21. Greedy Algorithms

Activity Selection, Fractional Knapsack Problem, Huffman Coding Cormen et al, Kap. 16.1, 16.3

Activity Selection

Coordination of activities that use a common resource exclusively. Activities $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ with start- and finishing times $0 \leq s_{i} \leq f_{i}<\infty$, increasingly sorted by finishing times.

Activity Selection Problem: Find a maximal subset of compatible (non-intersecting) activities.

Dynamic Programming Approach?

Let $S_{i j}=\left\{a_{k}: f_{i} \leq s_{k} \wedge f_{k} \leq s_{j}\right\}$. Let $A_{i j}$ be a maximal subset of compatible activities from $S_{i j}$. Moreover, let $a_{k} \in A_{i j}$ and $A_{i k}=S_{i k} \cap A_{i j}, A_{k i}=S_{k j} \cap A_{i j}$, thus $A_{i j}=A_{i k}+\left\{a_{k}\right\}+A_{k j}$.

Straightforward: $A_{i k}$ and $A_{k j}$ must be maximal, otherwise $A_{i j}=A_{i k}+\left\{a_{k}\right\}+A_{k j}$ would not be maximal.

Dynamic Programming Approach?

Let $c_{i j}=\left|A_{i j}\right|$. Then the following recursion holds $c_{i j}=c_{i k}+c_{k j}+1$, therefore

$$
c_{i j}= \begin{cases}0 & \text { falls } S_{i j}=\emptyset \\ \max _{a_{k} \in S_{i j}}\left\{c_{i k}+c_{k j}+1\right\} & \text { falls } S_{i j} \neq \emptyset\end{cases}
$$

Could now try dynamic programming.

Greedy

Intuition: choose the activity that provides the earliest end time (a_{1}). That leaves maximal space for other activities.
Remaining problem: activities that start after a_{1} ends. (There are no activites that can end before a_{1} starts.)

Greedy

Theorem

Given: Subproblem S_{k}, a_{m} an activity from S_{k} with earliest end time. Then a_{m} is contained in a maximal subset of compatible activities from S_{k}.

Let A_{k} be a maximal subset with compatible activities from S_{K} and a_{j} be an activity from A_{k} with earliest end time. If $a_{j}=a_{m} \Rightarrow$ done. If $a_{j} \neq a_{m}$. Then consider $A_{k}^{\prime}=A_{k}-\left\{a_{j}\right\} \cup\left\{a_{m}\right\}$. A_{k}^{\prime} conists of compatible activities and is also maximal because $\left|A_{k}^{\prime}\right|=\left|A_{k}\right|$.

Algorithm RecursiveActivitySelect(s, f, k, n)

Input :
Sequence of start and end points $\left(s_{i}, f_{i}\right), 1 \leq i \leq n, s_{i}<f_{i}$, $f_{i} \leq f_{i+1}$ for all $i .1 \leq k \leq n$
Output: Set of all compatible activitivies.
$m \leftarrow k+1$
while $m \leq n$ and $s_{m} \leq f_{k}$ do
$m \leftarrow m+1$
if $m \leq n$ then
return $\left\{a_{m}\right\} \cup \operatorname{RecursiveActivitySelect~}(s, f, m, n)$
else
return \emptyset

Algorithm IterativeActivitySelect (s, f, n)

Input: \quad Sequence of start and end points $\left(s_{i}, f_{i}\right), 1 \leq i \leq n, s_{i}<f_{i}$, $f_{i} \leq f_{i+1}$ for all i.
Output : Maximal set of compatible activities.

```
A\leftarrow{\mp@subsup{a}{1}{}}
k\leftarrow1
for }m\leftarrow2\mathrm{ to }n\mathrm{ do
    if }\mp@subsup{s}{m}{}\geq\mp@subsup{f}{k}{}\mathrm{ then
        A\leftarrowA\cup{\mp@subsup{a}{m}{}}
        k\leftarrowm
```

return A
Runtime of both algorithms: $\Theta(n)$

The Fractional Knapsack Problem

set of $n \in \mathbb{N}$ items $\{1, \ldots, n\}$ Each item i has value $v_{i} \in \mathbb{N}$ and weight $w_{i} \in \mathbb{N}$. The maximum weight is given as $W \in \mathbb{N}$. Input is denoted as $E=\left(v_{i}, w_{i}\right)_{i=1, \ldots, n}$.
Wanted: Fractions $0 \leq q_{i} \leq 1(1 \leq i \leq n)$ that maximise the sum $\sum_{i=1}^{n} q_{i} \cdot v_{i}$ under $\sum_{i=1}^{n} q_{i} \cdot w_{i} \leq W$.

Greedy heuristics

Sort the items decreasingly by value per weight v_{i} / w_{i}.
Assumption $v_{i} / w_{i} \geq v_{i+1} / w_{i+1}$
Let $j=\max \left\{0 \leq k \leq n: \sum_{i=1}^{k} w_{i} \leq W\right\}$. Set

- $q_{i}=1$ for all $1 \leq i \leq j$.

■ $q_{j+1}=\frac{W-\sum_{i=1}^{j} w_{i}}{w_{j+1}}$.

- $q_{i}=0$ for all $i>j+1$.

That is fast: $\Theta(n \log n)$ for sorting and $\Theta(n)$ for the computation of the q_{i}.

