19. Dynamic Programming I

Fibonacci, Längste aufsteigende Teilfolge, längste gemeinsame Teilfolge, Editierdistanz, Matrixkettenmultiplikation, Matrixmultiplikation nach Strassen [Ottman/Widmayer, Kap. 1.2.3, 7.1, 7.4, Cormen et al, Kap. 15]

Fibonacci Zahlen

(schon wieder)

$$F_n := \begin{cases} 1 & \text{wenn } n < 2 \\ F_{n-1} + F_{n-2} & \text{wenn } n \geq 3. \end{cases}$$

Analyse: warum ist der rekursive Algorithmus so langsam.

495

Algorithmus FibonacciRecursive(n)

```
\begin{array}{l} \textbf{Input:} \ n \geq 0 \\ \textbf{Output:} \ n \text{-te Fibonacci Zahl} \\ \textbf{if} \ n \leq 2 \ \textbf{then} \\ | \ f \leftarrow 1 \\ \textbf{else} \\ | \ f \leftarrow \text{FibonacciRecursive}(n-1) + \text{FibonacciRecursive}(n-2) \\ \textbf{return} \ f \end{array}
```

Analyse

T(n): Anzahl der ausgeführten Operationen.

n = 1, 2: $T(n) = \Theta(1)$

 $T(n) = T(n-2) + T(n-1) + c \ge 2T(n-2) + c \ge 2^{n/2}c' = (\sqrt{2})^n c'$

Algorithmus ist *exponentiell* (!) in n.

Grund, visualisiert

F_{45} F_{44} F_{43} F_{43} F_{43} F_{44} F_{43} F_{44} F_{43} F_{44} F_{45} F

Knoten mit denselben Werten werden oft ausgewertet.

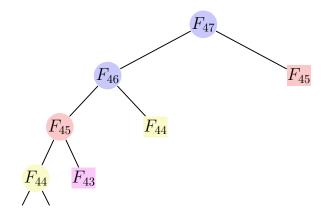
Memoization

Memoization (sic) Abspeichern von Zwischenergebnissen.

- Bevor ein Teilproblem gelöst wird, wird Existenz eines entsprechenden Zwischenergebnis geprüft.
- Existiert ein gespeichertes Zwischenergebnis bereits, so wird dieses verwendet.
- Andernfalls wird der Algorithmus ausgeführt und das Ergebnis wird entsprechend gespeichert.

499

Memoization bei Fibonacci



Rechteckige Knoten wurden bereits ausgewertet.

Algorithmus FibonacciMemoization(n)

```
\begin{array}{l} \textbf{Input}: n \geq 0 \\ \textbf{Output}: n\text{-te Fibonacci Zahl} \\ \textbf{if} \ n \leq 2 \ \textbf{then} \\ | \ f \leftarrow 1 \\ \textbf{else if} \ \exists \mathsf{memo}[n] \ \textbf{then} \\ | \ f \leftarrow \mathsf{memo}[n] \\ \textbf{else} \\ | \ f \leftarrow \mathsf{FibonacciMemoization}(n-1) + \mathsf{FibonacciMemoization}(n-2) \\ | \ \mathsf{memo}[n] \leftarrow f \\ \\ \textbf{return} \ f \end{array}
```

Analyse

Genauer hingesehen ...

Berechnungsaufwand:

$$T(n) = T(n-1) + c = \dots = \mathcal{O}(n).$$

Algorithmus benötigt $\Theta(n)$ Speicher.²⁴

... berechnet der Algorithmus der Reihe nach die Werte F_1 , F_2 , F_3 , ... verkleidet im *Top-Down* Ansatz der Rekursion.

Kann den Algorithmus auch gleich *Bottom-Up* hinschreiben. Man spricht dann auch von *dynamischer Programmierung*.

503

Algorithmus FibonacciDynamicProgram(n)

Input : $n \ge 0$

 $\textbf{Output:} \ \textit{n-} te \ \mathsf{Fibonacci} \ \mathsf{Zahl}$

Dynamic Programming: Vorgehen

- Verwalte *DP-Tabelle* mit Information zu den Teilproblemen. Dimension der Tabelle? Bedeutung der Einträge?
- Berechnung der Randfälle.
 Welche Einträge hängen nicht von anderen ab?
- Berechnungsreihenfolge bestimen.
 In welcher Reihenfolge können Einträge berechnet werden, so dass benötigte Einträge jeweils vorhanden sind?
- 4 Auslesen der Lösung.
 Wie kann sich Lösung aus der Tabelle konstruieren lassen?

