20. Dynamic Programming i

Subset sum problem, knapsack problem, greedy algorithm, solutions
with dynamic programming, FPTAS, Optimal Search Tree
[Ottman/Widmayer, Kap. 7.2, 7.3, 5.7, Cormen et al, Kap. 15,35.5]

536

More Realistic Task

Partition the set of the “item” above into two set such that both sets
have the same value.

A solution:

538

Task

Hannes and Niklas shall get a significant amount of presents with
different monetary value.

The parents want to distribute the presents in a fair way such that no
conflict arises.

Answer: people with children know that there is no solution to this
task.

537

Subset Sum Problem

Consider n € N numbers aq, ..., a, € N.

Goal: decide if a selection I C {1,...,n} exists such that
Sa- Y
il i€ {1, n\T

539

Naive Algorithm

Check for each bit vector b = (by,...,b,) € {0,1}", if

n

i b,ay ; Z(l — bz)az
1=1

1=1

Worst case: n steps for each of the 2" bit vectors 6. Number of
steps: O(n - 2").

540

Example

Set {1, 6,2, 3,4} with value sum 16 has 32 subsets.

Partitioning into {1,6} , {2, 3,4} yields the following 12 subsets with
value sums:

{1,6} {2,3,4}
{3 {6y {6y [{3 {2 {3} {4 {23} {24} (3.4 {234}

06702345 6 9

< One possible solution: {1,3,4}

542

Algorithm with Partition

m Partition the input into two equally sized parts a4, ..
an/2+1, e

m lterate over all subsets of the two parts and compute partial sum
St,.... 88, (k=1,2).

m Sort the partial sums: Sf < 5§ < ... < Sk ..

m Check if there are partial sums such that S} + 57 = £ > a; =: h

<y Ap /2 and

Start with i = 1, j = 2"/2.

If S} 4 S} = h then finished

If S} + 57 > hthenj <« j—1
If S} +S? <htheni<i+1

541

Analysis

m Generate partial sums for each part: O(2"/2 - n).
m Each sorting: O(2"/21og(2"/?)) = O(n2"/?).
m Merge: O(2"/?)

Overal running time
@ (n . 2”/2) =0 (n (\/§)n> .

Substantial improvement over the naive method —
but still exponential!

543

Dynamic programming

Task: let = = 1 >" | a;. Find a selection I C {1,...,n}, such that

Dier @i = 2.

DP-table: [0,...,n] x [0,..., z|-table T" with boolean entries. T'[k, s]
specifies if there is a selection I;, C {1,..., k} such that

Zz‘elk a; = s.

Initialization: 70, 0] = true. T'[0, s] = false for s > 1.
Computation:
Tk—1 if
Tk, s] < [5] | S
Tk—-1,s]VTk—-1s—a; ifs>a

for increasing £ and then within £ increasing s.

544

That is mysterious

The algorithm requires a number of O(n - z) fundamental operations.

What is going on now? Does the algorithm suddenly have
polynomial running time?

546

Example

{1,6,2,5} summe s

0123456 789 10 11 12 13 14

o N0 O = O
I/I/

Determination of the solution: if T'[k, s] = T'[k — 1, s] then aj, unused and continue with T'[k — 1, s] , otherwise aj, used

and continue with T'[k — 1,5 — ay] .

Explained

The algorithm does not necessarily provide a polynomial run time. z
is an number and not a quantity!

Input length of the algorithm = number bits to reasonably represent
the data. With the number 2z this would be { = log z.

Consequently the algorithm requires O(n - 2¢) fundamental
operations and has a run time exponential in (.

If, however, z is polynomial in n then the algorithm has polynomial
run time in n. This is called pseudo-polynomial.

NP

It is known that the subset-sum algorithm belongs to the class of
NP-complete problems (and is thus NP-hard).

P: Set of all problems that can be solved in polynomial time.

NP: Set of all problems that can be solved Nondeterministically in
Polynomial time.

