
21. Greedy Algorithms

Activity Selection, Fractional Knapsack Problem, Huffman Coding
Cormen et al, Kap. 16.1, 16.3

581

Activity Selection
Coordination of activities that use a common resource exclusively.
Activities S = {a1, a2, . . . , an} with start- and finishing times
0 ≤ si ≤ fi <∞, increasingly sorted by finishing times.

a1 = (1, 4)
a2 = (3, 5)

a3 = (0, 6)
a4 = (5, 7)

a5 = (3, 9)
a6 = (5, 9)

a7 = (6, 9)
a8 = (8, 11)
a9 = (8, 12)

a10 = (2, 14)
a11 = (12, 16)

Activity Selection Problem: Find a maximal subset of compatible
(non-intersecting) activities.

582

Dynamic Programming Approach?

Let Sij = {ak : fi ≤ sk ∧ fk ≤ sj}. Let Aij be a maximal subset of
compatible activities from Sij. Moreover, let ak ∈ Aij and
Aik = Sik ∩ Aij, Aki = Skj ∩ Aij, thus Aij = Aik + {ak}+ Akj.

Aik ak Akj

fi sj

Straightforward: Aik and Akj must be maximal, otherwise
Aij = Aik + {ak}+ Akj would not be maximal.

583

Dynamic Programming Approach?

Let cij = |Aij|. Then the following recursion holds cij = cik + ckj + 1,
therefore

cij =

{
0 falls Sij = ∅,
maxak∈Sij

{cik + ckj + 1} falls Sij 6= ∅.

Could now try dynamic programming.

584

Greedy

Intuition: choose the activity that provides the earliest end time (a1).
That leaves maximal space for other activities.

Remaining problem: activities that start after a1 ends. (There are no
activites that can end before a1 starts.)

585

Greedy

Theorem
Given: Subproblem Sk, am an activity from Sk with earliest end time.
Then am is contained in a maximal subset of compatible activities
from Sk.

Let Ak be a maximal subset with compatible activities from SK and
aj be an activity from Ak with earliest end time. If aj = am⇒ done.
If aj 6= am. Then consider A′k = Ak − {aj} ∪ {am}. A′k conists of
compatible activities and is also maximal because |A′k| = |Ak|.

�

586

Algorithm RecursiveActivitySelect(s, f, k, n)
Input : Sequence of start and end points (si, fi), 1 ≤ i ≤ n, si < fi,

fi ≤ fi+1 for all i. 1 ≤ k ≤ n
Output : Set of all compatible activitivies.

m← k + 1
while m ≤ n and sm ≤ fk do

m← m+ 1

if m ≤ n then
return {am} ∪ RecursiveActivitySelect(s, f,m, n)

else
return ∅

587

Algorithm IterativeActivitySelect(s, f, n)

Input : Sequence of start and end points (si, fi), 1 ≤ i ≤ n, si < fi,
fi ≤ fi+1 for all i.

Output : Maximal set of compatible activities.

A← {a1}
k ← 1
for m← 2 to n do

if sm ≥ fk then
A← A ∪ {am}
k ← m

return A

Runtime of both algorithms: Θ(n)

588

The Fractional Knapsack Problem

set of n ∈ N items {1, . . . , n} Each item i has value vi ∈ N and
weight wi ∈ N. The maximum weight is given as W ∈ N. Input is
denoted as E = (vi, wi)i=1,...,n.

Wanted: Fractions 0 ≤ qi ≤ 1 (1 ≤ i ≤ n) that maximise the sum∑n
i=1 qi · vi under

∑n
i=1 qi · wi ≤ W .

589

Greedy heuristics

Sort the items decreasingly by value per weight vi/wi.

Assumption vi/wi ≥ vi+1/wi+1

Let j = max{0 ≤ k ≤ n :
∑k

i=1wi ≤ W}. Set

qi = 1 for all 1 ≤ i ≤ j.

qj+1 =
W−∑j

i=1 wi

wj+1
.

qi = 0 for all i > j + 1.

That is fast: Θ(n log n) for sorting and Θ(n) for the computation of
the qi.

590

Correctness

Assumption: optimal solution (ri) (1 ≤ i ≤ n).

The knapsack is full:
∑

i ri · wi =
∑

i qi · wi = W .

Consider k: smallest i with ri 6= qi Definition of greedy: qk > rk. Let
x = qk − rk > 0.