Laufzeit (typisch) = Anzahl Einträge der Tabelle mal Aufwand pro Eintrag.

 $^{^{24}}$ Allerdings benötigt der naive Algorithmus auch $\Theta(n)$ Speicher für die Rekursionsverwaltung

Dynamic Programming: Vorgehen am Beispiel

Dimension der Tabelle? Bedeutung der Einträge?

Tabelle der Grösse $n \times 1$. n-ter Eintrag enthält n-te Fibonacci Zahl.

Welche Einträge hängen nicht von anderen ab?

Werte F_1 und F_2 sind unabhängig einfach "berechenbar".

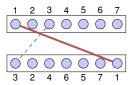
- In welcher Reihenfolge können Einträge berechnet werden, so dass
- benötigte Einträge jeweils vorhanden sind?

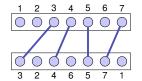
 F_i mit aufsteigenden i.

Wie kann sich Lösung aus der Tabelle konstruieren lassen?

 ${\cal F}_n$ ist die n-te Fibonacci-Zahl.

Längste aufsteigende Teilfolge (LAT)

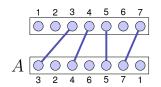




Verbinde so viele passende Anschlüsse wie möglich, ohne dass sich die Anschlüsse kreuzen.

Formalisieren

- Betrachte Folge $A = (a_1, \ldots, a_n)$.
- Suche eine längste aufsteigende Teilfolge von *A*.
- Beispiele aufsteigender Teilfolgen: (3,4,5), (2,4,5,7), (3,4,5,7), (3,7).



Verallgemeinerung: Lasse Zahlen ausserhalb von 1,...,n zu, auch mit Mehrfacheinträgen. Lasse nur strikt aufsteigende Teilfolgen zu. Beispiel: (2,3,3,3,5,1) mit aufsteigender Teilfolge (2,3,5).

Erster Entwurf

Annahme: LAT L_k für k bekannt. Wollen nun LAT L_{k+1} für k+1 berechnen.

Wenn a_{k+1} zu L_k passt, dann $L_{k+1} = L_k \oplus a_{k+1}$

Gegenbeispiel: $A_5 = (1, 2, 5, 3, 4)$. Sei $A_3 = (1, 2, 5)$ mit $L_3 = A$. Bestimme L_4 aus L_3 ?

So kommen wir nicht weiter: können nicht von L_k auf L_{k+1} schliessen.

50

Zweiter Entwurf

Annahme: eine LAT L_j für alle $j \leq k$ bekannt. Wollen nun LAT L_{k+1} für k+1 berechnen.

Betrachte alle passenden $L_{k+1} = L_j \oplus a_{k+1}$ $(j \le k)$ und wähle eine längste solche Folge.

Gegenbeispiel: $A_5=(1,2,5,3,4)$. Sei $A_4=(1,2,5,3)$ mit $L_1=(1)$, $L_2=(1,2)$, $L_3=(1,2,5)$, $L_4=(1,2,5)$. Bestimme L_5 aus L_1,\ldots,L_4 ?

So kommen wir nicht weiter: können nicht von *jeweils nur einer beliebigen Lösung* L_j auf L_{k+1} schliessen. Wir müssten alle möglichen LAT betrachten. Zu viel!

Dritter Entwurf

Annahme: die LAT L_j , welche mit kleinstem Element endet sei für alle Längen $1 \le j \le k$ bekannt.

Betrachte nun alle passenden $L_j \oplus a_{k+1}$ ($j \leq k$) und aktualisiere die Tabelle der längsten aufsteigenden Folgen, welche mit kleinstem Element enden.

