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1. Introduction

Algorithms and Data Structures, Three Examples



Goals of the course

m Understand the design and analysis of fundamental algorithms
and data structures.

m An advanced insight into a modern programming model (with
C+4).

m Knowledge about chances, problems and limits of the parallel and
concurrent computing.



Goals of the course

On the one hand
m Essential basic knowlegde from computer science.
Andererseits

m Preparation for your further course of studies and practical
considerations.



Contents

L 2

data structures / algorithms

The notion invariant, cost model, Landau notation sorting networks, parallel algorithms
algorithms design, induction Randomized algorithms (Gibbs/SA), multiscale approach
searching, selection and sorting geometric algorithms, high peformance LA

dynamic programming  graphs, shortest paths, backtracking, flow
dictionaries: hashing and search trees

0 2

prorgamming with C++

RAII, Move Konstruktion, Smart Pointers, Constexpr, user defined literals promises and futures
Templates and generic programming threads, mutex and monitors
Exceptions functors and lambdas

L 2

parallel programming

parallelism vs. concurrency, speedup (Amdahl/-
Gustavson), races, memory reordering, atomir reg-
isters, RMW (CAS,TAS), deadlock/starvation
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1.2 Algorithms

[Cormen et al, Kap. 1;0ttman/Widmayer, Kap. 1.1]



Algorithm

Algorithm: well defined computing procedure to compute oufput data
from input data



example problem

Input : A sequence of n numbers (ay, as, ..., a,)

Output : Permutation (a}, al, ..., al) of the sequence (a;)1<;<n, such that
p 1 Y2 n q YA
d <ay<--<d,

Possible input

(1,7,3), (15,13,12,—0.5), (1) ...

Every example represents a problem instance



Examples for algorithmic problems

m routing: shortest path

m cryptography / digital signatures

m time table / working plans: linear programming
m DNA matching: dynamic programming

m fabrication pipeline: topological sort

m geometric probelms, e.g. convex hull



Characteristics

m Extremely large number of potential solutions
m Practical applicability



Darta Structures

m Organisation of the data tailored towards the algorithms that
operate on the data.

m Programs = algorithms + data structures.



Very hard problems.

m NP-compleete problems: no known efficient solution (but the
non-existence of such a solution is not proven yet!)

m Example: travelling salesman problem



A dream

m If computers were infinitely fast and had an infinite amount of
memory ...

m ... then we would still need the theory of algorithms (only) for
statements about correctness (and termination).



The reality

Resources are bounded and not free:

m Computing time — Efficiency
m Storage space — Efficiency



1.3 Organisation



The exercise process

Mo —— Di Mi Do Fr Sa — So — Mo —— Di —— Mi —— Do Fr Sa — So
\Y \% U \ \Y U
i
Publication Submission
Pre discussion Post discussion

Exercise publication each Thursday
Preliminary discussion on Friday
Latest submission Thursday one week later

Debriefing of the exercise on follong Friday. Feedback to your submissions
within a week after debriefing.



Codeboard

Codeboard is an online-IDE: programming in the browser

m Examples can be tried without
any tool installation.

m Used for the exercises.




Codeboard @ETH

Codeboard consists of two independent communicating systems:

m The ETH submission
system Allows us to correct you
submissions

m The online IDE The
programming environment.

User
¥
ETH submis-

sion system
http://codeboard.ethz.ch

Login using ETH Credentials
¥

Codeboard.io
http://codeboard.io

Login using Codeboard.io Credentials
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http://codeboard.ethz.ch
http://codeboard.io

Codeboard

Codeboard.io registration
Go to http://codeboard. io and create an account, best is to stay
logged in

Register for the recitation sessions
Go to http://codeboard.ethz.ch/da and register for a recitation

session there.
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http://codeboard.io
http://codeboard.ethz.ch/da

Codeboard.io registration

Should you not yet have a Codeboard.io account ...

::OZeLoard.iocmmmwm‘ o -
R m We will be using the online IDE
Codeboard.io
(ename s m create an account in order to be
able to store your progress
— m Login data can be chose
Gonti osawors arbitrarily. Do not use your ETH
password.

