
Datenstrukturen und Algorithmen

Vorlesung am D-Math (CSE) der ETH Zürich

Felix Friedrich

FS 2017

1

Willkommen!

Course homepage

http://lec.inf.ethz.ch/DA/2017

The team:

Assistenten Alexander Pilz
Daniel Hupp
Lukas Humbel

Dozent Felix Friedrich

2

http://lec.inf.ethz.ch/DA/2017

1. Introduction

Algorithms and Data Structures, Three Examples

3

Goals of the course

Understand the design and analysis of fundamental algorithms
and data structures.
An advanced insight into a modern programming model (with
C++).
Knowledge about chances, problems and limits of the parallel and
concurrent computing.

4

Goals of the course

On the one hand

Essential basic knowlegde from computer science.

Andererseits

Preparation for your further course of studies and practical
considerations.

5

Contents
data structures / algorithms
The notion invariant, cost model, Landau notation

algorithms design, induction
searching, selection and sorting

dynamic programming
dictionaries: hashing and search trees

graphs, shortest paths, backtracking, flow
geometric algorithms, high peformance LA
Randomized algorithms (Gibbs/SA), multiscale approach

sorting networks, parallel algorithms

prorgamming with C++
RAII, Move Konstruktion, Smart Pointers,

Templates and generic programming
Exceptions

Constexpr, user defined literals

functors and lambdas
threads, mutex and monitors

promises and futures

parallel programming
parallelism vs. concurrency, speedup (Amdahl/-
Gustavson), races, memory reordering, atomir reg-
isters, RMW (CAS,TAS), deadlock/starvation

6

literature

Algorithmen und Datenstrukturen, T. Ottmann, P. Widmayer,
Spektrum-Verlag, 5. Auflage, 2011

Algorithmen - Eine Einführung, T. Cormen, C. Leiserson, R.
Rivest, C. Stein, Oldenbourg, 2010

Introduction to Algorithms, T. Cormen, C. Leiserson, R. Rivest, C.
Stein , 3rd ed., MIT Press, 2009

The C++ Programming Language, B. Stroustrup, 4th ed.,
Addison-Wesley, 2013.

The Art of Multiprocessor Programming, M. Herlihy, N. Shavit,
Elsevier, 2012.

7

1.2 Algorithms

[Cormen et al, Kap. 1;Ottman/Widmayer, Kap. 1.1]

8

Algorithm

Algorithm: well defined computing procedure to compute output data
from input data

9

example problem

Input : A sequence of n numbers (a1, a2, . . . , an)
Output : Permutation (a′1, a

′
2, . . . , a

′
n) of the sequence (ai)1≤i≤n, such that

a′1 ≤ a′2 ≤ · · · ≤ a′n

Possible input
(1, 7, 3), (15, 13, 12,−0.5), (1) . . .

Every example represents a problem instance

10

Examples for algorithmic problems

routing: shortest path
cryptography / digital signatures
time table / working plans: linear programming
DNA matching: dynamic programming
fabrication pipeline: topological sort
geometric probelms, e.g. convex hull

11

Characteristics

Extremely large number of potential solutions
Practical applicability

12

Darta Structures

Organisation of the data tailored towards the algorithms that
operate on the data.
Programs = algorithms + data structures.

13

Very hard problems.

NP-compleete problems: no known efficient solution (but the
non-existence of such a solution is not proven yet!)
Example: travelling salesman problem

14

A dream

If computers were infinitely fast and had an infinite amount of
memory ...
... then we would still need the theory of algorithms (only) for
statements about correctness (and termination).

15

The reality

Resources are bounded and not free:

Computing time→ Efficiency
Storage space→ Efficiency

16

1.3 Organisation

17

The exercise process
Mo Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So

Publication

Pre discussion

Submission

Post discussion

V V V VÜ Ü

Exercise publication each Thursday
Preliminary discussion on Friday
Latest submission Thursday one week later
Debriefing of the exercise on follong Friday. Feedback to your submissions
within a week after debriefing.

18

Codeboard
Codeboard is an online-IDE: programming in the browser

Examples can be tried without
any tool installation.

Used for the exercises.