Beispiel: A = (1, 1000, 1001, 2, 3, 4, ..., 999)

A	LAT
(1)	(1)
(1, 1000)	(1), (1, 1000)
(1, 1000, 1001)	(1), (1, 1000), (1, 1000, 1001)
(1, 1000, 1001, 2)	(1), (1, 2), (1, 1000, 1001)
(1, 1000, 1001, 2, 3)	(1), (1, 2), (1, 2, 3)

DP Table

- Idee: speichere jeweils nur das letzte Element der aufsteigenden Folge am Slot j.
- Beispielfolge: 3 2 5 1 6 4
- Problem: Tabelle enthält zum Schluss nicht die Folge, nur den letzten Wert.
- Lösung: Zweite Tabelle mit den Vorgängern.

Index	1	2	3	4	5	6
Wert	3	2	5	1	6	4
Vorgänger	$-\infty$	$-\infty$	2	$-\infty$	5	1

511

0	1	2	3	4	
-∞	∞	∞	∞	∞	
$-\infty$	3	∞	∞	∞	
$-\infty$	2	∞	∞	∞	
$-\infty$	2	5	∞	∞	
$-\infty$	1	5	∞	∞	
$-\infty$	1	5	6	∞	
-∞	1	4	6	∞	

Dynamic Programming Algorithmus LAT

Dimension der Tabelle? Bedeutung der Einträge?

Zwei Tabellen $T[0,\ldots,n]$ und $V[1,\ldots,n]$. Zu Beginn $T[0]\leftarrow -\infty$, $T[i]\leftarrow \infty \ \forall i>1$

Berechnung eines Eintrags

Einträge in T aufsteigend sortiert. Für jeden Neueintrag a_{k+1} binäre Suche nach l, so dass $T[l] < a_k < T[l+1]$. Setze $T[l+1] \leftarrow a_{k+1}$. Setze V[k] = T[l].

51

Dynamic Programming Algorithmus LAT

Berechnungsreihenfolge

Beim Traversieren der Liste werden die Einträge T[k] und V[k] mit aufsteigendem k berechnet.

Wie kann sich Lösung aus der Tabelle konstruieren lassen?

Suche das grösste l mit $T[l]<\infty$. l ist der letzte Index der LAT. Suche von l ausgehend den Index i< l, so dass V[l]=A[i], i ist der Vorgänger von l. Repetiere mit $l\leftarrow i$ bis $T[l]=-\infty$

Analyse

- Berechnung Tabelle:
 - Initialisierung: $\Theta(n)$ Operationen
 - Berechnung k-ter Eintrag: Binäre Suche auf Positionen $\{1, \ldots, k\}$ plus konstante Anzahl Zuweisungen.

$$\sum_{k=1}^{n} (\log k + \mathcal{O}(1)) = \mathcal{O}(n) + \sum_{k=1}^{n} \log(k) = \Theta(n \log n).$$

Rekonstruktion: Traversiere A von rechts nach links: $\mathcal{O}(n)$.

Somit Gesamtlaufzeit

$$\Theta(n \log n)$$
.

515

Längste Gemeiname Teilfolge

Teilfolgen einer Zeichenkette:

Problem:

- Eingabe: Zwei Zeichenketten $A = (a_1, \ldots, a_m)$, $B = (b_1, \ldots, b_n)$ der Längen m > 0 und n > 0.
- Gesucht: Eine längste gemeinsame Teilfolge (LGT) von *A* und *B*.

Sinnvolle Anwendung: Ähnlichkeit von DNA-Sequenzen in der Biologie.

Längste Gemeiname Teilfolge

Beispiele:

Ideen zur Lösung?

Rekursives Vorgehen

Annahme: Lösungen L(i,j) bekannt für $A[1,\ldots,i]$ und $B[1,\ldots,j]$ für alle $1 \le i \le m$ und $1 \le j \le n$, jedoch nicht für i=m und j=n.

Betrachten Zeichen a_m , b_n . Drei Möglichkeiten:

- **1** A wird um ein Leerzeichen erweitert. L(m, n) = L(m, n-1)
- **2** B wird um ein Leerzeichen erweitert. L(m,n)=L(m-1,n)
- $L(m,n) = L(m-1,n-1) + \delta_{mn} \text{ mit } \delta_{mn} = 1 \text{ wenn } a_m = b_n \\ \text{und } \delta_{mn} = 0 \text{ sonst}$

Rekursion

 $L(m,n) \leftarrow \max \{L(m-1,n-1) + \delta_{mn}, L(m,n-1), L(m-1,n)\}$ für m,n>0 und Randfälle $L(\cdot,0)=0, L(0,\cdot)=0.$

	Ø	Z	I	Ε	G 0 1 2 2 2	Ε
\emptyset	0	0	0	0	0	0
Τ	0	0	0	0	0	0
I	0	0	1	1	1	1
G	0	0	1	1	2	2
Ε	0	0	1	2	2	3
R	0	0	1	2	2	3

519

Dynamic Programming Algorithmus LGT

Dimension der Tabelle? Bedeutung der Einträge?

