21. Greedy Algorithms

Activity Selection, Fractional Knapsack Problem, Huffman Coding Cormen et al, Kap. 16.1, 16.3

Activity Selection

Coordination of activities that use a common resource exclusively. Activities $S = \{a_1, a_2, \dots, a_n\}$ with start- and finishing times $0 \le s_i \le f_i < \infty$, increasingly sorted by finishing times.

Activity Selection Problem: Find a maximal subset of compatible (non-intersecting) activities.

Dynamic Programming Approach?

Let $S_{ij} = \{a_k : f_i \leq s_k \land f_k \leq s_j\}$. Let A_{ij} be a maximal subset of compatible activities from S_{ij} . Moreover, let $a_k \in A_{ij}$ and

 $A_{ik} = S_{ik} \cap A_{ij}, A_{ki} = S_{kj} \cap A_{ij}$, thus $A_{ij} = A_{ik} + \{a_k\} + A_{kj}$.

Straightforward: A_{ik} and A_{kj} must be maximal, otherwise $A_{ij} = A_{ik} + \{a_k\} + A_{kj}$ would not be maximal.

Dynamic Programming Approach?

Let $c_{ij} = |A_{ij}|$. Then the following recursion holds $c_{ij} = c_{ik} + c_{kj} + 1$, therefore

$$c_{ij} = \begin{cases} 0 & \text{falls } S_{ij} = \emptyset, \\ \max_{a_k \in S_{ij}} \{ c_{ik} + c_{kj} + 1 \} & \text{falls } S_{ij} \neq \emptyset. \end{cases}$$

Could now try dynamic programming.

Intuition: choose the activity that provides the earliest end time (a_1) . That leaves maximal space for other activities.

Remaining problem: activities that start after a_1 ends. (There are no activites that can end before a_1 starts.)

Theorem

Given: Subproblem S_k , a_m an activity from S_k with earliest end time. Then a_m is contained in a maximal subset of compatible activities from S_k .

Let A_k be a maximal subset with compatible activities from S_K and a_j be an activity from A_k with earliest end time. If $a_j = a_m \Rightarrow$ done. If $a_j \neq a_m$. Then consider $A'_k = A_k - \{a_j\} \cup \{a_m\}$. A'_k conists of compatible activities and is also maximal because $|A'_k| = |A_k|$.

Algorithm RecursiveActivitySelect(s, f, k, n)

Input : Sequence of start and end points (s_i, f_i) , $1 \le i \le n$, $s_i < f_i$, $f_i \le f_{i+1}$ for all i. $1 \le k \le n$

Output : Set of all compatible activitivies.

```
 \begin{array}{l} m \leftarrow k+1 \\ \text{while } m \leq n \text{ and } s_m \leq f_k \text{ do} \\ \mid m \leftarrow m+1 \end{array}
```

```
\begin{array}{l|l} \mbox{if } m \leq n \mbox{ then} \\ | \mbox{ return } \{a_m\} \cup \mbox{RecursiveActivitySelect}(s,f,m,n) \\ \mbox{else} \end{array}
```

return Ø

Algorithm IterativeActivitySelect(s, f, n)

Input : Sequence of start and end points (s_i, f_i) , $1 \le i \le n$, $s_i < f_i$, $f_i \le f_{i+1}$ for all i.

Output : Maximal set of compatible activities.

$$\begin{array}{c} A \leftarrow \{a_1\} \\ k \leftarrow 1 \\ \text{for } m \leftarrow 2 \text{ to } n \text{ do} \\ & | \begin{array}{c} \text{if } s_m \geq f_k \text{ then} \\ & \\ A \leftarrow A \cup \{a_m\} \\ & \\ k \leftarrow m \end{array} \end{array}$$

return A

Runtime of both algorithms: $\Theta(n)$

set of $n \in \mathbb{N}$ items $\{1, \ldots, n\}$ Each item *i* has value $v_i \in \mathbb{N}$ and weight $w_i \in \mathbb{N}$. The maximum weight is given as $W \in \mathbb{N}$. Input is denoted as $E = (v_i, w_i)_{i=1,\ldots,n}$.

Wanted: Fractions $0 \le q_i \le 1$ ($1 \le i \le n$) that maximise the sum $\sum_{i=1}^{n} q_i \cdot v_i$ under $\sum_{i=1}^{n} q_i \cdot w_i \le W$.

Greedy heuristics

Sort the items decreasingly by value per weight v_i/w_i . Assumption $v_i/w_i > v_{i+1}/w_{i+1}$ Let $j = \max\{0 \le k \le n : \sum_{i=1}^{k} w_i \le W\}$. Set \square $q_i = 1$ for all $1 \le i \le j$. $q_{j+1} = \frac{W - \sum_{i=1}^{j} w_i}{w_{i+1}}.$ $a_i = 0$ for all i > i + 1.

That is fast: $\Theta(n \log n)$ for sorting and $\Theta(n)$ for the computation of the q_i .

