16. Binary Search Trees

[Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap. 12.1 - 12.3]

Hashing: implementation of dictionaries with expected very fast access times.

Disadvantages of hashing: linear access time in worst case. Some operations not supported at all:

- enumerate keys in increasing order
- next smallest key to given key

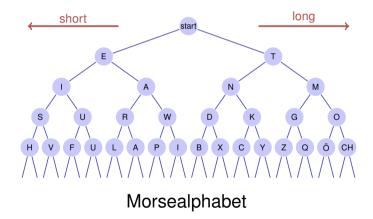
Trees are

Generalized lists: nodes can have more than one successor
 Special graphs: graphs consist of nodes and edges. A tree is a fully connected, directed, acyclic graph.

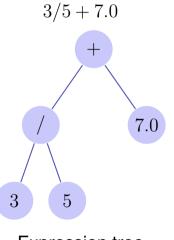
Use

- Decision trees: hierarchic representation of decision rules
- syntax trees: parsing and traversing of expressions, e.g. in a compiler
- Code tress: representation of a code, e.g. morse alphabet, huffman code
- Search trees: allow efficient searching for an element by value

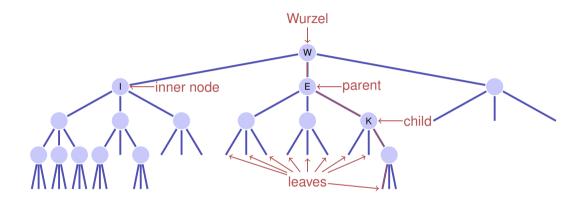
Examples



Examples



Nomenclature

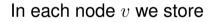


Order of the tree: maximum number of child nodes, here: 3
Height of the tree: maximum path length root – leaf (here: 4)

Binary Trees

A binary tree is either

- a leaf, i.e. an empty tree, or
- an inner leaf with two trees T_l (left subtree) and T_r (right subtree) as left and right successor.



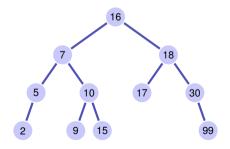
a key v.key and

- two nodes v.left and v.right to the roots of the left and right subtree.
- a leaf is represented by the **null**-pointer

Binary search tree

A binary search tree is a binary tree that fulfils the search tree property:

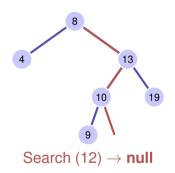
- Every node v stores a key
- Keys in the left subtree v.left of v are smaller than v.key
- Key in the right subtree v.right of v are larger than v.key



Searching

```
Input : Binary search tree with root r, key k
Output : Node v with v.key = k or null
v \leftarrow r
while v \neq null do
    if k = v.key then
         return v
    else if k < v.kev then
        v \leftarrow v.left
    else
     v \leftarrow v.right
```

return null



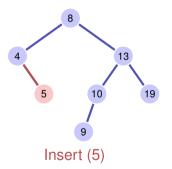
The height h(T) of a tree T with root r is given by

$$h(r) = \begin{cases} 0 & \text{if } r = \textbf{null} \\ 1 + \max\{h(r.\text{left}), h(r.\text{right})\} & \text{otherwise.} \end{cases}$$

The worst case run time of the search is thus $\mathcal{O}(h(T))$

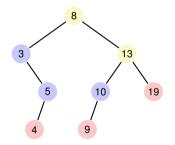
Insertion of the key k

- Search for k
- If successful search: output error
- Of no success: insert the key at the leaf reached



Three cases possible:
Node has no children
Node has one child
Node has two children

[Leaves do not count here]



Remove node

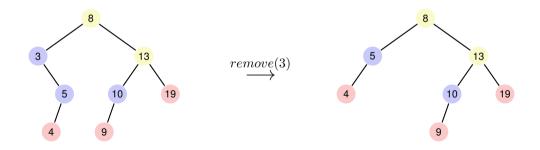
Node has no children

Simple case: replace node by leaf.

Remove node

Node has one child

Also simple: replace node by single child.



Remove node

Node has two children

The following observation helps: the smallest key in the right subtree v.right (the *symmetric successor* of v)

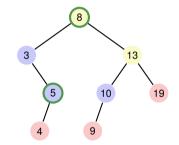
- **is smaller than all keys in** v.right
- is greater than all keys in *v*.left
- and cannot have a left child.