Open “https:fjcodeboard.io/signup” in a new tab

292



Codeboard.io Login

If you have an account, log in:

eo0e® < [in] [¢) codeboard.io & LD

Codeboard.io Bxpore  Docs  Sgnin  Signup

Vcode Q) CE——

-

A web-based IDE to teach programming in the classroom.
Easily create and share exercises with students.
Analyze and inspect students' submissions with a single click.
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Recitation session registration - |

m Visithttp://codeboard.ethz.ch/da
m Login with your ETH account

Please sign in with your ETH credentials

nethz Username

nethz Password
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http://codeboard.ethz.ch/da

Recitation session registration - i

Register using the dialog with a recitation session.

o000 < Jim] 4] @ codeboard.ethz.chfide/ppl/ss17/e0/t &

cd
o
I

Enroll to Online-Submission

Please select your exercise group.

Exercise Group:

HG G 26.5 | Mittwoch 17h - 18h ( Moritz Hoffmann)
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The first exercise

You are now registered and the first exercise is loaded. Follow the
guidelines in the yellow box. The exercise sheet on the course
homepage contains further instructions and explanations.

e0e0 < m [} ‘codeboard.ethz.chiide/pplS: o] &5 |
B o e v o=
Welcome to PPL
@sc Task Description
P e Diese erste Ubung dient dazu, sich mit Godeboard vertraut zu machen.
5 MainTest java i Offnen Sle die Klasse Main , Indem Sle auf Main.java Im Baum ganz

B subestjava ()

Das Programm, welches Sie auf er nken Sete sehen, st beret fer
B codebeardson () g o

Fuhren sie nun folgende Schritte aus, um das Programm zu Kompilieren
und uns abzugeben:

1. Driicken Sie aut “Compile” um das Programm zu kompilieren.

2. Driicken Sie aut “Run” um das Programm auszufunren.
3. Driicken Sie aut “Test" um dle Tests far dieses Programm laufen
This vill display the output. 2u lassen.

4. Driicken Sle aut den grinen “Submit” Knopt. Damit senden Sie
inr Programm zu uns und erhaten afr von uns Feedback.

> Send




The first exercise — Codeboard.io Login

If you see this message, click on Sign in now and log in with your
Codeboard.io account.

You're not signed in.
Sign in now to save your progress or load your

5\\ previously saved version.



The first exercise — store progress!

=

Welcom

= Rol

: n
Attention! Store your progress on -
. £
a regular basis. The you can con- ot
tinue somewhere else easily. Ble

This will

Project = Edit~ View~

Add file
Add folder

Rename file/folder

Delete file/folder

Hide/Unhide file @
Save changes

Share project

Exit project

display the output.
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About the exercises

m Since HS 2013 no exercise certificate required any more for exam
admission

m Doing the exercises and going to the recitation sessions is
optional but highly recommended!
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Relevant for the exam

Material for the exam comprises

m Course content (lectures, handout)

m Exercises content (exercise sheets, recitation hours)

Written exam (120 min). Examination aids: four A4 pages (or two sheets of 2 A4
pages double sided) either hand written or with font size minimally 11 pt.
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In your and our interest

Please let us know early if you see any problems, if

m the lectures are too fast, too difficult, too ...
m the exercises are not doable or not understandable ...
m you do not feel well supported ...

In short: if you have ‘ mj
any issues that we can fix. W :@l



1.4 Ancient Egyptian Multiplication

Ancient Egyptian Multiplication



Example 1: Ancient Egyptian Multiplication’

Compute 11 -9

11] 9 9] 11
221 4 18] 5
442 36——2
88| 1 721 1
99 | — 9|

T Also known as russian multiplication

Double left, integer division
by 2 on the right

Even number on the right =
eliminate row.

Add remaining rows on the
left.
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Advantages

m Short description, easy to grasp

m Efficient to implement on a computer: double = left shift, divide by
2 = right shift

Beispiel
left shift 9 = 010012 — 100109 = 18
right shift 9 = 01001, — 001004 = 4
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Questions

Does this always work (negative numbers?)?
If not, when does it work?

How do you prove correctness?

Is it better than the school method?