Jetzt mit C++14

19

Codeboard @ETH

Codeboard consists of two independent communicating systems:

The ETH submission
system Allows us to correct you
submissions

The online IDE The
programming environment.

User

ETH submis-
sion system

http://codeboard.ethz.ch

Login using ETH Credentials

Codeboard.io
http://codeboard.io

Login using Codeboard.io Credentials

20

http://codeboard.ethz.ch
http://codeboard.io

Codeboard

Codeboard.io registration
Go to http://codeboard.io and create an account, best is to stay
logged in

Register for the recitation sessions
Go to http://codeboard.ethz.ch/da and register for a recitation
session there.

21

http://codeboard.io
http://codeboard.ethz.ch/da

Codeboard.io registration
Should you not yet have a Codeboard.io account ...

We will be using the online IDE
Codeboard.io
create an account in order to be
able to store your progress
Login data can be chose
arbitrarily. Do not use your ETH
password.

22

Codeboard.io Login
If you have an account, log in:

23

Recitation session registration - I
Visit http://codeboard.ethz.ch/da
Login with your ETH account

24

http://codeboard.ethz.ch/da

Recitation session registration - II
Register using the dialog with a recitation session.

25

The first exercise
You are now registered and the first exercise is loaded. Follow the
guidelines in the yellow box. The exercise sheet on the course
homepage contains further instructions and explanations.

26

The first exercise – Codeboard.io Login

If you see this message, click on Sign in now and log in with your
Codeboard.io account.

27

The first exercise – store progress!

Attention! Store your progress on
a regular basis. The you can con-
tinue somewhere else easily.

28

About the exercises
Since HS 2013 no exercise certificate required any more for exam
admission
Doing the exercises and going to the recitation sessions is
optional but highly recommended!

29

Relevant for the exam

Material for the exam comprises

Course content (lectures, handout)

Exercises content (exercise sheets, recitation hours)

Written exam (120 min). Examination aids: four A4 pages (or two sheets of 2 A4
pages double sided) either hand written or with font size minimally 11 pt.

30

In your and our interest

Please let us know early if you see any problems, if

the lectures are too fast, too difficult, too ...
the exercises are not doable or not understandable ...
you do not feel well supported ...

In short: if you have
any issues that we can fix.

31

1.4 Ancient Egyptian Multiplication

Ancient Egyptian Multiplication

32

Example 1: Ancient Egyptian Multiplication1

Compute 11 · 9

11 9
22 4
44 2
88 1
99 −

9 11
18 5
36 2
72 1
99

1 Double left, integer division
by 2 on the right

2 Even number on the right⇒
eliminate row.

3 Add remaining rows on the
left.

1Also known as russian multiplication
33

Advantages

Short description, easy to grasp
Efficient to implement on a computer: double = left shift, divide by
2 = right shift

Beispiel

left shift 9 = 010012 → 100102 = 18
right shift 9 = 010012 → 001002 = 4

34

Questions

Does this always work (negative numbers?)?
If not, when does it work?
How do you prove correctness?
Is it better than the school method?
What does “good” mean at all?
How to write this down precisely?

35

Observation

If b > 1, a ∈ Z, then:

a · b =

{
2a · b2 falls b gerade,
a+ 2a · b−12 falls b ungerade.

36

Termination

a · b =


a falls b = 1,
2a · b2 falls b gerade,
a+ 2a · b−12 falls b ungerade.

37

Recursively, Functional

f(a, b) =


a falls b = 1,
f(2a, b2) falls b gerade,
a+ f(2a, b−12) falls b ungerade.

38

Implemented

// pre: b>0
// post: return a∗b
int f(int a, int b){

if(b==1)
return a;

else if (b%2 == 0)
return f(2∗a, b/2);

else
return a + f(2∗a, (b−1)/2);

}

39

Correctnes

f(a, b) =


a if b = 1,
f(2a, b2) if b even,
a+ f(2a · b−12) if b odd.

Remaining to show: f(a, b) = a · b for a ∈ Z, b ∈ N+.

40

Proof by induction

Base clause: b = 1⇒ f(a, b) = a = a · 1.
Hypothesis: f(a, b′) = a · b′ für 0 < b′ ≤ b

Step: f(a, b+ 1)
!
= a · (b+ 1)

f(a, b+ 1) =


f(2a,

≤b︷ ︸︸ ︷
b+ 1

2
) = a · (b+ 1) if b odd,

a+ f(2a,
b

2︸︷︷︸
≤b

) = a+ a · b if b even.

