19. Dynamic Programming I

Fibonacci, Längste aufsteigende Teilfolge, längste gemeinsame Teilfolge, Editierdistanz, Matrixkettenmultiplikation, Matrixmultiplikation nach Strassen [Ottman/Widmayer, Kap. 1.2.3, 7.1, 7.4, Cormen et al, Kap. 15]

Fibonacci Numbers

(again)

$$F_n := \begin{cases} 1 & \text{if } n < 2 \\ F_{n-1} + F_{n-2} & \text{if } n \ge 3. \end{cases}$$

Analysis: why ist the recursive algorithm so slow?

Algorithm FibonacciRecursive(n)

 $\begin{array}{l} \textbf{Input}: \ n \geq 0 \\ \textbf{Output}: \ n\text{-th Fibonacci number} \\ \textbf{if} \ n \leq 2 \ \textbf{then} \\ | \ f \leftarrow 1 \\ \textbf{else} \\ | \ f \leftarrow \text{FibonacciRecursive}(n-1) + \text{FibonacciRecursive}(n-2) \\ \textbf{return} \ f \end{array}$

Analysis

T(n): Number executed operations.

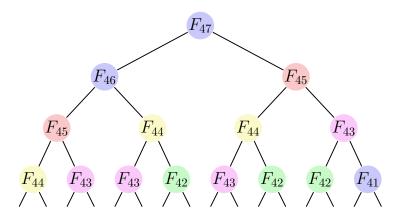
 $n = 1, 2: T(n) = \Theta(1)$

 $n \ge 3$: T(n) = T(n-2) + T(n-1) + c.

 $T(n) = T(n-2) + T(n-1) + c \ge 2T(n-2) + c \ge 2^{n/2}c' = (\sqrt{2})^n c'$

Algorithm is *exponential* in n.

Reason (visual)



Nodes with same values are evaluated often.

Memoization

Memoization (sic) saving intermediate results.

- Before a subproblem is solved, the existence of the corresponding intermediate result is checked.
- If an intermediate result exists then it is used.
- Otherwise the algorithm is executed and the result is saved accordingly.

499

Memoization with Fibonacci

F_{45} F_{45} F_{44} F_{43}

Rechteckige Knoten wurden bereits ausgewertet.

Algorithm FibonacciMemoization(n)

```
\begin{array}{l} \textbf{Input}: n \geq 0 \\ \textbf{Output}: n\text{-th Fibonacci number} \\ \textbf{if} \ n \leq 2 \ \textbf{then} \\ \mid \ f \leftarrow 1 \\ \textbf{else} \ \textbf{if} \ \exists \mathsf{memo}[n] \ \textbf{then} \\ \mid \ f \leftarrow \mathsf{memo}[n] \\ \textbf{else} \\ \mid \ f \leftarrow \mathsf{FibonacciMemoization}(n-1) + \mathsf{FibonacciMemoization}(n-2) \\ \mid \ \mathsf{memo}[n] \leftarrow f \\ \textbf{return} \ f \end{array}
```

Analysis

Looking closer ...

503

Computational complexity:

$$T(n) = T(n-1) + c = \dots = \mathcal{O}(n).$$

Algorithm requires $\Theta(n)$ memory.²⁴

24

²⁴But the naive recursive algorithm also requires $\Theta(n)$ memory implicitly.

... the algorithm computes the values of F_1 , F_2 , F_3 ,... in the *top-down* approach of the recursion.

Can write the algorithm *bottom-up*. Then it is called *dynamic programming*.

Algorithm FibonacciDynamicProgram(n)

Input : $n \ge 0$

Output: *n*-th Fibonacci number

$$\begin{split} F[1] &\leftarrow 1 \\ F[2] &\leftarrow 1 \\ \text{for } i \leftarrow 3, \dots, n \text{ do} \\ & \quad \lfloor F[i] \leftarrow F[i-1] + F[i-2] \\ \text{return } F[n] \end{split}$$

Dynamic Programming: Procedure

Use a *DP-table* with information to the subproblems. Dimension of the entries? Semantics of the entries?

Computation of the base cases Which entries do not depend on others?

Determine *computation order*.

In which order can the entries be computed such that dependencies are fulfilled?

A Read-out the *solution*How can the solution be read out from the table?

Runtime (typical) = number entries of the table times required operations per entry.

Dynamic Programing: Procedure with the example

Longest Ascending Sequence (LAS)

Dimension of the table? Semantics of the entries?

 $n \times 1$ table. nth entry contains nth Fibonacci number.