What does “good” mean at all?

How to write this down precisely?
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Observation

Ifb > 1, a € Z, then:

falls b gerade,
falls b ungerade.
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Termination

a fallsb =1,
a-b=4q2a-% falls b gerade,
a+2a-%1 falls b ungerade.



Recursively, Functional

a fallsb =1,
fla,b) =3 f(2a,8) falls b gerade,

a+ f(2a,%51) falls b ungerade.
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Implemented

// pre: b>0
// post: return axb
int f(int a, int b){
if (b==1)
return a;
else if (b%2 == 0)
return f(2*a, b/2)
else
return a + f(2xa,

.
I

(b—1)/2);
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Correctnes

a ifb=1,
fla,b) =3 f(2a,%) if b even,
a+ f(2a-5) ifbodd.

Remaining to show: f(a,b) =a-bfora € Z, b € N*.
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Proof by induction

Base clause: b =1 = f(a,b) =a=a- 1.
Hypothesis: f(a,bt/) =a- b fir0 <t/ <b

Step: f(a,b+1) =a-(b+1)

P
f(2a, J=a-(b+1) ifbodd,

flasb+1) =3 2y
a+ f(2a, 5 )=a+a-b ifbeven.

<b




End Recursion

The recursion can be writen as end recursion

// pre: b>0
// post: return axb
int f(int a, int b){
if (b==1)
return a;
else if (b%2 == 0)
return f(2xa, b/2);
else
return a + f(2xa, (b—1)/2);

// pre: b>0
// post: return axb
int f(int a, int b){
if (b==1)
return a;
int z=0;
if (b%2 !'= 0){
——b;
z=a,
}
return z + f(2xa, b/2);
}
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End-Recursion = lteration

// pre: b>0
// post: return axb
int f(int a, int b){
if (b==1)
return a;
int z=0;
if (%2 '= 0){
——b;
z=a;
}
return z + f(2xa, b/2);
}

—

int f(int a, int b) {

%

int res = 0;
while (b !=1) {
int z = 0;
if (b % 2!'=0){
——b;
z = a;
}
res += z;
a = 2; // neues a
b /= 2; // neues b
}
res += a; // Basisfall b=1
return res;
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Simplify

int f(int a, int b) {

int res = 0;
) // pre: b>0
i =
Wl?llf (b_- 0'1) { // post: return axb
mt z o int f(int a, int b) {
if (b% 2!'=0){ int res = 0;
——b; — Teil der Division while (b > 0) {
z = a;— Direktinres if (b % 2 !=0)
} —_ res += a;
res += z; a x= 2;
a x= 2; ,
b /= 2; } /
} _ return res;
res += a; —— inden Loop }
return res;

}
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Invariants!

// pre: b>0
// post: return axb
int £(int a, int b) {
int res = 0;
while (b > 0) { here: x —

if (b % 2 1= 0){

Seix =a-b.

ifherexz =a-b+res ...
res += a;

} ...thenalsoherex =a-b+ res

a = 2, b even

b /= 2;
3 here: x =a-b-+res

here:z =a-b+resundb=0

return res;

Also res = z.
}



Conclusion

The expression a - b+ res is an invariant

Values of a, b, res change but the invariant remains basically
unchanged

The invariant is only temporarily discarded by some statement
but then re-established

If such short statement sequences are considered atomiv, the
value remains indeed invariant

In particular the loop contains an invariant, called loop invariant
and operates there like the induction step in induction proofs.

Invariants are obviously powerful tools for proofs!
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Further simplification

// pre: b>0
// post: return axb
int f(int a, int b) {
int res = 0;
while (b > 0) {
if (b % 2!=0)

res += a;
a x= 2;
b /= 2;

}

return res;

}

—

// pre: b>0
// post: return axb
int f(int a, int b) {
int res = 0;
while (b > 0) {
res += a x (b%2);

a *x= 2;
b /= 2;
}
return res;

}
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Analysis

% pre: b>0 Ancient Egyptian Multiplication corre-
post: return axb i
int £(int a, int b) { spo_nds to the school method with
int res = O; radix 2.
while (b > 0) { 1001 x 1011
res += a x (b%2); 1 001 (9
a x= 2; 1 00 1 (18)
b /= 2; 1 10 11
} 100 1 (72)
return res; 1 1.0 0011 (99