Solution: replace v by its symmetric successor.



Node has two children

Also possible: replace v by its symmetric predecessor.



Algorithm SymmetricSuccessor(v)

```
Input : Node v of a binary search tree.

Output : Symmetric successor of v

w \leftarrow v.right

x \leftarrow w.left

while x \neq null do

w \leftarrow x

x \leftarrow x.left
```

return w

Deletion of an element v from a tree T requires $\mathcal{O}(h(T))$ fundamental steps:

- Finding v has costs $\mathcal{O}(h(T))$
- If v has maximal one child unequal to **null**then removal takes $\mathcal{O}(1)$ steps
- Finding the symmetric successor n of v takes $\mathcal{O}(h(T))$ steps. Removal and insertion of n takes $\mathcal{O}(1)$ steps.

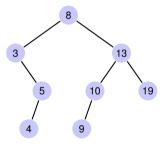
Traversal possibilities

```
preorder: v, then T_{\text{left}}(v), then
   T_{\text{right}}(v).
                                                                        8
   8, 3, 5, 4, 13, 10, 9, 19
                                                              3
postorder: T_{\text{left}}(v), then T_{\text{right}}(v), then
   v.
                                                                            10
   4, 5, 3, 9, 10, 19, 13, 8
inorder: T_{\text{left}}(v), then v, then T_{\text{right}}(v).
                                                                          9
   3. 4. 5. 8. 9. 10. 13. 19
```

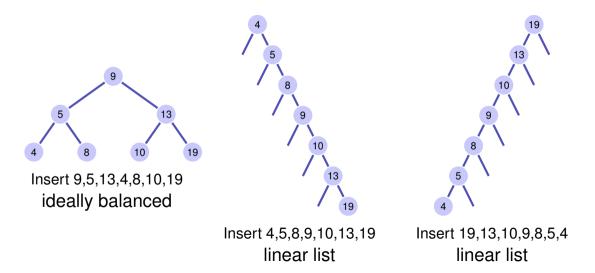
13

Further supported operations

- Min(*T*): Read-out minimal value in *O*(*h*)
- ExtractMin(T): Read-out and remove minimal value in O(h)
- List(T): Output the sorted list of elements
- Join (T_1, T_2) : Merge two trees with $\max(T_1) < \min(T_2)$ in $\mathcal{O}(n)$.



Degenerated search trees



17. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al, Kap. Problem 13-3]

Objective

Searching, insertion and removal of a key in a tree generated from n keys inserted in random order takes expected number of steps $\mathcal{O}(\log_2 n)$.

But worst case $\Theta(n)$ (degenerated tree).

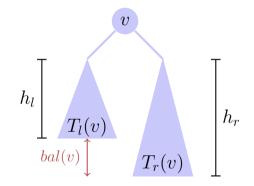
Goal: avoidance of degeneration. Artificial balancing of the tree for each update-operation of a tree.

Balancing: guarantee that a tree with n nodes always has a height of $\mathcal{O}(\log n)$.

Adelson-Venskii and Landis (1962): AVL-Trees

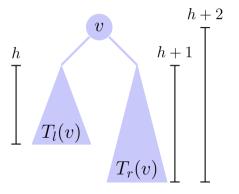
The height *balance* of a node v is defined as the height difference of its sub-trees $T_l(v)$ and $T_r(v)$

$$\operatorname{bal}(v) := h(T_r(v)) - h(T_l(v))$$

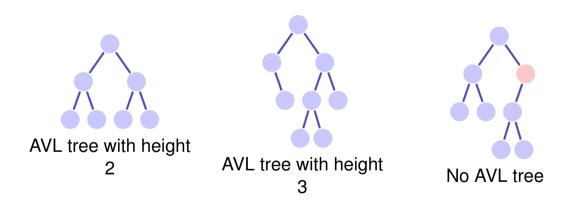


AVL Condition

AVL Condition: for each node v of a tree $bal(v) \in \{-1, 0, 1\}$



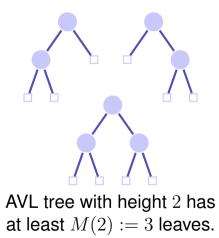
(Counter-)Examples



- 1. observation: a binary search tree with n keys provides exactly n+1 leaves. Simple induction argument.
- 2. observation: a lower bound of the number of leaves in a search tree with given height implies an upper bound of the height of a search tree with given number of keys.