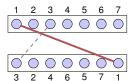
Which entries do not depend on other entries?

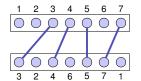
Values F_1 and F_2 can be computed easily and independently.

What is the execution order such that required entries are always available? F_i with increasing i.

Wie kann sich Lösung aus der Tabelle konstruieren lassen?

 F_n ist die n-te Fibonacci-Zahl.

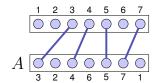




Connect as many as possible fitting ports without lines crossing.

Formally

- \blacksquare Consider Sequence $A = (a_1, \ldots, a_n)$.
- Search for a longest increasing subsequence of *A*.
- **Examples of increasing subsequences:** (3,4,5), (2,4,5,7), (3,4,5,7), (3,7).



Generalization: allow any numbers, even with duplicates. But only strictly increasing subsequences are permitted. Example: (2,3,3,3,5,1) with increasing subsequence (2,3,5).

First idea

Assumption: LAS \mathcal{L}_k known for k Now want to compute \mathcal{L}_{k+1} for k+1 .

If a_{k+1} fits to L_k , then $L_{k+1} = L_k \oplus a_{k+1}$

Counterexample $A_5 = (1, 2, 5, 3, 4)$. Let $A_3 = (1, 2, 5)$ with $L_3 = A$. Determine L_4 from L_3 ?

It does not work this way, we cannot infer L_{k+1} from L_k .

50

Second idea.

Assumption: a LAS L_j is known for each $j \leq k$. Now compute LAS L_{k+1} for k+1.

Look at all fitting $L_{k+1} = L_j \oplus a_{k+1}$ ($j \leq k$) and choose a longest sequence.

Counterexample: $A_5 = (1, 2, 5, 3, 4)$. Let $A_4 = (1, 2, 5, 3)$ with $L_1 = (1)$, $L_2 = (1, 2)$, $L_3 = (1, 2, 5)$, $L_4 = (1, 2, 5)$. Determine L_5 from L_1, \ldots, L_4 ?

That does not work either: cannot infer L_{k+1} from only *an arbitrary* solution L_i . We need to consider all LAS. Too many.

Third approach

Assumption: the LAS L_j , that ends with smallest element is known for each of the lengths $1 \le j \le k$.

Consider all fitting $L_j \oplus a_{k+1}$ ($j \leq k$) and update the table of the LAS,that end with smallest possible element.

Example: A = (1, 1000, 1001, 2, 3, 4, ..., 999)

A	LAT
(1)	(1)
(1, 1000)	(1), (1, 1000)
(1, 1000, 1001)	(1), (1, 1000), (1, 1000, 1001)
(1, 1000, 1001, 2)	(1), (1, 2), (1, 1000, 1001)
(1, 1000, 1001, 2, 3)	(1), (1, 2), (1, 2, 3)

511

DP Table

- Idea: save the last element of an increasing sequence at slot j.
- Example: 3 2 5 1 6 4
- Problem: Table does not contain the subsequence, only the last value.
- Solution: second table with the predecessors.

Index	1	2	3	4	5	6
Wert	3	2	5	1	6	4
Predecessor	$-\infty$	$-\infty$	2	$-\infty$	5	1

0	1	2	3	4	
-∞	∞	∞	∞	∞	
$-\infty$	3	∞	∞	∞	
$-\infty$	2	∞	∞	∞	
- ∞	2	5	∞	∞	
$-\infty$	1	5	∞	∞	
- ∞	1	5	6	∞	
-∞	1	4	6	∞	

Dynamic Programming Algorithm LAS

Table dimension? Semantics?

Two tables $T[0,\ldots,n]$ and $V[1,\ldots,n]$. Start with $T[0]\leftarrow -\infty$, $T[i]\leftarrow \infty \ \forall i>1$

Computation of an entry

Entries in T sorted in ascending order. For each new entry a_{k+1} binary search for l, such that $T[l] < a_k < T[l+1]$. Set $T[l+1] \leftarrow a_{k+1}$. Set V[k] = T[l].

51

Dynamic Programming algorithm LAS

Computation order

Traverse the list anc compute T[k] and V[k] with ascending k

How can the solution be determined from the table?

Search the largest l with $T[l] < \infty$. l is the last index of the LAS. Starting at l search for the index i < l such that V[l] = A[i], i is the predecessor of l. Repeat with $l \leftarrow i$ until $T[l] = -\infty$

Analysis

- Computation of the table:
 - Initialization: $\Theta(n)$ Operations
 - Computation of the kth entry: binary search on positions $\{1,\ldots,k\}$ plus constant number of assignments.

$$\sum_{k=1}^{n} (\log k + \mathcal{O}(1)) = \mathcal{O}(n) + \sum_{k=1}^{n} \log(k) = \Theta(n \log n).$$

Reconstruction: traverse A from right to left: $\mathcal{O}(n)$.