Implications:

m NP contains P.

m Problems can be verified in polynomial time.

m Under the not (yet?) proven assumption®” that NP # P, there is no
algorithm with polynomial run time for the problem considered

—above.
27The most important unsolved question of theoretical computer science. 548
Knapsack problem
Given:
m setof n € Nitems {1,...,n}.

m Each item i has value v; € N and weight w; € N.
m Maximum weight W € N.

m Input is denoted as E = (v;, w;)i=1.._n-

Wanted:

a selection I C {1,...,n} that maximises) _._; v; under
Zz‘e[w; < W.

The knapsack problem

We pack our suitcase with ...

m toothbrush m Toothbrush m toothbrush
m dumbell set m Air balloon m coffe machine
m coffee machine m Pocket knife m pocket knife
m uh oh —too heavy. m identity card m identity card
m dumbell set m Uh oh —too heavy.

m Uh oh —too heavy.
Aim to take as much as possible with us. But some things are more
valuable than others!

Greedy heuristics

Sort the items decreasingly by value per weight v; /w;: Permutation p
with Upi/wpi 2 U]’i+1/wpi+1

Add items in this order (I < I U {p;}), if the maximum weight is not
exceeded.

That is fast: ©(nlogn) for sorting and ©(n) for the selection. But is it
good?

549

Counterexample

U1:1 w1:1 vl/wlzl
UQZW—l IUQ:W 1)2/102:M

Greed algorithm chooses {v; } with value 1.
Best selection: {v-} with value W' — 1 and weight .

Greedy heuristics can be arbitrarily bad.

Computation of the DP table

Initially
m mli,w, 0] < true fur alle > 0 und alle w > 0.
m m[0, w,v] < false flr alle w > 0 und alle v > 0.

Computation

ml[i — 1L,w, 0] Vm[i — 1,w—w;,v—1v] ifw>w;undv >,

ml|i, w, v| < ,
[y w, o] {m[i—l,w,v] otherwise.

increasing in ¢ and for each 7 increasing in w and for fixed « and w
increasing by v.

Solution: largest v, such that m[i, w, v] = true for some i and w.

Dynamic Programming

Partition the maximum weight.
Three dimensional table m|i, w, v] (“doable”) of boolean values.
mli, w,v] = true if and only if

m A selection of the first ¢ parts exists (0 < < n)
m with overal weight w (0 < w < W) and
m avalueofatleastv (0 <v <> " v).

Observation

The definition of the problem obviously implies that

m for m[i, w,v] = true it holds:
mli, w,v] = true Vi’ > 1,
mli,w', v] = true Vo' > w,
mli, w,v'] = true Vo' < w.

m fpr m[i, w,v] = false it holds:
mli', w,v] = false Vi’ <1,
mli,w’, v] = false Vu' < w,
mli, w,v'] = false Vv’ > w.

This strongly suggests that we do not need a 3d table!

2d DP table

Table entry t[i, w] contains, instead of boolean values, the largest v,
that can be achieved?® with

mitems1,...,2(0 <i<n)
m at maximum weight w (0 < w < W).

28\We could have followed a similar idea in order to reduce the size of the sparse table.

Example
FE=1{(2,3),(4,5),(1,1)} w

—_—

01 2 3 45 6 7
0.0.0.0.0.0.0 O
il (4,5) O\O 3\3 5\5 8\8

013 45 6 89

Reading out the solution: if ¢[i, w] = ¢t[i — 1, w] then item ¢ unused and continue with ¢[i — 1, w] otherwise used and

continue with t[i — 1, s — w;] .

Computation

Initially
m t[0,w] < 0 forall w > 0.

We compute

t[i, w] + {

increasing by ¢ and for fixed ¢ increasing by w.

tli — 1, w]
max{t[i — 1,w], t[i — 1,w —w;] +v;} otherwise.

if w < w;

Solution is located in t[n, w]

Analysis

The two algorithms for the knapsack problem provide a run time in
O(n-W->" v;) (3d-table) and ©(n - W) (2d-table) and are thus
both pseudo-polynomial, but they deliver the best possible result.