�
41

End Recursion
The recursion can be writen as end recursion

// pre: b>0
// post: return a∗b
int f(int a, int b){

if (b==1)
return a;

else if (b%2 == 0)
return f(2∗a, b/2);

else
return a + f(2∗a, (b−1)/2);

}

// pre: b>0
// post: return a∗b
int f(int a, int b){

if (b==1)
return a;

int z=0;
if (b%2 != 0){
−−b;
z=a;

}
return z + f(2∗a, b/2);

}

42

End-Recursion⇒ Iteration

// pre: b>0
// post: return a∗b
int f(int a, int b){

if (b==1)
return a;

int z=0;
if (b%2 != 0){
−−b;
z=a;

}
return z + f(2∗a, b/2);

}

int f(int a, int b) {
int res = 0;
while (b != 1) {

int z = 0;
if (b % 2 != 0){
−−b;
z = a;

}
res += z;
a ∗= 2; // neues a
b /= 2; // neues b

}
res += a; // Basisfall b=1
return res ;

}
43

Simplify
int f(int a, int b) {

int res = 0;
while (b != 1) {

int z = 0;
if (b % 2 != 0){
−−b;
z = a;

}
res += z;
a ∗= 2;
b /= 2;

}
res += a;
return res ;

}

Direkt in res
Teil der Division

in den Loop

// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0)
res += a;

a ∗= 2;
b /= 2;

}
return res ;

}

44

Invariants!
// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0){
res += a;
−−b;

}
a ∗= 2;
b /= 2;

}
return res;

}

Sei x = a · b.

here: x = a · b+ res

if here x = a · b+ res ...

... then also here x = a · b+ res

b even

here: x = a · b+ res

here: x = a · b+ res und b = 0

Also res = x.

45

Conclusion

The expression a · b+ res is an invariant

Values of a, b, res change but the invariant remains basically
unchanged
The invariant is only temporarily discarded by some statement
but then re-established
If such short statement sequences are considered atomiv, the
value remains indeed invariant
In particular the loop contains an invariant, called loop invariant
and operates there like the induction step in induction proofs.
Invariants are obviously powerful tools for proofs!

46

Further simplification

// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0)
res += a;

a ∗= 2;
b /= 2;

}
return res ;

}

// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

res += a ∗ (b%2);
a ∗= 2;
b /= 2;

}
return res ;

}

47

Analysis

// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

res += a ∗ (b%2);
a ∗= 2;
b /= 2;

}
return res ;

}

Ancient Egyptian Multiplication corre-
sponds to the school method with
radix 2.

1 0 0 1 × 1 0 1 1
1 0 0 1 (9)

1 0 0 1 (18)
1 1 0 1 1

1 0 0 1 (72)
1 1 0 0 0 1 1 (99)

48

Efficiency
Question: how long does a multiplication of a and b take?

Measure for efficiency

Total number of fundamental operations: double, divide by 2, shift, test for
“even”, addition
In the recursive code: maximally 6 operations per call

Essential criterion:

Number of recursion calls or
Number iterations (in the iterative case)

b
2n ≤ 1 holds for n ≥ log2 b. Consequently not more than 6dlog2 be
fundamental operations.

49

1.5 Fast Integer Multiplication

[Ottman/Widmayer, Kap. 1.2.3]

50

Example 2: Multiplication of large Numbers

Primary school:
a b c d
6 2 · 3 7

1 4 d · b
4 2 d · a

6 c · b
1 8 c · a

= 2 2 9 4

2 · 2 = 4 single-digit multiplications. ⇒ Multiplication of two n-digit
numbers: n2 single-digit multiplications

51

Observation

ab · cd = (10 · a+ b) · (10 · c+ d)

= 100 · a · c+ 10 · a · c
+ 10 · b · d+ b · d
+ 10 · (a− b) · (d− c)

52

Improvement?

a b c d
6 2 · 3 7

1 4 d · b
1 4 d · b
1 6 (a− b) · (d− c)
1 8 c · a

1 8 c · a
= 2 2 9 4

→ 3 single-digit multiplications.