Overal runtime:

$$\Theta(n \log n)$$
.

515

_

Longest common subsequence

Subsequences of a string:

Subsequences(KUH): (), (K), (U), (H), (KU), (KH), (UH), (KUH)

Problem:

- Input: two strings $A=(a_1,\ldots,a_m)$, $B=(b_1,\ldots,b_n)$ with lengths m>0 and n>0.
- Wanted: Longest common subsequecnes (LCS) of *A* and *B*.

Application: DNA sequence alignment.

Longest Common Subsequence

Examples:

LGT(IGEL,KATZE)=E, LGT(TIGER,ZIEGE)=IGE

Ideas to solve?

Recursive Procedure

Assumption: solutions L(i,j) known for $A[1,\ldots,i]$ and $B[1,\ldots,j]$ for all $1 \le i \le m$ and $1 \le j \le n$, but not for i=m and j=n.

Consider characters a_m , b_n . Three possibilities:

- **1** A is enlarged by one whitespace. L(m, n) = L(m, n 1)
- **2** B is enlarged by one whitespace. L(m,n) = L(m-1,n)
- If $L(m,n) = L(m-1,n-1) + \delta_{mn}$ with $\delta_{mn} = 1$ if $a_m = b_n$ and $\delta_{mn} = 0$ otherwise

Recursion

 $L(m,n) \leftarrow \max \{L(m-1,n-1) + \delta_{mn}, L(m,n-1), L(m-1,n)\}$ for m,n>0 and base cases $L(\cdot,0)=0, L(0,\cdot)=0.$

	Ø	Z	-	Ε	G	Ε
Ø	0	0	0	0	0	0
Τ	0	0	0	0	0	0
I	0	0	1	1	1	1
G	0	0	1	1	2	2
Ε	0	0	1	2	2	3
R	0	0	1	2	0 0 1 2 2 2	3

519

Dynamic Programming algorithm LCS

Dimension of the table? Semantics?

Table $L[0,\ldots,m][0,\ldots,n]$. L[i,j]: length of a LCS of the strings (a_1,\ldots,a_i) and (b_1,\ldots,b_j)

Computation of an entry

 $L[0,i] \leftarrow 0 \ \forall 0 \leq i \leq m, \ L[j,0] \leftarrow 0 \ \forall 0 \leq j \leq n. \ \text{Computation of} \ L[i,j] \ \text{otherwise via} \ L[i,j] = \max(L[i-1,j-1] + \delta_{ij}, L[i,j-1], L[i-1,j]).$

Dynamic Programming algorithm LCS

Computation order

Rows increasing and within columns increasing (or the other way round).

Reconstruct solution?

Start with $j=m,\,i=n.$ If $a_i=b_j$ then output a_i otherwise, if L[i,j]=L[i,j-1] continue with $j\leftarrow j-1$ otherwise if L[i,j]=L[i-1,j] continue with $i\leftarrow i-1$. Terminate for i=0 or j=0.

Analysis LCS

- Number table entries: $(m+1) \cdot (n+1)$.
- Constant number of assignments and comparisons each. Number steps: $\mathcal{O}(mn)$
- Determination of solition: decrease i or j. Maximally $\mathcal{O}(n+m)$ steps.

Runtime overal:

 $\mathcal{O}(mn)$.

Editing Distance

Editing distance of two sequences $A = (a_1, \ldots, a_m)$, $B = (b_1, \ldots, b_m)$.

Editing operations:

- Insertion of a character
- Deletion of a character
- Replacement of a character

Question: how many editing operations at least required in order to transform string A into string B.

TIGER ZIGER ZIEGER ZIEGE

Editing Distance = Levenshtein Distance

Procedure?