}



Efficiency
Question: how long does a multiplication of a and b take?

m Measure for efficiency

m Total number of fundamental operations: double, divide by 2, shift, test for
“even”, addition
m In the recursive code: maximally 6 operations per call

m Essential criterion:

m Number of recursion calls or
m Number iterations (in the iterative case)

| Qi < 1 holds for n > log, b. Consequently not more than 6[log, b]

fundamental operations.
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1.5 Fast Integer Multiplication

[Ottman/Widmayer, Kap. 1.2.3]
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Example 2: Multiplication of large Numbers

Primary school:
a b

6 2 -

d-b
d-a
c-b

2 - 2 = 4 single-digit multiplications. = Multiplication of two n-digit
numbers: n? single-digit multiplications
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Observation

ab-cd=(10-a+b)-(10-c+d)
=100-a-c+10-a-c
+10-b-d+b-d
+10-(a—10)-(d—c)
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Improvement?

a b c d
6 2 - 37
1 41d-b
1 4 d-b
1 6 (a—10)-(d—c)
1 8 c-a
1 8 c-a
= 2 29 4

— 3 single-digit multiplications.
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Large Numbers

6237 - 5898 = 6/2 ?;:7 : 5/ 9;%
Recursive / inductive application: compute a’ - ¢, o' - d', v/ - ¢ and
¢’ - d" as shown above.

— 3 -3 =9 instead of 16 single-digit multiplications.
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Generalization

Assumption: two numbers with n digits each, n = 2% for some k.

(10"%a +b) - (10™2c+d) = 10" -a-c+10"% - a-c
+10"%.b-d+b-d
+10"% . (a—b) - (d—c)

Recursive application of this formula: algorithm by Karatsuba and Ofman (1962).
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Analysis

M (n): Number of single-digit multiplications.
Recursive application of the algorithm from above =- recursion

equality:
1 ifk=0
M(2F) = ’
(2) {3-M(2’“) if £ > 0.



lterative Substition

lterative substition of the recursion formula in order to guess a
solution of the recursion formula:



Proof: induction
Hypothesis H:

Base clause (k = 0):

M2 =3"=1. v

Induction step (k — k + 1):

M2FY €3 a2y R gsk =

3k‘+1.
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Comparison

Traditionally n? single-digit multiplications.
Karatsuba/Ofman:

M(TL) — Slogzn — (210g2 3)10g2n _ 210g2 3logon _ nlog23 ~ n1.58.

Example: number with 1000 digits: 10007 /1000'*® ~ 18.



Best possible algorithm?

We only know the upper bound n'°e23,

There are (for large n) practically relevant algorithms that are faster.
The best upper bound is not known.

Lower bound: n/2 (each digit has to be considered at at least once)
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1.6 Finde den Star



Is this constructive?

Exercise: find a faster multiplication algorithm.
Unsystematic search for a solution = &.

Let us consider a more constructive example.
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Example 3: find the star!

Room with n > 1 people.

m Star: Person that does not
know anyone but is known by
everyone.

m Fundamental operation: Only

allowed question to a person A:

"Do you know B?” (B # A)

known?
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Problemeigenschaften

m Possible: no star present Nein!
m Possible: one star present | A
m More than one star possible? ° |n|
|I| o0
Assumption: two stars S, S. |n| |I| °

S1 knows S, = 57 no star. I
S does not know S, = S5 no I.I n
star. | I
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Naive solution

Ask everyone about everyone

Result:

1 2 3 4

A WON =

Star is 2.

- yes no no
no - no no
yes yes - no
yes yes yes -

Numer operations (questions): n - (n — 1).



Better approach?

Induction: partition the problem into smaller pieces.

m n = 2: Two questions suffice

m n > 2: Send one person out. Find the star within n — 1 people.
Then check A with 2 - (n — 1) questions.