Lower bound of the leaves

AVL tree with height 1 has
$$M(1) := 2$$
 leaves.

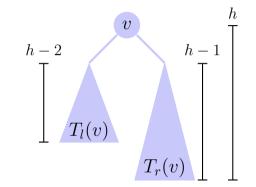


Lower bound of the leaves for h > 2

■ Height of one subtree ≥ h - 1.
■ Height of the other subtree ≥ h - 2.

Minimal number of leaves M(h) is

$$M(h) = M(h-1) + M(h-2)$$



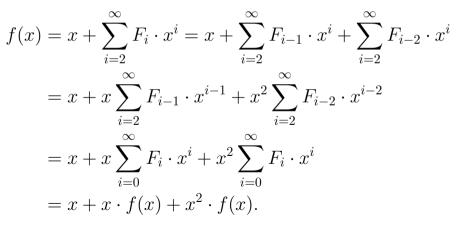
Overal we have $M(h) = F_{h+2}$ with *Fibonacci-numbers* $F_0 := 0$, $F_1 := 1$, $F_n := F_{n-1} + F_{n-2}$ for n > 1.

Closed form of the Fibonacci numbers: computation via generation functions:

Power series approach

$$f(x) := \sum_{i=0}^{\infty} F_i \cdot x^i$$

2 For Fibonacci Numbers it holds that $F_0 = 0$, $F_1 = 1$, $F_i = F_{i-1} + F_{i-2} \forall i > 1$. Therefore:



3 Thus:

$$f(x) \cdot (1 - x - x^2) = x.$$

$$\Leftrightarrow \quad f(x) = \frac{x}{1 - x - x^2}$$

$$\Leftrightarrow \quad f(x) = \frac{x}{(1 - \phi x) \cdot (1 - \hat{\phi} x)}$$

with the roots ϕ and $\hat{\phi}$ of $1 - x - x^2$.

$$\phi = \frac{1 + \sqrt{5}}{2}$$
$$\hat{\phi} = \frac{1 - \sqrt{5}}{2}.$$

It holds that:

$$(1 - \hat{\phi}x) - (1 - \phi x) = \sqrt{5} \cdot x.$$

Damit:

$$f(x) = \frac{1}{\sqrt{5}} \frac{(1 - \hat{\phi}x) - (1 - \phi x)}{(1 - \phi x) \cdot (1 - \hat{\phi}x)}$$
$$= \frac{1}{\sqrt{5}} \left(\frac{1}{1 - \phi x} - \frac{1}{1 - \hat{\phi}x}\right)$$

5 Power series of $g_a(x) = \frac{1}{1-a \cdot x}$ $(a \in \mathbb{R})$:

$$\frac{1}{1-a\cdot x} = \sum_{i=0}^{\infty} a^i \cdot x^i.$$

E.g. Taylor series of $g_a(x)$ at x = 0 or like this: Let $\sum_{i=0}^{\infty} G_i \cdot x^i$ a power series of g. By the identity $g_a(x)(1 - a \cdot x) = 1$ it holds that

$$1 = \sum_{i=0}^{\infty} G_i \cdot x^i - a \cdot \sum_{i=0}^{\infty} G_i \cdot x^{i+1} = G_0 + \sum_{i=1}^{\infty} (G_i - a \cdot G_{i-1}) \cdot x^i$$

Thus $G_0 = 1$ and $G_i = a \cdot G_{i-1} \Rightarrow G_i = a^i$.

6 Fill in the power series:

$$\begin{split} f(x) &= \frac{1}{\sqrt{5}} \left(\frac{1}{1 - \phi x} - \frac{1}{1 - \hat{\phi} x} \right) = \frac{1}{\sqrt{5}} \left(\sum_{i=0}^{\infty} \phi^i x^i - \sum_{i=0}^{\infty} \hat{\phi}^i x^i \right) \\ &= \sum_{i=0}^{\infty} \frac{1}{\sqrt{5}} (\phi^i - \hat{\phi}^i) x^i \end{split}$$

Comparison of the coefficients with $f(x) = \sum_{i=0}^{\infty} F_i \cdot x^i$ yields

$$F_i = \frac{1}{\sqrt{5}} (\phi^i - \hat{\phi}^i).$$

Fibonacci Numbers

It holds that $F_i = \frac{1}{\sqrt{5}}(\phi^i - \hat{\phi}^i)$ with roots ϕ , $\hat{\phi}$ of the equation $x^2 = x + 1$ (golden ratio), thus $\phi = \frac{1+\sqrt{5}}{2}$, $\hat{\phi} = \frac{1-\sqrt{5}}{2}$.

