
20. Dynamic Programming II

Subset sum problem, knapsack problem, greedy algorithm, solutions
with dynamic programming, FPTAS, Optimal Search Tree
[Ottman/Widmayer, Kap. 7.2, 7.3, 5.7, Cormen et al, Kap. 15,35.5]

536

Task

Hannes and Niklas shall get a significant amount of presents with
different monetary value.

The parents want to distribute the presents in a fair way such that no
conflict arises.

Answer: people with children know that there is no solution to this
task.

537

More Realistic Task

Partition the set of the “item” above into two set such that both sets
have the same value.

A solution:

538

Subset Sum Problem

Consider n ∈ N numbers a1, . . . , an ∈ N.

Goal: decide if a selection I ⊆ {1, . . . , n} exists such that∑
i∈I

ai =
∑

i∈{1,...,n}\I

ai.

539

Naive Algorithm

Check for each bit vector b = (b1, . . . , bn) ∈ {0, 1}n, if

n∑
i=1

biai
?
=

n∑
i=1

(1− bi)ai

Worst case: n steps for each of the 2n bit vectors b. Number of
steps: O(n · 2n).

540

Algorithm with Partition

Partition the input into two equally sized parts a1, . . . , an/2 and
an/2+1, . . . , an.
Iterate over all subsets of the two parts and compute partial sum
Sk1 , . . . , S

k
2n/2

(k = 1, 2).
Sort the partial sums: Sk1 ≤ Sk2 ≤ · · · ≤ Sk

2n/2
.

Check if there are partial sums such that S1
i + S2

j = 1
2

∑n
i=1 ai =: h

Start with i = 1, j = 2n/2.
If S1

i + S2
j = h then finished

If S1
i + S2

j > h then j ← j − 1

If S1
i + S2

j < h then i← i+ 1

541

Example

Set {1, 6, 2, 3, 4} with value sum 16 has 32 subsets.

Partitioning into {1, 6} , {2, 3, 4} yields the following 12 subsets with
value sums:

{1, 6} {2, 3, 4}

{} {1} {6} {1, 6} {} {2} {3} {4} {2, 3} {2, 4} {3, 4} {2, 3, 4}

0 1 6 7 0 2 3 4 5 6 7 9

⇔ One possible solution: {1, 3, 4}

542

Analysis

Generate partial sums for each part: O(2n/2 · n).
Each sorting: O(2n/2 log(2n/2)) = O(n2n/2).
Merge: O(2n/2)

Overal running time

O
(
n · 2n/2

)
= O

(
n
(√

2
)n)

.

Substantial improvement over the naive method –
but still exponential!

543

Dynamic programming
Task: let z = 1

2

∑n
i=1 ai. Find a selection I ⊂ {1, . . . , n}, such that∑

i∈I ai = z.

DP-table: [0, . . . , n]× [0, . . . , z]-table T with boolean entries. T [k, s]
specifies if there is a selection Ik ⊂ {1, . . . , k} such that∑

i∈Ik ai = s.

Initialization: T [0, 0] = true. T [0, s] = false for s > 1.

Computation:

T [k, s]←

{
T [k − 1, s] if s < ak

T [k − 1, s] ∨ T [k − 1, s− ak] if s ≥ ak

for increasing k and then within k increasing s.
544

Example

{1, 6, 2, 5}
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 • · · · · · · · · · · · · · ·
1 • • · · · · · · · · · · · · ·
6 • • · · · · • • · · · · · · ·
2 • • • • · · • • • • · · · · ·
5 • • • • · • • • • • · • • • •

summe s

k

Determination of the solution: if T [k, s] = T [k − 1, s] then ak unused and continue with T [k − 1, s] , otherwise ak used

and continue with T [k − 1, s− ak] .

545

That is mysterious

The algorithm requires a number of O(n · z) fundamental operations.

What is going on now? Does the algorithm suddenly have
polynomial running time?

546

Explained

The algorithm does not necessarily provide a polynomial run time. z
is an number and not a quantity!

Input length of the algorithm ∼= number bits to reasonably represent
the data. With the number z this would be ζ = log z.

Consequently the algorithm requires O(n · 2ζ) fundamental
operations and has a run time exponential in ζ.

If, however, z is polynomial in n then the algorithm has polynomial
run time in n. This is called pseudo-polynomial.

547

NP
It is known that the subset-sum algorithm belongs to the class of
NP-complete problems (and is thus NP-hard).

P: Set of all problems that can be solved in polynomial time.