Overal
Fn)=2n—1)+F(n—-1)=2(n—-1)42(n—2)+---+2=n(n—1),

No benefit. &
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Improvement

Idea: avoid to send the star out.

m Ask an arbitrary person A if she knows B.
m If yes: Ais no star.
m If no: B is no star.

m At the end 2 people remain that might contain a star. We check
the potential star X with any person that is out.



Analyse

2
F(n>:{1+F(n—1)+2

lterative substitution:
F(n)=34+F(n—1)=2-3+F(n—-2)=---

Proof: exercise!

forn =2,
forn > 2.

=3-(n—2)

+2 =3n—4.
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Moral

With many problems an inductive or recursive pattern can be
developed that is based on the piecewise simplification of the
problem. Next example in the next lecture.
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2. Efficiency of algorithms

Efficiency of Algorithms, Random Access Machine Model, Function
Growth, Asymptotics [Cormen et al, Kap. 2.2,3,4.2-4.4 |
Ottman/Widmayer, Kap. 1.1]

70



Efficiency of Algorithms

Goals

m Quantify the runtime behavior of an algorithm independent of the
machine.

m Compare efficiency of algorithms.
m Understand dependece on the input size.



Technology Model

Random Access Machine (RAM)

Execution model: instructions are executed one after the other (on
one processor core).

Memory model: constant access time.

Fundamental operations: computations (+,—,-,...) comparisons,
assignment / copy, flow control (jumps)

Unit cost model: fundamental operations provide a cost of 1.

Data types: fundamental types like size-limited integer or floating
point number.
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Size of the Input Data

Typical: number of input objects (of fundamental type).

Sometimes: number bits for a reasonable / cost-effective
representation of the data.



Asymptotic behavior

An exact running time can normally not be predicted even for small
input data.

m We consider the asymptotic behavior of the algorithm.
m And ignore all constant factors.

An operation with cost 20 is no worse than one with cost 1
Linear growth with gradient 5 is as good as linear growth with
gradient 1.
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2.1 Function growth

O, 0, Q [Cormen et al, Kap. 3; Ottman/Widmayer, Kap. 1.1]
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Superficially

Use the asymptotic notation to specify the execution time of
algorithms.

We write ©(n?) and mean that the algorithm behaves for large n like
n?: when the problem size is doubled, the execution time multiplies
by four.



More precise: asymptotic upper bound

provided: a function f : N — R.
Definition:

O(g) ={f ' N—=R|
de>0,npeN:0< f(n) <c-g(n)V¥n>ng}

Notation:
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Examples

O(g)={f  N—=R| Jc¢>0,neN:0< f(n) <c-g(n)V¥n>ng}

f(n) f e O(?) Example

3n + 4 O(n) c=4,ny=4
2n O(n) c=2,n9=0
n? 4+ 100n  O(n?) c=2,n9=100
n++n  O(n) c=2ny=1



f1€0(g9), € 0(g) = [+ fo € Oyg)
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Converse: asymptotic lower bound

Given: a function f : N — R.
Definition:

Qg) ={f: N = R|
de>0,ng e N:0<c-g(n) < f(n)Vn >ny}
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ng
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Asymptotic tight bound

Given: function f : N — R.
Definition:

Simple, closed form: exercise.
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Example




Notions of Growth

SCCCCACCTa

bounded

double logarithmic
logarithmic

like the square root
linear

superlinear / loglinear
quadratic

polynomial
exponential

factorial

array access
interpolated binary sorted sort

binary sorted search

naive prime number test

unsorted naive search

good sorting algorithms

simple sort algorithms

matrix multiply

Travelling Salesman Dynamic Programming
Travelling Salesman naively
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0.8 |

0.6 |
0.4
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0.6 |

0.4

0.2
: : ‘ : n4n2

n
20 40 60 80 100ogn
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Logarithms

1,000 «
800 |
600 |
400 |

200 |

nlogn

logn
50
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Time Consumption

Assumption 1 Operation = 1us.

problem size 1 100 10000 108 10°

log, n lus Tus 13us 20us 30us

n 1us 100us 1/100s 1s 17 minutes
nlog, n Lus 7004s 13/100us 20s 8.5 hours
n? lus 1/100s 1.7 minutes 11.5 days 317 centuries
2n lus 10 centuries A 00 A 00 A 00
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A good strategy?

