
21. Greedy Algorithms

Activity Selection, Fractional Knapsack Problem, Huffman Coding
Cormen et al, Kap. 16.1, 16.3
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Activity Selection
Coordination of activities that use a common resource exclusively.
Activities S = {a1, a2, . . . , an} with start- and finishing times
0 ≤ si ≤ fi <∞, increasingly sorted by finishing times.

a1 = (1, 4)
a2 = (3, 5)

a3 = (0, 6)
a4 = (5, 7)

a5 = (3, 9)
a6 = (5, 9)

a7 = (6, 9)
a8 = (8, 11)
a9 = (8, 12)

a10 = (2, 14)
a11 = (12, 16)

Activity Selection Problem: Find a maximal subset of compatible
(non-intersecting) activities.
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Dynamic Programming Approach?

Let Sij = {ak : fi ≤ sk ∧ fk ≤ sj}. Let Aij be a maximal subset of
compatible activities from Sij. Moreover, let ak ∈ Aij and
Aik = Sik ∩ Aij, Aki = Skj ∩ Aij, thus Aij = Aik + {ak}+ Akj.

Aik ak Akj

fi sj

Straightforward: Aik and Akj must be maximal, otherwise
Aij = Aik + {ak}+ Akj would not be maximal.
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Dynamic Programming Approach?

Let cij = |Aij|. Then the following recursion holds cij = cik + ckj + 1,
therefore

cij =

{
0 falls Sij = ∅,
maxak∈Sij

{cik + ckj + 1} falls Sij 6= ∅.

Could now try dynamic programming.
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Greedy

Intuition: choose the activity that provides the earliest end time (a1).
That leaves maximal space for other activities.

Remaining problem: activities that start after a1 ends. (There are no
activites that can end before a1 starts.)
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Greedy

Theorem
Given: Subproblem Sk, am an activity from Sk with earliest end time.
Then am is contained in a maximal subset of compatible activities
from Sk.

Let Ak be a maximal subset with compatible activities from SK and
aj be an activity from Ak with earliest end time. If aj = am⇒ done.
If aj 6= am. Then consider A′k = Ak − {aj} ∪ {am}. A′k conists of
compatible activities and is also maximal because |A′k| = |Ak|.

�
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Algorithm RecursiveActivitySelect(s, f, k, n)
Input : Sequence of start and end points (si, fi), 1 ≤ i ≤ n, si < fi,

fi ≤ fi+1 for all i. 1 ≤ k ≤ n
Output : Set of all compatible activitivies.

m← k + 1
while m ≤ n and sm ≤ fk do

m← m+ 1

if m ≤ n then
return {am} ∪ RecursiveActivitySelect(s, f,m, n)

else
return ∅
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Algorithm IterativeActivitySelect(s, f, n)

Input : Sequence of start and end points (si, fi), 1 ≤ i ≤ n, si < fi,
fi ≤ fi+1 for all i.

Output : Maximal set of compatible activities.

A← {a1}
k ← 1
for m← 2 to n do

if sm ≥ fk then
A← A ∪ {am}
k ← m

return A

Runtime of both algorithms: Θ(n)
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The Fractional Knapsack Problem

set of n ∈ N items {1, . . . , n} Each item i has value vi ∈ N and
weight wi ∈ N. The maximum weight is given as W ∈ N. Input is
denoted as E = (vi, wi)i=1,...,n.

Wanted: Fractions 0 ≤ qi ≤ 1 (1 ≤ i ≤ n) that maximise the sum∑n
i=1 qi · vi under

∑n
i=1 qi · wi ≤ W .
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Greedy heuristics

Sort the items decreasingly by value per weight vi/wi.

Assumption vi/wi ≥ vi+1/wi+1

Let j = max{0 ≤ k ≤ n :
∑k

i=1wi ≤ W}. Set

qi = 1 for all 1 ≤ i ≤ j.

qj+1 =
W−

∑j
i=1 wi

wj+1
.

qi = 0 for all i > j + 1.

That is fast: Θ(n log n) for sorting and Θ(n) for the computation of
the qi.
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Correctness

Assumption: optimal solution (ri) (1 ≤ i ≤ n).

The knapsack is full:
∑

i ri · wi =
∑

i qi · wi = W .

Consider k: smallest i with ri 6= qi Definition of greedy: qk > rk. Let
x = qk − rk > 0.