NP: Set of all problems that can be solved Nondeterministically in
Polynomial time.

Implications:

NP contains P.
Problems can be verified in polynomial time.
Under the not (yet?) proven assumption27 that NP 6= P, there is no
algorithm with polynomial run time for the problem considered
above.

27The most important unsolved question of theoretical computer science. 548

The knapsack problem
We pack our suitcase with ...

toothbrush

dumbell set

coffee machine

uh oh – too heavy.

Toothbrush

Air balloon

Pocket knife

identity card

dumbell set

Uh oh – too heavy.

toothbrush

coffe machine

pocket knife

identity card

Uh oh – too heavy.

Aim to take as much as possible with us. But some things are more
valuable than others!

549

Knapsack problem

Given:

set of n ∈ N items {1, . . . , n}.
Each item i has value vi ∈ N and weight wi ∈ N.
Maximum weight W ∈ N.
Input is denoted as E = (vi, wi)i=1,...,n.

Wanted:

a selection I ⊆ {1, . . . , n} that maximises
∑

i∈I vi under∑
i∈I wi ≤ W .

550

Greedy heuristics

Sort the items decreasingly by value per weight vi/wi: Permutation p
with vpi/wpi ≥ vpi+1

/wpi+1

Add items in this order (I ← I ∪ {pi}), if the maximum weight is not
exceeded.

That is fast: Θ(n log n) for sorting and Θ(n) for the selection. But is it
good?

551

Counterexample

v1 = 1 w1 = 1 v1/w1 = 1

v2 = W − 1 w2 = W v2/w2 = W−1
W

Greed algorithm chooses {v1} with value 1.
Best selection: {v2} with value W − 1 and weight W .

Greedy heuristics can be arbitrarily bad.

552

Dynamic Programming

Partition the maximum weight.

Three dimensional table m[i, w, v] (“doable”) of boolean values.

m[i, w, v] = true if and only if

A selection of the first i parts exists (0 ≤ i ≤ n)
with overal weight w (0 ≤ w ≤ W) and
a value of at least v (0 ≤ v ≤

∑n
i=1 vi) .

553

Computation of the DP table
Initially

m[i, w, 0]← true für alle i ≥ 0 und alle w ≥ 0.
m[0, w, v]← false für alle w ≥ 0 und alle v > 0.

Computation

m[i, w, v]←
{
m[i− 1, w, v] ∨m[i− 1, w − wi, v − vi] if w ≥ wi und v ≥ vi
m[i− 1, w, v] otherwise.

increasing in i and for each i increasing in w and for fixed i and w
increasing by v.

Solution: largest v, such that m[i, w, v] = true for some i and w.
554

Observation

The definition of the problem obviously implies that

for m[i, w, v] = true it holds:
m[i′, w, v] = true ∀i′ ≥ i ,
m[i, w′, v] = true ∀w′ ≥ w ,
m[i, w, v′] = true ∀v′ ≤ w.
fpr m[i, w, v] = false it holds:
m[i′, w, v] = false ∀i′ ≤ i ,
m[i, w′, v] = false ∀w′ ≤ w ,
m[i, w, v′] = false ∀v′ ≥ w.

This strongly suggests that we do not need a 3d table!

555

2d DP table

Table entry t[i, w] contains, instead of boolean values, the largest v,
that can be achieved28 with

items 1, . . . , i (0 ≤ i ≤ n)
at maximum weight w (0 ≤ w ≤ W).

28We could have followed a similar idea in order to reduce the size of the sparse table.
556

Computation

Initially

t[0, w]← 0 for all w ≥ 0.

We compute

t[i, w]←
{
t[i− 1, w] if w < wi

max{t[i− 1, w], t[i− 1, w − wi] + vi} otherwise.

increasing by i and for fixed i increasing by w.

Solution is located in t[n,w]

557

Example
E = {(2, 3), (4, 5), (1, 1)}

0 1 2 3 4 5 6 7

∅ 0 0 0 0 0 0 0 0

(2, 3) 0 0 3 3 3 3 3 3

(4, 5) 0 0 3 3 5 5 8 8

(1, 1) 0 1 3 4 5 6 8 9

w

i

Reading out the solution: if t[i, w] = t[i− 1, w] then item i unused and continue with t[i− 1, w] otherwise used and

continue with t[i− 1, s− wi] .
558

Analysis

The two algorithms for the knapsack problem provide a run time in
Θ(n ·W ·

∑n
i=1 vi) (3d-table) and Θ(n ·W) (2d-table) and are thus

both pseudo-polynomial, but they deliver the best possible result.