- Two dimensional table E[0, ..., m][0, ..., n] with editing distances E[i, j] of strings $A_i = (a_1, ..., a_i)$ and $B_j = (b_1, ..., b_j)$.
- \blacksquare Consider the last characters of A_i and B_i . Three possible cases:
 - Delete last character of A_i : ²⁵ E[i-1, j] + 1.
 - 2 Append character to A_i : $^{26}E[i, j-1]+1$.
 - Replace A_i by B_j : $E[i-1, j-1] + 1 \delta_{ij}$.

$$E[i,j] \leftarrow \min \{E[i-1,j]+1, E[i,j-1]+1, E[i-1,j-1]+1-\delta_{ij}\}$$

DP Table

523

$$E[i,j] \leftarrow \min \{ E[i-1,j] + 1, E[i,j-1] + 1, E[i-1,j-1] + 1 - \delta_{ij} \}$$

	Ø	Z	I	Ε	G	Ε
Ø	0	1	2	3	4	5
Τ	1	1	2	3	4	5
	2	2	1	2	3	4
G	3	3	2	2	2	3
Ε	4	4	3	2	3	2
R	5	5	4	3	4 4 3 2 3 3	3

Algorithm: exercise

 $^{^{25}}$ or append character to B_j

 $^{^{\}rm 26} {\rm or}$ delete last character of B_j

Matrix-Chain-Multiplication

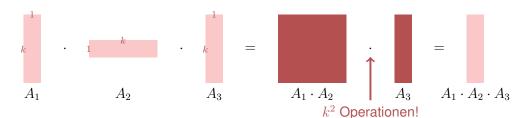
Task: Computation of the product $A_1 \cdot A_2 \cdot \ldots \cdot A_n$ of matrices A_1, \ldots, A_n .

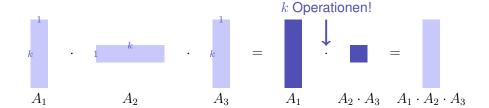
Matrix multiplication is associative, d.h. the order of execution can be chosen arbitrarily

Goal: efficient computation of the product.

Assumption: multiplication of an $(r \times s)$ -matrix with an $(s \times u)$ -matrix provides costs $r \cdot s \cdot u$.

Does it matter?





527

Recursion

- Assume that the best possible computation of $(A_1 \cdot A_2 \cdots A_i)$ and $(A_{i+1} \cdot A_{i+2} \cdots A_n)$ is known for each i.
- \blacksquare Compute best i, done.

 $n \times n$ -table M. entry M[p,q] provides costs of the best possible bracketing $(A_p \cdot A_{p+1} \cdots A_q)$.

 $M[p,q] \leftarrow \min_{p \leq i < p} \left(M[p,i] + M[i+1,q] + \text{costs of the last multiplication} \right)$

Computation of the DP-table

- Base cases $M[p,p] \leftarrow 0$ for all $1 \le p \le n$.
- Computation of M[p,q] depends on M[i,j] with $p \le i \le j \le q$, $(i,j) \ne (p,q)$.

In particular M[p,q] depends at most from entries M[i,j] with i-j < q-p.

Consequence: fill the table from the diagonal.

Analysis

DP-table has n^2 entries. Computation of an entry requires considering up to n-1 other entries.

Overal runtime $\mathcal{O}(n^3)$.

Readout the order from M: exercise!

Digression: matrix multiplication

Consider the mutliplication of two $n \times n$ matrices.

Let

$$A = (a_{ij})_{1 \le i,j \le n}, B = (b_{ij})_{1 \le i,j \le n}, C = (c_{ij})_{1 \le i,j \le n},$$

 $C = A \cdot B$

then

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Naive algorithm requires $\Theta(n^3)$ elementary multiplications.

Divide and Conquer

B

A

C = AB

		c	d
e	f	ea + fc	eb + fd
g	h	ga + hc	gb+hd

a

Divide and Conquer

- Assumption $n = 2^k$.
- Number of elementary multiplications: M(n) = 8M(n/2), M(1) = 1.
- yields $M(n) = 8^{\log_2 n} = n^{\log_2 8} = n^3$. No advantage

e	f	ea + fc	eb + fd
q	h	aa + hc	ab + hd

Strassen's Matrix Multiplication

■ Nontrivial observation by Strassen (1969):

It suffices to compute the seven products

$$A = (e+h) \cdot (a+d), B = (g+h) \cdot a,$$

$$C = e \cdot (b-d), D = h \cdot (c-a), E = (e+f) \cdot d,$$

$$F = (g-e) \cdot (a+b), G = (f-h) \cdot (c+d). \text{ Denn:}$$

$$ea + fc = A + D - E + G, eb + fd = C + E,$$

$$ga + hc = B + D, gb + hd = A - B + C + F.$$

- This yields M'(n) = 7M(n/2), M'(1) = 1. Thus $M'(n) = 7^{\log_2 n} = n^{\log_2 7} \approx n^{2.807}$.
- Fastest currently known algorithm: $\mathcal{O}(n^{2.37})$

e	f	ea + fc	eb + fd
g	h	ga + hc	gb + hd