The greedy algorithm is very fast butmight deliver an arbitrarily bad
result.

Now we consider a solution between the two extremes.

Approximation

Lete € (0,1) given. Let Iy an optimal selection.
No try to find a valid selection I with

Zviz (1—8)2?}1'.

el 1€ opt

Sum of weights may not violate the weight limit.

560

Computation

Initially

m g[0,0] « 0
m ¢[0, v] < oo (Value v cannot be achieved with 0 items.).

Computation

i, 0] gli — 1, v] falls v < v;
gt min{g[i — 1,v],g[i — 1,v — v;] + w;} sonst.

incrementally in 7 and for fixed 7 increasing in v.
Solution can be found at largest index v with g[n, v] < w.

562

Different formulation of the algorithm

Before: weight limit ww — maximal value v
Reversal: value v — minimal weight w

= alternative table g[i, v] provides the minimum weight with

m a selection of the first 7 items (0 <7 < n) that
m provide a value of exactly v (0 < v < Y7).

561

Example
E={(2,3),(4,5),(1,1)} v
o 1 2 3 4 5 6 7 8 9
) 0coo 00 0 00 O 00 0O 00 00
(2,3) OM@ 00
z‘ (4,5) z\oo 00 2\00 4\00 o0 6\00

1 oo 2 3 4 5 oo 6 7

Read out the solution: if g[i, v] = g[¢ — 1, v] then item ¢ unused and continue with g[¢ — 1, v] otherwise used and continue

with g[i — 1,b — v;] .
563

The approximation trick

Pseduopolynomial run time gets polynmial if the number of occuring
values can be bounded by a polynom of the input length.

Let K > 0 be chosen appropriately. Replace values v; by “rounded
values” v; = |v;/ K | delivering a new input £ = (w;, 0;)i=1...n-

Apply the algorithm on the input E’ with the same weight limit V.

564

Properties of the new algorithm

m Selection of items in £’ is also admissible in E. Weight remains
unchanged!

m Run time of the algorithm is bounded by O(n? - v/ K)
(Vmax := max{v;|1 < i < n})

566

Idea

Example K =5
Values

1,2,3,4,5,6,7,8,9,10,...,98,99,100
_>
0,0,0,0,1,1,1,1,1,2,...,19,19, 20

Obviously less different values

How good is the approximation?

It holds that v
w-KgK[?}ﬂf@gw
Let I;,, be an optimal solution of £’. Then

[Topt| <1

Zvi —n-K < Z(vi—K)gzu(-ﬁi):KZﬁi
ie]opt ie[opt iEIopt ie[opt
Igptoptimal iel’ 7; 1§

opt opt opt

Choice of K

Requirement:

Zviz (1—8)2%.

iel’ 1€ opt

Inequality from above:

Zviz Zvi —n-K

i€l i€ Iopt

Zielopt Ui

n

thus: K = ¢

568

FPTAS

Such a family of algorithms is called an approximation scheme: the
choice of € controls both running time and approximation quality.

The runtime O(n? /<) is a polynom in n and in 1. The scheme is
therefore also called a FPTAS - Fully Polynomial Time
Approximation Scheme

Choice of K

Zi Ui . .
Choose K = 5%_ The optimal sum is unknown. Therefore we
choose K’ = gtmax 29

It holds that vy, < Zielom v; and thus K’ < K and the
approximation is even slightly better.

The run time of the algorithm is bounded by

O(n* - Vimax/K') = O(n? - Vax/ (€ - Vmax /1)) = O(n?/¢).

29We can assume that items 4 with w; > TV have been removed in the first place.
569

Optimal binary Search Trees

Given: search probabilities p; for each key k; (: = 1,...,n) and ¢; of
each interval d; (: = 0, ..., n) between search keys of a binary
searchtree. Y " \pi+> " jqi = 1.