Tabelle $L[0,\ldots,m][0,\ldots,n]$. L[i,j]: Länge einer LGT der Zeichenketten (a_1,\ldots,a_i) und (b_1,\ldots,b_j)

Berechnung eines Eintrags

 $L[0,i] \leftarrow 0 \ \forall 0 \leq i \leq m, \ L[j,0] \leftarrow 0 \ \forall 0 \leq j \leq n. \ \text{Berechnung von} \ L[i,j] \\ \text{sonst mit} \ L[i,j] = \max(L[i-1,j-1] + \delta_{ij}, L[i,j-1], L[i-1,j]).$

Dynamic Programming Algorithmus LGT

Berechnungsreihenfolge

Abhängigkeiten berücksichtigen: z.B. Zeilen aufsteigend und innerhalb von Zeilen Spalten aufsteigend.

Wie kann sich Lösung aus der Tabelle konstruieren lassen?

Beginne bei $j=m,\,i=n.$ Falls $a_i=b_j$ gilt, gib a_i aus, sonst falls L[i,j]=L[i,j-1] fahre mit $j\leftarrow j-1$ fort, sonst falls L[i,j]=L[i-1,j] fahre mit $i\leftarrow i-1$ fort. Terminiere für i=0 oder j=0.

Analyse LGT

- Anzahl Tabelleneinträge: $(m+1) \cdot (n+1)$.
- Berechnung jeweils mit konstanter Anzahl Zuweisungen und Vergleichen. Anzahl Schritte $\mathcal{O}(mn)$
- Bestimmen der Lösung: jeweils Verringerung von i oder j. Maximal $\mathcal{O}(n+m)$ Schritte.

Laufzeit insgesamt:

$$\mathcal{O}(mn)$$
.

Editierdistanz

Editierdistanz von zwei Zeichenketten $A = (a_1, \ldots, a_m)$, $B = (b_1, \ldots, b_m)$.

Editieroperationen:

- Einfügen eines Zeichens
- Löschen eines Zeichens
- Änderung eines Zeichens

Frage: Wie viele Editieroperationen sind mindestens nötig, um eine gegebene Zeichenkette A in eine Zeichenkette B zu überführen.

TIGER ZIGER ZIEGER ZIEGE

Editierdistanz= Levenshtein Distanz

Vorgehen?

- Zweidimensionale Tabelle $E[0,\ldots,m][0,\ldots,n]$ mit Editierdistanzen E[i,j] zwischen Worten $A_i=(a_1,\ldots,a_i)$ und $B_j=(b_1,\ldots,b_j)$.
- Betrachte die jeweils letzten Zeichen von A_i und B_j . Drei mögliche Fälle:
 - Lösche letztes Zeichen von A_i : ²⁵ E[i-1,j]+1.
 - Füge Zeichen zu A_i hinzu: E[i, j-1] + 1.
 - **3** Ersetze A_i durch B_j : $E[i-1, j-1] + 1 \delta_{ij}$.

$$E[i,j] \leftarrow \min \left\{ E[i-1,j] + 1, E[i,j-1] + 1, E[i-1,j-1] + 1 - \delta_{ij} \right\}$$

DP Tabelle

$$E[i,j] \leftarrow \min \{ E[i-1,j] + 1, E[i,j-1] + 1, E[i-1,j-1] + 1 - \delta_{ij} \}$$

	Ø	Z	I	Ε	G	Ε
\emptyset	0	1	2	3	4	5
Τ	1	1	2	3	4	5
	2	2	1	2	3	4
G	3	3	2	2	2	3
Ε	4	4	3	2	3	2
R	5	5	4	3	4 4 3 2 3 3	3

Algorithmus: Übung!