Construct a new solution (r′i): r
′
i = ri∀i < k. r′k = qk. Remove

weight
∑n

i=k+1 δi = x · wk from items k + 1 to n. This works because∑n
i=k ri · wi =

∑n
i=k qi · wi.

591

Correctness

n∑

i=k

r′ivi = rkvk + xwk
vk
wk

+
n∑

i=k+1

(riwi − δi)
vi
wi

≥ rkvk + xwk
vk
wk

+
n∑

i=k+1

riwi
vi
wi
− δi

vk
wk

= rkvk + xwk
vk
wk
− xwk

vk
wk

+
n∑

i=k+1

riwi
vi
wi

=
n∑

i=k

rivi.

Thus (r′i) is also optimal. Iterative application of this idea generates
the solution (qi).

592

Huffman-Codes

Goal: memory-efficient saving of a sequence of characters using a
binary code with code words..

Example
File consisting of 100.000 characters from the alphabet {a, . . . , f}.

a b c d e f
Frequency (Thousands) 45 13 12 16 9 5
Code word with fix length 000 001 010 011 100 101
Code word variable length 0 101 100 111 1101 1100

File size (code with fix length): 300.000 bits.
File size (code with variable length): 224.000 bits.

593

Huffman-Codes

Consider prefix-codes: no code word can start with a different
codeword.
Prefix codes can, compared with other codes, achieve the optimal
data compression (without proof here).
Encoding: concatenation of the code words without stop character
(difference to morsing).
affe→ 0 · 1100 · 1100 · 1101→ 0110011001101

Decoding simple because prefixcode
0110011001101→ 0 · 1100 · 1100 · 1101→ affe

594

Code trees

100

86

58

a:45 b:13

28

c:12 d:16

14

14

e:9 f:5

0

0

0 0

0

0

1

11

1

1

Code words with fixed length

100

a:45 55

25

c:12 b:13

30

14

f:5 e:9

d:16

0

0

0 0

0

1

1

11

1

Code words with variable length

595

Properties of the Code Trees

An optimal coding of a file is alway represented by a complete
binary tree: every inner node has two children.
Let C be the set of all code words, f(c) the frequency of a
codeword c and dT (c) the depth of a code word in tree T . Define
the cost of a tree as

B(T) =
∑

c∈C
f(c) · dT (c).

(cost = number bits of the encoded file)

In the following a code tree is called optimal when it minimizes the
costs.

596

Algorithm Idea

Tree construction bottom
up

Start with the set C of
code words
Replace iteriatively the
two nodes with smallest
frequency by a new
parent node. a:45 b:13 c:12 d:16 e:9 f:5

1425

30

55

100

597

Algorithm Huffman(C)

Input : code words c ∈ C
Output : Root of an optimal code tree

n← |C|
Q← C
for i = 1 to n− 1 do

allocate a new node z
z.left← ExtractMin(Q) // extract word with minimal frequency.
z.right← ExtractMin(Q)
z.freq← z.left.freq + z.right.freq
Insert(Q, z)

return ExtractMin(Q)

598

Analyse

Use a heap: build Heap in O(n). Extract-Min in O(log n) for n
Elements. Yields a runtime of O(n log n).

599

The greedy approach is correct

Theorem
Let x, y be two symbols with smallest frequencies in C and let T ′(C ′)
be an optimal code tree to the alphabet C ′ = C −{x, y}+ {z} with a
new symbol z with f(z) = f(x) + f(y). Then the tree T (C) that is
constructed from T ′(C ′) by replacing the node z by an inner node
with children x and y is an optimal code tree for the alphabet C.

600

Proof
It holds that f(x) · dT (x) + f(y) · dT (y) =
(f(x) + f(y)) · (dT ′(z) + 1) = f(z) · dT ′(x) + f(x) + f(y). Thus
B(T ′) = B(T)− f(x)− f(y).

Assumption: T is not optimal. Then there is an optimal tree T ′′ with
B(T ′′) < B(T). We assume that x and y are brothers in T ′′. Let T ′′′

be the tree where the inner node with children x and y is replaced by
z. Then it holds that
B(T ′′′) = B(T ′′)− f(x)− f(y) < B(T)− f(x)− f(y) = B(T ′).
Contradiction to the optimality of T ′.

The assumption that x and y are brothers in T ′′ can be justified
because a swap of elements with smallest frequency to the lowest
level of the tree can at most decrease the value of B.

601