Correctness

Assumption: optimal solution (r_i) $(1 \le i \le n)$. The knapsack is full: $\sum_i r_i \cdot w_i = \sum_i q_i \cdot w_i = W$. Consider k: smallest i with $r_i \ne q_i$ Definition of greedy: $q_k > r_k$. Let

 $x = q_k - r_k > 0.$

Construct a new solution (r'_i) : $r'_i = r_i \forall i < k$. $r'_k = q_k$. Remove weight $\sum_{i=k+1}^n \delta_i = x \cdot w_k$ from items k + 1 to n. This works because $\sum_{i=k}^n r_i \cdot w_i = \sum_{i=k}^n q_i \cdot w_i$.

Correctness

$$\sum_{i=k}^{n} r'_{i} v_{i} = r_{k} v_{k} + x w_{k} \frac{v_{k}}{w_{k}} + \sum_{i=k+1}^{n} (r_{i} w_{i} - \delta_{i}) \frac{v_{i}}{w_{i}}$$

$$\geq r_{k} v_{k} + x w_{k} \frac{v_{k}}{w_{k}} + \sum_{i=k+1}^{n} r_{i} w_{i} \frac{v_{i}}{w_{i}} - \delta_{i} \frac{v_{k}}{w_{k}}$$

$$= r_{k} v_{k} + x w_{k} \frac{v_{k}}{w_{k}} - x w_{k} \frac{v_{k}}{w_{k}} + \sum_{i=k+1}^{n} r_{i} w_{i} \frac{v_{i}}{w_{i}} = \sum_{i=k}^{n} r_{i} v_{i}.$$

Thus (r'_i) is also optimal. Iterative application of this idea generates the solution (q_i) .

Huffman-Codes

Goal: memory-efficient saving of a sequence of characters using a binary code with code words..

Example								
File consisting of 100.000 characters from the alphabet $\{a, \ldots, f\}$.								
								-
		а	b	С	d	е	t	
	Frequency (Thousands)	45	13	12	16	9	5	
	Code word with fix length	000	001	010	011	100	101	
	Code word variable length	0	101	100	111	1101	1100	
File size (code with fix length): 300.000 bits.								

File size (code with variable length): 224.000 bits.

- Consider prefix-codes: no code word can start with a different codeword.
- Prefix codes can, compared with other codes, achieve the optimal data compression (without proof here).
- Encoding: concatenation of the code words without stop character (difference to morsing).
 - $affe \rightarrow 0 \cdot 1100 \cdot 1100 \cdot 1101 \rightarrow 0110011001101$
- Decoding simple because prefixcode $0110011001101 \rightarrow 0 \cdot 1100 \cdot 1100 \cdot 1101 \rightarrow affe$

Code trees

Code words with fixed length

Code words with variable length

Properties of the Code Trees

- An optimal coding of a file is alway represented by a complete binary tree: every inner node has two children.
- Let C be the set of all code words, f(c) the frequency of a codeword c and d_T(c) the depth of a code word in tree T. Define the cost of a tree as

$$B(T) = \sum_{c \in C} f(c) \cdot d_T(c).$$

(cost = number bits of the encoded file)

In the following a code tree is called optimal when it minimizes the costs.

Tree construction bottom up

- Start with the set C of code words
- Replace iteriatively the two nodes with smallest frequency by a new parent node.

Algorithm Huffman(C)

```
Input :
                      code words c \in C
Output :
                      Root of an optimal code tree
n \leftarrow |C|
Q \leftarrow C
for i = 1 to n - 1 do
      allocate a new node z
     z.left \leftarrow ExtractMin(Q)
     z.right \leftarrow ExtractMin(Q)
     z.\mathsf{freg} \leftarrow z.\mathsf{left}.\mathsf{freg} + z.\mathsf{right}.\mathsf{freg}
     lnsert(Q, z)
```

return ExtractMin(Q)

// extract word with minimal frequency.

Use a heap: build Heap in $\mathcal{O}(n)$. Extract-Min in $O(\log n)$ for n Elements. Yields a runtime of $O(n \log n)$.

The greedy approach is correct

Theorem

Let x, y be two symbols with smallest frequencies in C and let T'(C')be an optimal code tree to the alphabet $C' = C - \{x, y\} + \{z\}$ with a new symbol z with f(z) = f(x) + f(y). Then the tree T(C) that is constructed from T'(C') by replacing the node z by an inner node with children x and y is an optimal code tree for the alphabet C.

Proof

It holds that $f(x) \cdot d_T(x) + f(y) \cdot d_T(y) = (f(x) + f(y)) \cdot (d_{T'}(z) + 1) = f(z) \cdot d_{T'}(x) + f(x) + f(y)$. Thus B(T') = B(T) - f(x) - f(y).

Assumption: T is not optimal. Then there is an optimal tree T'' with B(T'') < B(T). We assume that x and y are brothers in T''. Let T''' be the tree where the inner node with children x and y is replaced by z. Then it holds that

B(T''') = B(T'') - f(x) - f(y) < B(T) - f(x) - f(y) = B(T').Contradiction to the optimality of T'.

The assumption that x and y are brothers in T'' can be justified because a swap of elements with smallest frequency to the lowest level of the tree can at most decrease the value of B.