The greedy algorithm is very fast butmight deliver an arbitrarily bad
result.

Now we consider a solution between the two extremes.

559

Approximation

Let ε ∈ (0, 1) given. Let Iopt an optimal selection.

No try to find a valid selection I with∑
i∈I

vi ≥ (1− ε)
∑
i∈Iopt

vi.

Sum of weights may not violate the weight limit.

560

Different formulation of the algorithm

Before: weight limit w→ maximal value v

Reversal: value v→ minimal weight w

⇒ alternative table g[i, v] provides the minimum weight with

a selection of the first i items (0 ≤ i ≤ n) that
provide a value of exactly v (0 ≤ v ≤

∑n
i=1 vi).

561

Computation

Initially

g[0, 0]← 0

g[0, v]←∞ (Value v cannot be achieved with 0 items.).

Computation

g[i, v]←
{
g[i− 1, v] falls v < vi
min{g[i− 1, v], g[i− 1, v − vi] + wi} sonst.

incrementally in i and for fixed i increasing in v.

Solution can be found at largest index v with g[n, v] ≤ w.

562

Example
E = {(2, 3), (4, 5), (1, 1)}

0 1 2 3 4 5 6 7 8 9

∅ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

(2, 3) 0 ∞ ∞ 2 ∞ ∞ ∞ ∞ ∞ ∞

(4, 5) 0 ∞ ∞ 2 ∞ 4 ∞ ∞ 6 ∞

(1, 1) 0 1 ∞ 2 3 4 5 ∞ 6 7

v

i

Read out the solution: if g[i, v] = g[i− 1, v] then item i unused and continue with g[i− 1, v] otherwise used and continue

with g[i− 1, b− vi] .
563

The approximation trick

Pseduopolynomial run time gets polynmial if the number of occuring
values can be bounded by a polynom of the input length.

Let K > 0 be chosen appropriately. Replace values vi by “rounded
values” ṽi = bvi/Kc delivering a new input E ′ = (wi, ṽi)i=1...n.

Apply the algorithm on the input E ′ with the same weight limit W .

564

Idea

Example K = 5

Values

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . . , 98, 99, 100

→
0, 0, 0, 0, 1, 1, 1, 1, 1, 2, . . . , 19, 19, 20

Obviously less different values

565

Properties of the new algorithm

Selection of items in E ′ is also admissible in E. Weight remains
unchanged!
Run time of the algorithm is bounded by O(n2 · vmax/K)
(vmax := max{vi|1 ≤ i ≤ n})

566

How good is the approximation?

It holds that
vi −K ≤ K ·

⌊ vi
K

⌋
= K · ṽi ≤ vi

Let I ′opt be an optimal solution of E ′. Then∑
i∈Iopt

vi

− n ·K |Iopt|≤n
≤

∑
i∈Iopt

(vi −K) ≤
∑
i∈Iopt

(K · ṽi) = K
∑
i∈Iopt

ṽi

≤
I ′optoptimal

K
∑
i∈I ′opt

ṽi =
∑
i∈I ′opt

K · ṽi ≤
∑
i∈I ′opt

vi.

567

Choice of K

Requirement: ∑
i∈I ′

vi ≥ (1− ε)
∑
i∈Iopt

vi.

Inequality from above:

∑
i∈I ′opt

vi ≥

∑
i∈Iopt

vi

− n ·K
thus: K = ε

∑
i∈Iopt

vi

n .

568

Choice of K

Choose K = ε

∑
i∈Iopt

vi

n . The optimal sum is unknown. Therefore we
choose K ′ = εvmax

n .29

It holds that vmax ≤
∑

i∈Iopt
vi and thus K ′ ≤ K and the

approximation is even slightly better.

The run time of the algorithm is bounded by

O(n2 · vmax/K
′) = O(n2 · vmax/(ε · vmax/n)) = O(n3/ε).

29We can assume that items i with wi > W have been removed in the first place.
569

FPTAS

Such a family of algorithms is called an approximation scheme: the
choice of ε controls both running time and approximation quality.

The runtime O(n3/ε) is a polynom in n and in 1
ε . The scheme is

therefore also called a FPTAS - Fully Polynomial Time
Approximation Scheme

570

Optimal binary Search Trees
Given: search probabilities pi for each key ki (i = 1, . . . , n) and qi of
each interval di (i = 0, . . . , n) between search keys of a binary
search tree.

∑n
i=1 pi +

∑n
i=0 qi = 1.