Construct a new solution (r′i): r
′
i = ri∀i < k. r′k = qk. Remove

weight
∑n

i=k+1 δi = x · wk from items k + 1 to n. This works because∑n
i=k ri · wi =

∑n
i=k qi · wi.
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Correctness

n∑
i=k

r′ivi = rkvk + xwk
vk
wk

+
n∑

i=k+1

(riwi − δi)
vi
wi

≥ rkvk + xwk
vk
wk

+
n∑

i=k+1

riwi
vi
wi
− δi

vk
wk

= rkvk + xwk
vk
wk
− xwk

vk
wk

+
n∑

i=k+1

riwi
vi
wi

=
n∑

i=k

rivi.

Thus (r′i) is also optimal. Iterative application of this idea generates
the solution (qi).
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Huffman-Codes

Goal: memory-efficient saving of a sequence of characters using a
binary code with code words..

Example
File consisting of 100.000 characters from the alphabet {a, . . . , f}.

a b c d e f
Frequency (Thousands) 45 13 12 16 9 5
Code word with fix length 000 001 010 011 100 101
Code word variable length 0 101 100 111 1101 1100

File size (code with fix length): 300.000 bits.
File size (code with variable length): 224.000 bits.
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Huffman-Codes

Consider prefix-codes: no code word can start with a different
codeword.
Prefix codes can, compared with other codes, achieve the optimal
data compression (without proof here).
Encoding: concatenation of the code words without stop character
(difference to morsing).
affe→ 0 · 1100 · 1100 · 1101→ 0110011001101

Decoding simple because prefixcode
0110011001101→ 0 · 1100 · 1100 · 1101→ affe
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Code trees
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Properties of the Code Trees

An optimal coding of a file is alway represented by a complete
binary tree: every inner node has two children.
Let C be the set of all code words, f(c) the frequency of a
codeword c and dT (c) the depth of a code word in tree T . Define
the cost of a tree as

B(T ) =
∑
c∈C

f(c) · dT (c).

(cost = number bits of the encoded file)

In the following a code tree is called optimal when it minimizes the
costs.
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Algorithm Idea

Tree construction bottom
up

Start with the set C of
code words
Replace iteriatively the
two nodes with smallest
frequency by a new
parent node. a:45 b:13 c:12 d:16 e:9 f:5
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Algorithm Huffman(C)

Input : code words c ∈ C
Output : Root of an optimal code tree

n← |C|
Q← C
for i = 1 to n− 1 do

allocate a new node z
z.left← ExtractMin(Q) // extract word with minimal frequency.
z.right← ExtractMin(Q)
z.freq← z.left.freq + z.right.freq
Insert(Q, z)

return ExtractMin(Q)
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Analyse

Use a heap: build Heap in O(n). Extract-Min in O(log n) for n
Elements. Yields a runtime of O(n log n).
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The greedy approach is correct

Theorem
Let x, y be two symbols with smallest frequencies in C and let T ′(C ′)
be an optimal code tree to the alphabet C ′ = C −{x, y}+ {z} with a
new symbol z with f(z) = f(x) + f(y). Then the tree T (C) that is
constructed from T ′(C ′) by replacing the node z by an inner node
with children x and y is an optimal code tree for the alphabet C.
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Proof
It holds that f(x) · dT (x) + f(y) · dT (y) =
(f(x) + f(y)) · (dT ′(z) + 1) = f(z) · dT ′(x) + f(x) + f(y). Thus
B(T ′) = B(T )− f(x)− f(y).

Assumption: T is not optimal. Then there is an optimal tree T ′′ with
B(T ′′) < B(T ). We assume that x and y are brothers in T ′′. Let T ′′′

be the tree where the inner node with children x and y is replaced by
z. Then it holds that
B(T ′′′) = B(T ′′)− f(x)− f(y) < B(T )− f(x)− f(y) = B(T ′).
Contradiction to the optimality of T ′.

The assumption that x and y are brothers in T ′′ can be justified
because a swap of elements with smallest frequency to the lowest
level of the tree can at most decrease the value of B.

601


	Greedy Algorithms
	AktivitätenauswahlActivity Selection
	Gebrochenes RucksackproblemFractional Knapsack Problem
	Huffman-CodierungHufmann Coding


