - w; = >, ¢ - w; = W.

Consider k: smallest ¢ with r; # ¢; Definition of greedy: ¢, > rj. Let
r=q — 1> 0.

Construct a new solution (77): r; = r;Vi < k. . = q;. Remove
weight >, | 0; = - wy, from items k + 1 to n. This works because
Dok T Wi = Y G Wi

Correctness

n

n
V Vi
/
E TV = TRUp + TWwE— + E (riw; — 0;)—
i=k i= k+1
> 1R + :L’wk— + E (5 —
Wy, wz Wy,
i=k+1
n
Vg
= 1. + :z:wk— — :z:wk— + rlwl = E T;U;.
w .
k i=k+1 i=k

Thus (r}) is also optimal. Iterative application of this idea generates
the solution (g;).

Huffman-Codes

Goal: memory-efficient saving of a sequence of characters using a
binary code with code words..

Example
File consisting of 100.000 characters from the alphabet {a, ..., f}.

a b c d e f
Frequency (Thousands) 45 13 12 16 9 5
Code word with fix length 000 001 010 011 100 101
Code word variable length 0 101 100 111 1101 1100

File size (code with fix length): 300.000 bits.
File size (code with variable length): 224.000 bits.

Huffman-Codes

m Consider prefix-codes: no code word can start with a different
codeword.

m Prefix codes can, compared with other codes, achieve the optimal
data compression (without proof here).

m Encoding: concatenation of the code words without stop character
(difference to morsing).
affe—0-1100-1100-1101 — 0110011001101

m Decoding simple because prefixcode
0110011001101 — 0 - 1100 - 1100 - 1101 — af fe

Code trees

100
PN
6 14

oSN Y
O/ \1 0/ \1 0/ \1

a:45 b:13 c:12 d:16 e

Code words with fixed length

/ \
N
s g
e g

Code words with variable length

Properties of the Code Trees

m An optimal coding of a file is alway represented by a complete
binary tree: every inner node has two children.

m Let C be the set of all code words, f(c) the frequency of a
codeword ¢ and dr(c) the depth of a code word in tree 7. Define
the cost of a tree as

BT) = 3" £(e) - dr(0).

ceC

(cost = number bits of the encoded file)

In the following a code tree is called optimal when it minimizes the
costs.

Algorithm Idea

Tree construction bottom

up

m Start with the set C of
code words

m Replace iteriatively the
two nodes with smallest
frequency by a new
parent node.

100

/ \30

/\ /\

a:45 b:13 ci12 d:16 e9

f:5

597

Algorithm

Input :
Output :
n <+ |C]
Q<+ C

Huffman(C)

code words ¢ € C
Root of an optimal code tree

fori=1ton—1do
allocate a new node z
z.left <— ExtractMin(Q) // extract word with minimal frequency.
z.right <— ExtractMin(Q)
z.freq + z.left.freq + z.right.freq

Insert(Q, 2)

return ExtractMin(Q)

Analyse

Use a heap: build Heap in O(n). Extract-Min in O(logn) for n
Elements. Yields a runtime of O(nlogn).

The greedy approach is correct

Theorem

Let x, y be two symbols with smallest frequencies in C' and let T (C")
be an optimal code tree to the alphabet C' = C' — {x,y} + {z} with a
new symbol z with f(z) = f(x) + f(y). Then the tree T'(C') that is
constructed from T'(C") by replacing the node = by an inner node
with children x and y is an optimal code tree for the alphabet C'.

Proof

It holds that f(x) - dr(z) + f(y) - dr(y) =

(f(z) + () - (dr(2) +1) = f(2) - dr(x) + f(x) + f(y). Thus
B(T") = B(T) — f(z) — f(y).

Assumption: 7" is not optimal. Then there is an optimal tree 7" with
B(T") < B(T). We assume that x and y are brothers in T". Let T""
be the tree where the inner node with children x and y is replaced by
z. Then it holds that

B(T") = B(T") — f(z) — f(y) < B(T) — f(z) — f(y) = B(T").
Contradiction to the optimality of 7".

The assumption that = and y are brothers in 7" can be justified
because a swap of elements with smallest frequency to the lowest
level of the tree can at most decrease the value of B.

	Greedy Algorithms
	AktivitätenauswahlActivity Selection
	Gebrochenes RucksackproblemFractional Knapsack Problem
	Huffman-CodierungHufmann Coding