Wanted: optimal search tree T with key depths depth(·), that
minimizes the expected search costs

C(T) =
n∑
i=1

pi · (depth(ki) + 1) +
n∑
i=0

qi · (depth(di) + 1)

= 1 +
n∑
i=1

pi · depth(ki) +
n∑
i=0

qi · depth(di)

571

Example

Expected Frequencies

i 0 1 2 3 4 5
pi 0.15 0.10 0.05 0.10 0.20
qi 0.05 0.10 0.05 0.05 0.05 0.10

572

Example

k2

k1

d0 d1

k4

k3

d2 d3

k5

d4 d5

Search tree with expected
costs 2.8

k2

k1

d0 d1

k5

k4

k3

d2 d3

d4

d5

Search tree with expected
costs 2.75

573

Structure of a optimal binary search tree

Subtree with keys ki, . . . , kj and intervals di−1, . . . , dj must be
optimal for the respective sub-problem.30

Consider all subtrees with roots kr and optimal subtrees for keys
ki, . . . , kr−1 and kr+1, . . . , kj

30The usual argument: if it was not optimal, it could be replaced by a better solution improving the overal solution.
574

Sub-trees for Searching

ki

di−1

ki+1..j

di dj· · ·

empty left subtree

kr

ki..r−1 kr+1..j

di−1 dr−1· · · dr dj· · ·

non-empty left and
right subtrees

kj

dj

ki..j−1

di−1 dj−1· · ·

empty right subtree

575

Expected Search Costs

Let depthT (k) be the depth of a node k in the sub-tree T . Let k be
the root of subtrees Tr and TLr

and TRr
be the left and right sub-tree

of Tr. Then

depthT (ki) = depthTLr
(ki) + 1, (i < r)

depthT (ki) = depthTRr
(ki) + 1, (i > r)

576

Expected Search Costs
Let e[i, j] be the costs of an optimal search tree with nodes
ki, . . . , kj.

Base case e[i, i− 1], expected costs di−1
Let w(i, j) =

∑j
l=i pl +

∑j
l=i−1 ql.

If kr is the root of an optimal search tree with keys ki, . . . , kj, then

e[i, j] = pr + (e[i, r − 1] + w(i, r − 1)) + (e[r + 1, j] + w(r + 1, j))

with w(i, j) = w(i, r − 1) + pr + w(r + 1, j):

e[i, j] = e[i, r − 1] + e[r + 1, j] + w(i, j).

577

Dynamic Programming

e[i, j] =

{
qi−1 if j = i− 1,

mini≤r≤j{e[i, r − 1] + e[r + 1, j] + w[i, j]} if i ≤ j

578

Computation
Tables e[1 . . . n+ 1, 0 . . . n], w[1 . . . n+ 1, 0 . . .m], r[1 . . . n, 1 . . . n]
Initially

e[i, i− 1]← qi−1, w[i, i− 1]← qi−1 for all 1 ≤ i ≤ n+ 1.

We compute

w[i, j] = w[i, j − 1] + pj + qj
e[i, j] = min

i≤r≤j
{e[i, r − 1] + e[r + 1, j] + w[i, j]}

r[i, j] = arg min
i≤r≤j
{e[i, r − 1] + e[r + 1, j] + w[i, j]}

for intervals [i, j] with increasing lengths l = 1, . . . , n, each for
i = 1, . . . , n− l + 1. Result in e[1, n], reconstruction via r. Runtime
Θ(n3). 579

Example

i 0 1 2 3 4 5
pi 0.15 0.10 0.05 0.10 0.20
qi 0.05 0.10 0.05 0.05 0.05 0.10

j

0 0.05

1 0.30 0.10

2 0.45 0.25 0.05

3 0.55 0.35 0.15 0.05

4 0.70 0.50 0.30 0.20 0.05

5 1.00 0.80 0.60 0.50 0.35 0.10

1 2 3 4 5 6 i

w

j

0 0.05

1 0.45 0.10

2 0.90 0.40 0.05

3 1.25 0.70 0.25 0.05

4 1.75 1.20 0.60 0.30 0.05

5 2.75 2.00 1.30 0.90 0.50 0.10

1 2 3 4 5 6 i

e
j

1 1

2 1 2

3 2 2 3

4 2 2 4 4

5 2 4 5 5 5

1 2 3 4 5 i

r

580

	Dynamic Programming II
	Subset Sum Problem
	NP
	Knapsack Problem
	Fully Polynomial Approximation
	Optimal Binary Search Tree