Proof (induction). Immediate for i = 0, i = 1. Let i > 2:

$$F_{i} = F_{i-1} + F_{i-2} = \frac{1}{\sqrt{5}} (\phi^{i-1} - \hat{\phi}^{i-1}) + \frac{1}{\sqrt{5}} (\phi^{i-2} - \hat{\phi}^{i-2})$$

$$= \frac{1}{\sqrt{5}} (\phi^{i-1} + \phi^{i-2}) - \frac{1}{\sqrt{5}} (\hat{\phi}^{i-1} + \hat{\phi}^{i-2}) = \frac{1}{\sqrt{5}} \phi^{i-2} (\phi + 1) - \frac{1}{\sqrt{5}} \hat{\phi}^{i-2} (\hat{\phi} + 1)$$

$$= \frac{1}{\sqrt{5}} \phi^{i-2} (\phi^{2}) - \frac{1}{\sqrt{5}} \hat{\phi}^{i-2} (\hat{\phi}^{2}) = \frac{1}{\sqrt{5}} (\phi^{i} - \hat{\phi}^{i}).$$

Tree Height

Because $\hat{\phi} < 1,$ overal we have

$$M(h) \in \Theta\left(\left(\frac{1+\sqrt{5}}{2}\right)^{h}\right) \subseteq \Omega(1.618^{h})$$

and thus

$$h \le 1.44 \log_2 n + c.$$

AVL tree is asymptotically not more than 44% higher than a perfectly balanced tree.

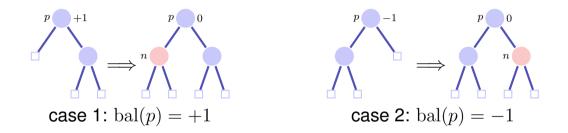
Balance

- Keep the balance stored in each node
- Re-balance the tree in each update-operation

New node n is inserted:

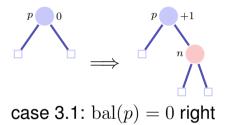
- Insert the node as for a search tree.
- Check the balance condition increasing from n to the root.

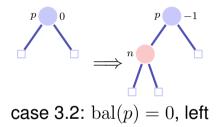
Balance at Insertion Point



Finished in both cases because the subtree height did not change

Balance at Insertion Point





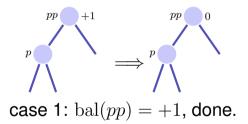
Not finished in both case. Call of upin(p)

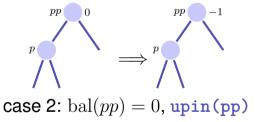
When upin(p) is called it holds that

■ the subtree from p is grown and
■ bal(p) ∈ {-1, +1}

upin(p)

Assumption: p is left son of pp^{17}



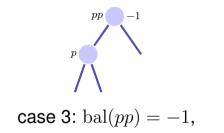


In both cases the AVL-Condition holds for the subtree from pp

 $^{^{17}}$ If p is a right son: symmetric cases with exchange of +1 and -1

upin(p)

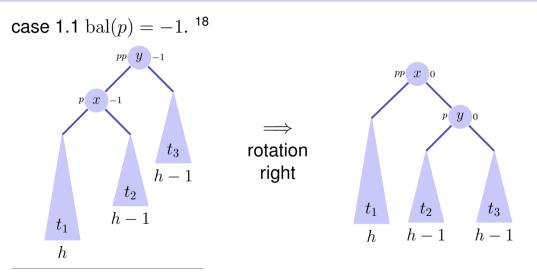
Assumption: p is left son of pp



This case is problematic: adding n to the subtree from pp has violated the AVL-condition. Re-balance!