... Then | simply buy a new machine If today | can solve a problem of
size n, then with a 10 or 100 times faster machine | can solve ...

Komplexitat

(speed x10)

(speed x100)

log, n

n

TL2

271

n — nto
n—10-n
n—316-n

n—n-+ 3.32

n — nt%
n — 100 -n
n—10-n

n— n -+ 6.64
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Examples

m n € O(n?) correct, but too imprecise:
n € O(n) and even n € O(n).
m 3n? € O(2n?) correct but uncommon:

Omit constants: 3n* € O(n?).

2 : )
m 2n° € O(n) iswrong: - =2n — oo !

m O(n) C O(n?) is correct
m O(n) C O(n?) iswrong n ¢ Q(n?) D O(n?)
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Useful Tool

Let f,g: N — R™ be two functions, then it holds that
B lim, o 28 = 0= f € O(g), O(f) € O(g).
lim,, o0 %) C > 0 (C constant) = f € O(g).
Y - o0=ge0(f), 0lg) ¢ O).
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About the Notation

Common notation

f=0(g)
should be read as f € O(yg).
Clearly it holds that

fi=0(g), fo = 0(9)% fL = fo!

Beispiel

n = O(n?),n? = O(n?) but naturally n # n?.
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Algorithms, Programs and Execution Time

Program: concrete implementation of an algorithm.

Execution time of the program: measurable value on a concrete
machine. Can be bounded from above and below.

Beispiel
3GHz computer. Maximal number of operations per cycle (e.g. 8). = lower bound.
A single operations does never take longer than a day =- upper bound.

From an asymptotic point of view the bounds coincide.
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Complexity

Complexity of a problem P: minimal (asymptotic) costs over all
algorithms A that solve P.

Complexity of the single-digit multiplication of two numbers with n
digits is Q2(n) and O(n'°#:2) (Karatsuba Ofman).

Example:

Problem
Algorithm

Program

Complexity O(n) O(n) O(n?
T T T

Costs? 3n—4 O(n) O(n?
) 7 7

Execution O(n) O(n) O(n?

time
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3. Design of Algorithms

Maximum Subarray Problem [Ottman/Widmayer, Kap. 1.3]
Divide and Conquer [Ottman/Widmayer, Kap. 1.2.2. S.9; Cormen et
al, Kap. 4-4.1]
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Algorithm Design

Inductive development of an algorithm: partition into subproblems,
use solutions for the subproblems to find the overal solution.

Goal: development of the asymptotically most efficient (correct)
algorithm.

Efficiency towards run time costs (# fundamental operations) or /and
memory consumption.
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Maximum Subarray Problem

Given: an array of n rational numbers (ay, ..., a,).
Wanted: interval i, 7], 1 < i < j < n with maximal positive sum

i V-
Example: a = (7, —11, 15, 110, —23, —3, 127, —12, 1)

100 [~

50 [~

e
- gk

®

©

Zk aj, = max
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Naive Maximum Subarray Algorithm

Input : A sequence of n numbers (ay, as, ..., a,)
Output : I, J such that 3>7_, a; maximal.

M+—0;,I1+1;,J+0
foric{1,...,n} do
for j € {i,...,n} do
me= 3
if m > M then
M my [0 J g

return [, J



Analysis

The naive algorithm for the Maximum Subarray problem executes
O(n?®) additions.

Beweis:
ZZ(]—@):Z jzzzjzzz(n—i)(g—i+l)
=1 j=i i=1 j=0 i=1 j=1 i1
n—1 n—1 n—1
:ZZ (Z;Ll)—%(Ziz%-Zz)
1=0 i=0
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Maximum Subarray Algorithm with Prefix Sums

Input : A sequence of n numbers (ay,as, ..., a,)
Output : I, J such that 377 a;, maximal.
SO 0
forie {1,...,n} do // prefix sum
L Sl < 81;1 + a;

M<+—0;1+1;,J+0
forie {1,...,n} do
for j € {i,...,n} do
m:Sj—SZ-_l
if m > M then
M my [0 g



Analysis

The prefix sum algorithm for the Maximum Subarray problem
conducts ©(n?) additions and subtractions.