Correctness

Assumption: optimal solution $\left(r_{i}\right)(1 \leq i \leq n)$.
The knapsack is full: $\sum_{i} r_{i} \cdot w_{i}=\sum_{i} q_{i} \cdot w_{i}=W$.
Consider k : smallest i with $r_{i} \neq q_{i}$ Definition of greedy: $q_{k}>r_{k}$. Let $x=q_{k}-r_{k}>0$.
Construct a new solution $\left(r_{i}^{\prime}\right): r_{i}^{\prime}=r_{i} \forall i<k . r_{k}^{\prime}=q_{k}$. Remove weight $\sum_{i=k+1}^{n} \delta_{i}=x \cdot w_{k}$ from items $k+1$ to n. This works because $\sum_{i=k}^{n} r_{i} \cdot w_{i}=\sum_{i=k}^{n} q_{i} \cdot w_{i}$.

Correctness

$$
\begin{aligned}
\sum_{i=k}^{n} r_{i}^{\prime} v_{i} & =r_{k} v_{k}+x w_{k} \frac{v_{k}}{w_{k}}+\sum_{i=k+1}^{n}\left(r_{i} w_{i}-\delta_{i}\right) \frac{v_{i}}{w_{i}} \\
& \geq r_{k} v_{k}+x w_{k} \frac{v_{k}}{w_{k}}+\sum_{i=k+1}^{n} r_{i} w_{i} \frac{v_{i}}{w_{i}}-\delta_{i} \frac{v_{k}}{w_{k}} \\
& =r_{k} v_{k}+x w_{k} \frac{v_{k}}{w_{k}}-x w_{k} \frac{v_{k}}{w_{k}}+\sum_{i=k+1}^{n} r_{i} w_{i} \frac{v_{i}}{w_{i}}=\sum_{i=k}^{n} r_{i} v_{i}
\end{aligned}
$$

Thus $\left(r_{i}^{\prime}\right)$ is also optimal. Iterative application of this idea generates the solution $\left(q_{i}\right)$.

Huffman-Codes

Goal: memory-efficient saving of a sequence of characters using a binary code with code words..

Example

File consisting of 100.000 characters from the alphabet $\{a, \ldots, f\}$.

	a	b	c	d	e	f
Frequency (Thousands)	45	13	12	16	9	5
Code word with fix length	000	001	010	011	100	101
Code word variable length	0	101	100	111	1101	1100

File size (code with fix length): 300.000 bits.
File size (code with variable length): 224.000 bits.

Huffman-Codes

■ Consider prefix-codes: no code word can start with a different codeword.
■ Prefix codes can, compared with other codes, achieve the optimal data compression (without proof here).

- Encoding: concatenation of the code words without stop character (difference to morsing).
affe $\rightarrow 0 \cdot 1100 \cdot 1100 \cdot 1101 \rightarrow 0110011001101$
■ Decoding simple because prefixcode $0110011001101 \rightarrow 0 \cdot 1100 \cdot 1100 \cdot 1101 \rightarrow a f f e$

Code trees

Properties of the Code Trees

- An optimal coding of a file is alway represented by a complete binary tree: every inner node has two children.
■ Let C be the set of all code words, $f(c)$ the frequency of a codeword c and $d_{T}(c)$ the depth of a code word in tree T. Define the cost of a tree as

$$
B(T)=\sum_{c \in C} f(c) \cdot d_{T}(c)
$$

(cost $=$ number bits of the encoded file)
In the following a code tree is called optimal when it minimizes the costs.

Algorithm Idea

Tree construction bottom up
■ Start with the set C of code words

- Replace iteriatively the two nodes with smallest frequency by a new parent node.

Algorithm Huffman(C)

Input: \quad code words $c \in C$
Output: Root of an optimal code tree
$n \leftarrow|C|$
$Q \leftarrow C$
for $i=1$ to $n-1$ do
allocate a new node z
z. left $\leftarrow \operatorname{ExtractMin}(Q)$
// extract word with minimal frequency.
z.right $\leftarrow \operatorname{ExtractMin}(Q)$
z.freq $\leftarrow z$.left.freq $+z$.right.freq
Insert (Q, z)
return ExtractMin (Q)

Analyse

Use a heap: build Heap in $\mathcal{O}(n)$. Extract-Min in $O(\log n)$ for n Elements. Yields a runtime of $O(n \log n)$.

The greedy approach is correct

Theorem

Let x, y be two symbols with smallest frequencies in C and let $T^{\prime}\left(C^{\prime}\right)$ be an optimal code tree to the alphabet $C^{\prime}=C-\{x, y\}+\{z\}$ with a new symbol z with $f(z)=f(x)+f(y)$. Then the tree $T(C)$ that is constructed from $T^{\prime}\left(C^{\prime}\right)$ by replacing the node z by an inner node with children x and y is an optimal code tree for the alphabet C.

Proof

It holds that $f(x) \cdot d_{T}(x)+f(y) \cdot d_{T}(y)=$
$(f(x)+f(y)) \cdot\left(d_{T^{\prime}}(z)+1\right)=f(z) \cdot d_{T^{\prime}}(x)+f(x)+f(y)$. Thus
$B\left(T^{\prime}\right)=B(T)-f(x)-f(y)$.
Assumption: T is not optimal. Then there is an optimal tree $T^{\prime \prime}$ with $B\left(T^{\prime \prime}\right)<B(T)$. We assume that x and y are brothers in $T^{\prime \prime}$. Let $T^{\prime \prime \prime}$ be the tree where the inner node with children x and y is replaced by
z. Then it holds that
$B\left(T^{\prime \prime \prime}\right)=B\left(T^{\prime \prime}\right)-f(x)-f(y)<B(T)-f(x)-f(y)=B\left(T^{\prime}\right)$.
Contradiction to the optimality of T^{\prime}.
The assumption that x and y are brothers in $T^{\prime \prime}$ can be justified because a swap of elements with smallest frequency to the lowest level of the tree can at most decrease the value of B.