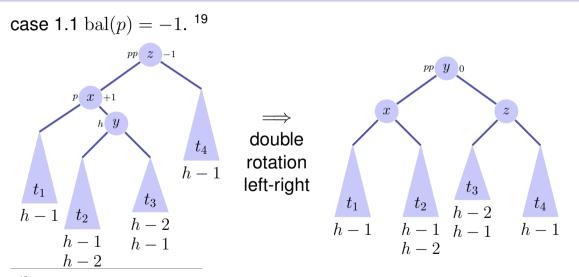
Two cases bal(p) = -1, bal(p) = +1

Rotationen



¹⁸p right son: bal(pp) = bal(p) = +1, left rotation

Rotationen



¹⁹p right son: bal(pp) = +1, bal(p) = -1, double rotation right left

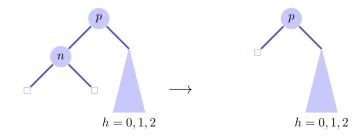
- Tree height: $\mathcal{O}(\log n)$.
- Insertion like in binary search tree.
- Balancing via recursion from node to the root. Maximal path lenght O(log n).

Insertion in an AVL-tree provides run time costs of $O(\log n)$.

Deletion

Case 1: Children of node n are both leaves Let p be parent node of $n. \Rightarrow$ Other subtree has height h' = 0, 1 or 2.

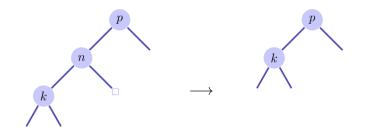
- h' = 1: Adapt bal(p).
- h' = 0: Adapt bal(p). Call upout (p).
- h' = 2: Rebalanciere des Teilbaumes. Call upout (p).



Deletion

Case 2: one child k of node n is an inner node

Replace n by k. upout (k)



Case 3: both children of node n are inner nodes

- Replace n by symmetric successor. upout (k)
- Deletion of the symmetric successor is as in case 1 or 2.

Let pp be the parent node of p.

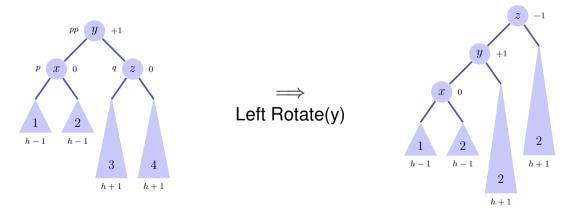
(a) p left child of pp

1
$$\operatorname{bal}(pp) = -1 \Rightarrow \operatorname{bal}(pp) \leftarrow 0.$$
 upout (pp)
2 $\operatorname{bal}(pp) = 0 \Rightarrow \operatorname{bal}(pp) \leftarrow +1.$
3 $\operatorname{bal}(pp) = +1 \Rightarrow \operatorname{next slides.}$

(b) p right child of pp: Symmetric cases exchanging +1 and -1.

upout(p)

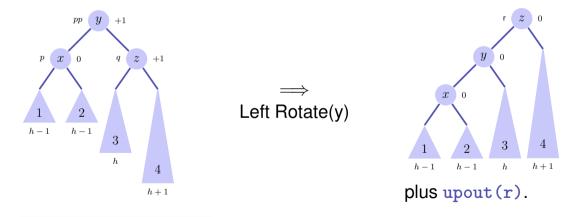
Case (a).3: bal(pp) = +1. Let q be brother of p (a).3.1: bal(q) = 0.20



²⁰(b).3.1: bal(pp) = -1, bal(q) = -1, Right rotation

upout(p)

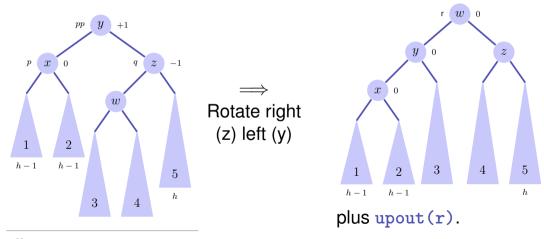
Case (a).3:
$$bal(pp) = +1$$
. (a).3.2: $bal(q) = +1.^{21}$



²¹(b).3.2: bal(pp) = -1, bal(q) = +1, Right rotation+upout

upout(p)

Case (a).3:
$$bal(pp) = +1$$
. (a).3.3: $bal(q) = -1.^{22}$



²²(b).3.3: $\operatorname{bal}(pp) = -1$, $\operatorname{bal}(q) = -1$, left-right rotation + upout

Conclusion

- AVL trees have worst-case asymptotic runtimes of $O(\log n)$ for searching, insertion and deletion of keys.
- Insertion and deletion is relatively involved and an overkill for really small problems.