Beweis:

Zl+221_n+z n—i+1 :n—l—i:z’:@nz
=1

=1 j=t



divide et impera

Divide and Conquer

Divide the problem into subproblems that contribute to the simplified
computation of the overal problem.

Pyy —— Sy

Problem P Solution

\ /P12—>512 /



Maximum Subarray - Divide

m Divide: Divide the problem into two (roughly) equally sized halves:
(ar,...,an) = (G1,..., G2,  Anj2)41s---501)
m Simplifying assumption: n = 2% for some k € N.



Maximum Subarray — Conquer

If 2 and j are indices of a solution = case by case analysis:

Solution in left half 1 < i < j < n/2 = Recursion (left half)
Solution in right half n/2 < ¢ < j < n = Recursion (right half)

Solution in the middle 1 < i < n/2 < j < n = Subsequent observation

(1) (3) (2)
1 n/2ln/2 +1 n




Maximum Subarray — Observation

Assumption: solution inthe middle 1 <i <n/2 < j<n

J n/2
Shax = mnax = max g ay + g ag
1<i<n/2 1<i<n/2
n/2<j<n k=i n/2<j<n k=n/2+1
n/2 j
= max ar + max E ag
1<i<n /2 n/2<j<n
sisn/2 [2<isn, n/2+1

= max S, — S 1+ max S;— 9,
1<i<n /2 o —— n/2<]<nA/_/
suffix sum prefix sum



Maximum Subarray Divide and Conquer Algorithm

Input : A sequence of n numbers (ay,as, ..., a,)
Output : Maximal Z{;:l, a.
if n =1 then
. return max{a;,0}
else
Divide a = (a1,...,a,) in Ay = (a1,...,an/2) und Ay = (anja41,- .-, an)

Recursively compute best solution W7 in A
Recursively compute best solution W5 in A,
Compute greatest suffix sum S in A
Compute greatest prefix sum P in A,

Let W3« S+ P

return max{Wy, Wy, W3}




Analysis

The divide and conquer algorithm for the maximum subarray sum
problem conducts a number of ©(n log n) additions and
comparisons.




Analysis

Input : A sequence of n numbers (aq,as, ..., a,)
Output : Maximal Zf;zz, ay.
if n =1 then
O(l1) return max{a,,0}
else

)

T(n/2)
T'(n/2) Recursively compute best solution W5 in Ay

)

)

)

o
C)
©

(
(
o(

ol
1

Recursively compute best solution W in A

n) Compute greatest suffix sum S in A;
Compute greatest prefix sum P in A,
1) Let W3+ S+ P

1) return max{Wy, Wy, W5}

Divide a = (a1,...,a,) in Ay = (a1,...,an/2) und Ay = (an/o41, - -



Analysis

Recursion equation

T(n)= {

c ifn=1
2T(5) +a-n ifn>1
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Analysis

Mit n, = 2°:
— if b =
T(k) = o o
2Tk —1)4+a-2% ifk>0
Solution:
k—1
T(k)y=2"-c+> 2-a-2""=c-2"+a- k-2 =0(k- 2"
=0
also

T(n) =©(nlogn)



Maximum Subarray Sum Problem - Inductively

Assumption: maximal value M;_; of the subarray sum is known for
(CL17 . ,ai_l) (1 <1< n)

scan

a;. generates at most a better interval at the right bound (prefix sum).
R,_1=R;, = max{Ri_l + a;, 0}



Inductive Maximum Subarray Algorithm

Input : A sequence of n numbers (ay,as, ..., a,).
Output : max{0, max; ; > 1, Q.
M+ 0
R0
fori=1...ndo

R+ R+ a;

if R <0 then

_ R+ 0

if R > M then
| M+ R

return M



Analysis

The inductive algorithm for the Maximum Subarray problem
conducts a number of ©(n) additions and comparisons.




Complexity of the problem?

Can we improve over O(n)?

Every correct algorithm for the Maximum Subarray Sum problem
must consider each element in the algorithm.

Assumption: the algorithm does not consider a;.