 $^{^{25}}$ oder füge Zeichen zu B_{i} hinzu

 $^{^{26}{\}rm oder}$ lösche letztes Zeichen von B_j

Matrix-Kettenmultiplikation

Aufgabe: Berechnung des Produktes $A_1 \cdot A_2 \cdot ... \cdot A_n$ von Matrizen A_1, \ldots, A_n .

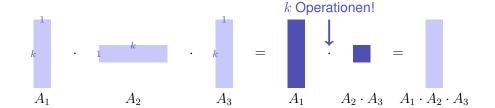
Matrizenmultiplikation ist assoziativ, d.h. Klammerung kann beliebig gewählt.

Ziel: möglichst effiziente Berechnung des Produktes.

Annahme: Multiplikation einer $(r \times s)$ -Matrix mit einer $(s \times u)$ -Matrix hat Kosten $r \cdot s \cdot u$.

Macht das einen Unterschied?





527

Rekursion

- Annahme, dass die bestmögliche Berechnung von $(A_1 \cdot A_2 \cdots A_i)$ und $(A_{i+1} \cdot A_{i+2} \cdots A_n)$ für jedes i bereits bekannt ist.
- Bestimme bestes *i*, fertig.

 $n \times n$ -Tabelle M. Eintrag M[p,q] enthält Kosten der besten Klammerung von $(A_p \cdot A_{p+1} \cdot \cdot \cdot A_q)$.

 $M[p,q] \leftarrow \min_{p \leq i < p} \left(M[p,i] + M[i+1,q] + \text{Kosten letzte Multiplikation} \right)$

Berechnung der DP-Tabelle

- Randfälle: $M[p, p] \leftarrow 0$ für alle $1 \le p \le n$.
- Berechnung von M[p,q] hängt ab von M[i,j] mit $p \le i \le j \le q$, $(i,j) \ne (p,q)$.

Insbesondere hängt M[p,q] höchstens ab von Einträgen M[i,j] mit i-j < q-p.

Folgerung: Fülle die Tabelle von der Diagonale ausgehend.

Analyse

DP-Tabelle hat n^2 Einträge. Berechung eines Eintrages bedingt Betrachten von bis zu n-1 anderen Einträgen. Gesamtlaufzeit $\mathcal{O}(n^3)$.

Auslesen der Reihenfolge aus M: Übung!

Exkurs: Matrixmultiplikation

Betrachten Multiplikation zweier $n \times n$ -Matrizen.

Seien

$$A = (a_{ij})_{1 \le i,j \le n}, B = (b_{ij})_{1 \le i,j \le n}, C = (c_{ij})_{1 \le i,j \le n},$$

 $C = A \cdot B$

dann

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Naiver Algorithmus benötigt $\Theta(n^3)$ elementare Multiplikationen.

531

Divide and Conquer

В	

A C = AB

		c	d
e	f	ea + fc	eb + fd
g	h	ga + hc	gb + hd

Divide and Conquer

- Annahme $n=2^k$.
- Anzahl elementare Multiplikationen: M(n) = 8M(n/2), M(1) = 1.
- Ergibt $M(n) = 8^{\log_2 n} = n^{\log_2 8} = n^3$. Kein Gewinn (2)

	c	d
f	ea + fc	eb+fd

e f ea+fc eb+fd g h ga+hc gb+hd

Strassens Matrixmultiplikation

- Nichttriviale Beobachtung von Strassen (1969): Es genügt die Berechnung der sieben Produkte $A=(e+h)\cdot(a+d),\,B=(g+h)\cdot a,\,C=e\cdot(b-d),\,D=h\cdot(c-a),\,E=(e+f)\cdot d,\,F=(g-e)\cdot(a+b),\,G=(f-h)\cdot(c+d).$ Denn: $ea+fc=A+D-E+G,\,eb+fd=C+E,\,ga+hc=B+D,\,gb+hd=A-B+C+F.$
- Damit ergibt sich M'(n) = 7M(n/2), M'(1) = 1. Also $M'(n) = 7^{\log_2 n} = n^{\log_2 7} \approx n^{2.807}.$
- Schnellster bekannter Algorithmus: $\mathcal{O}(n^{2.37})$

e	f	ea + fc	eb + fd
g	h	ga + hc	gb + hd