Wanted: optimal search tree T" with key depths depth(-), that
minimizes the expected search costs

C(T) = sz' - (depth(k;) +1) + Z g; - (depth(d;) + 1)

=1+ Zpi - depth(k;) + Z q; - depth(d;)

i=1 1=0

Example Example

k /kZ\k

ks
Expected Frequencies K / \ k 1 5
do/ \dl k4/ \d5

ilo 1 2 3 4 5 1 4
do/\d1 k/\k

Di 0.15 0.10 0.05 0.10 0.20 , ; / \
¢ | 0.05 0.10 0.05 0.05 0.05 0.10 / \ / \ Y
dy ['dy | dy | ds / \
Search tree with expected d ds
costs 2.8 Search tree with expected
costs 2.75
Structure of a optimal binary search tree Sub-trees for Searching
k
k; k;
m Subtree with keys k;, ..., k; and intervals d;_,, ..., d; must be 7N / \ 7N
. . 30 diy d;
optimal for the respective sub-problem.
m Consider all subtrees with roots £, and optimal subtrees for keys it - o s -
Kiy... ke and kyq, ... k; / N\ 2N /N /N
d; - dj diq -+ dry dy --- d; diy - dj*l
empty left subtree non-empty left and empty right subtree

right subtrees

30The usual argument: if it was not optimal, it could be replaced by a better solution improving the overal solution.

Expected Search Costs

Let depth(k) be the depth of a node k in the sub-tree T'. Let k be
the root of subtrees 7). and 77, and T, be the left and right sub-tree
of T,.. Then

depthy(k;) = depthy, (ki) +1, (i <7
depthy (ki) = depthy, (k) +1, (i >r

~— —

Dynamic Programming

i,] di-1 ifj=1—-1,
eZ? -
J min;<,<;{eli,r — 1] +e[r+1,j] +wli,j]} ifi <j

Expected Search Costs

Let e, j] be the costs of an optimal search tree with nodes
Eiy..., k;j.

Base case ¢[i, i — 1], expected costs d; 4

Letw(i,j) = S0, p+ Y1 .

If &, is the root of an optimal search tree with keys k;, ..., k;, then
eli, j] = pr + (eli,r — 1] +w(i,r — 1)) + (e[r + 1, 5] + w(r +1,))

with w(i, j) = w(i,r — 1) + p, +w(r + 1,7):

eli, jl = eli,r — 1] +e[r + 1, j] + w(i, j).

Computation
Tablese[l...n+1,0...nJ,w[l...n+1,0...m],r[1...n,1...n]
Initially
mefi,i — 1] < g1, wli,i —1] < g1 forall1 <i<n-+1.
We compute

wli, j] = wli,j — 1] + p; + q;

eli,j| = min{eli,r — 1] +elr + 1, j] + w(t, j|}

1<r<j
rli, j] = arg min {efi,r — 1] + e[r + 1, j] + w[i, j]}
ISTrs)
for intervals [¢, j] with increasing lengths [= 1, ..., n, each for
i=1,...,n—10+ 1. Resultin e[l,n], reconstruction via . Runtime

O(n?).

Example

J
0 0.05
ilo 1 2 3 4 5 1030 010
2 0.45 0.25 0.05
i 0.15 0.10 0.05 0.10 0.20 1
g | 0.05 0.10 0.05 0.05 0.05 0.10 + EEORE e e ohE
5 1.00 0.80 0.60 0.50 0.35 0.10
1 2 3 4 5 6
j e i r
0 0.05 1 1
1 0.45 0.10 9 1 9
2 0.90 0.40 0.05 3 9 9 3
3 1.25 0.70 0.25 0.05
4 2 2 4 4
4 1.75 1.20 0.60 0.30 0.05 5 9 4 5 5 5
5 2.75 2.00 1.30 0.90 0.50 0.10
1 2 3 4 5 7

1 2 3 4 5 6 i