53

Large Numbers

6237 · 5898 = 62︸︷︷︸
a′

37︸︷︷︸
b′

· 58︸︷︷︸
c′

98︸︷︷︸
d′

Recursive / inductive application: compute a′ · c′, a′ · d′, b′ · c′ and
c′ · d′ as shown above.

→ 3 · 3 = 9 instead of 16 single-digit multiplications.

54

Generalization

Assumption: two numbers with n digits each, n = 2k for some k.

(10n/2a+ b) · (10n/2c+ d) = 10n · a · c+ 10n/2 · a · c
+ 10n/2 · b · d+ b · d
+ 10n/2 · (a− b) · (d− c)

Recursive application of this formula: algorithm by Karatsuba and Ofman (1962).

55

Analysis

M(n): Number of single-digit multiplications.

Recursive application of the algorithm from above⇒ recursion
equality:

M(2k) =

{
1 if k = 0,

3 ·M(2k−1) if k > 0.

56

Iterative Substition

Iterative substition of the recursion formula in order to guess a
solution of the recursion formula:

M(2k) = 3 ·M(2k−1) = 3 · 3 ·M(2k−2) = 32 ·M(2k−2)

= . . .
!
= 3k ·M(20) = 3k.

57

Proof: induction
Hypothesis H:

M(2k) = 3k.

Base clause (k = 0):

M(20) = 30 = 1. X

Induction step (k → k + 1):

M(2k+1)
def
= 3 ·M(2k)

H
= 3 · 3k = 3k+1.

�
58

Comparison

Traditionally n2 single-digit multiplications.

Karatsuba/Ofman:

M(n) = 3log2 n = (2log2 3)log2 n = 2log2 3 log2 n = nlog2 3 ≈ n1.58.

Example: number with 1000 digits: 10002/10001.58 ≈ 18.

59

Best possible algorithm?

We only know the upper bound nlog2 3.

There are (for large n) practically relevant algorithms that are faster.
The best upper bound is not known.

Lower bound: n/2 (each digit has to be considered at at least once)

60

1.6 Finde den Star

61

Is this constructive?

Exercise: find a faster multiplication algorithm.
Unsystematic search for a solution⇒ .

Let us consider a more constructive example.

62

Example 3: find the star!

Room with n > 1 people.
Star: Person that does not
know anyone but is known by
everyone.
Fundamental operation: Only
allowed question to a person A:
”Do you know B?” (B 6= A)

known?

63

Problemeigenschaften

Possible: no star present
Possible: one star present
More than one star possible?

Assumption: two stars S1, S2.
S1 knows S2⇒ S1 no star.
S1 does not know S2 ⇒ S2 no
star. ⊥

Nein!

Nein!

64

Naive solution

Ask everyone about everyone

Result:

1 2 3 4
1 - yes no no
2 no - no no
3 yes yes - no
4 yes yes yes -

Star is 2.

Numer operations (questions): n · (n− 1).
65

Better approach?

Induction: partition the problem into smaller pieces.

n = 2: Two questions suffice
n > 2: Send one person out. Find the star within n− 1 people.
Then check A with 2 · (n− 1) questions.

Overal
F (n) = 2(n−1)+F (n−1) = 2(n−1)+2(n−2)+ · · ·+2 = n(n−1).

No benefit.

66

Improvement

Idea: avoid to send the star out.

Ask an arbitrary person A if she knows B.
If yes: A is no star.
If no: B is no star.
At the end 2 people remain that might contain a star. We check
the potential star X with any person that is out.

67

Analyse

F (n) =

{
2 for n = 2,

1 + F (n− 1) + 2 for n > 2.

Iterative substitution:

F (n) = 3+F (n−1) = 2 ·3+F (n−2) = · · · = 3 ·(n−2)+2 = 3n−4.

Proof: exercise!

68

Moral

With many problems an inductive or recursive pattern can be
developed that is based on the piecewise simplification of the
problem. Next example in the next lecture.

69

	Introduction
	Algorithms
	Organisation
	Ancient Egyptian Multiplication
	Fast Integer Multiplication
	Finde den Star