The algorithm provides a solution including a;. Repeat the
algorithm with a; so small that the solution must not have
contained the point in the first place.

The algorithm provides a solution not including a;. Repeat the

algorithm with a; so large that the solution must have contained
the point in the first place.



Complexity of the maximum Subarray Sum Problem

The Maximum Subarray Sum Problem has Complexity ©(n).

Beweis: Inductive algorithm with asymptotic execution time O(n).

Every algorithm has execution time Q2(n).
Thus the complexity of the problem is 2(n) N O(n) = O(n).



4. Searching

Linear Search, Binary Search, Interpolation Search, Lower Bounds
[Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems
2.1-3,2.2-3,2.3-5]
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The Search Problem

Provided

m A set of data sets

examples
telephone book, dictionary, symbol table

m Each dataset has a key k.

m Keys are comparable: unique answer to the question k; < k- for
keys ]ﬁ, k2.

Task: find data set by key k.



The Selection Problem

Provided
m Set of data sets with comparable keys k.

Wanted: data set with smallest, largest, middle key value. Generally:
find a data set with :-smallest key.



Search in Array

Provided

m Array A with n elements (A[1],..., A[n]).
m Key b

Wanted: index k, 1 < k < n with A[k] = b or "not found”.

22 120 | 32 | 10 | 35 | 24 | 42 | 38 | 28 | 41

1 2 3 4 5 6 7 8 9 10



Linear Search

Traverse the array from A[1] to Aln].

m Best case: 1 comparison.
m Worst case: n comparisons.

m Assumption: each permutation of the n keys with same
probability. Expected number of comparisons:

I~ n+1
E;Z: 9 .




Search in a Sorted Array

Provided

m Sorted array A with n elements (A[1],. .., A[n]) with
Al < A2] < - < Aln).

m Keyb

Wanted: index k, 1 < k < n with A[k] = b or "not found”.

10

20

22

24

28

32

35

38

41

42

1

2

3

4

5

6

7

8

9

10
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Divide and Conquer!

Search b = 23.
10 | 20 | 22 | 24 2|8 32 | 35 | 38 | 41 | 42
1 2 3 4 5 6 7 8 9 10
10 | 20 |22 | 24 | 28 | 32 | 35 | 38 | 41 | 42
1 2 3 4 5 6 7 8 9 10
10 |20 | 22 | 24 | 28 | 32 | 35 | 38 | 41 | 42
1 2 3 4 5 6 7 8 9 10
10 |20 |22 | M | 28 | 32 | 35 | 38 | 41 | 42
1 2 3 4 5 6 7 8 9 10
10 | 20 | 22 | 24 | 28 | 32 | 35 | 38 | 41 | 42

1

b < 28

b> 20

b> 22

b< 24

erfolglos



Binary Search Algorithm BSearch (A,b,1,r)

Input : Sorted array A of n keys. Key b. Bounds 1 <1 <r <n orl > r beliebig.
Output : Index of the found element. 0, if not found.
m < (I +71)/2]
if [ > r then // Unsuccessful search
. return 0
else if b = A[m] then// found
- return m
else if b < A[m] then// element to the left
. return BSearch(A,b,1,m — 1)
else // b > A[m]|: element to the right
. return BSearch(A,b,m +1,7)



Analysis (worst case)

Recurrence (n = 2%)

d fallsn =1
T(TL) _ alls n )
T(n/2)+c fallsn> 1.

Compuite:
T(n) :T(%) +c:T(%> + 2
=T <%> +1i-c
=T E) + logyn - c.
n
= Assumption: T'(n) = d + clogyn



Analysis (worst case)

d ifn=1,
T(n) = {T(n/Q) +c ifn>1.

Guess : T'(n) = d + c-logyn
Proof by induction:

m Base clause: 7'(1) = d.
m Hypothesis: T'(n/2) = d + ¢ -logyn/2
m Step: (n/2 — n)

Tn)=Tn/2)+c=d+c-(loggn — 1)+ c=d+ clogyn.



Result

The binary sorted search algorithm requires ©(log n) fundamental
operations.




lterative Binary Search Algorithm

Input : Sorted array A of n keys. Key b.

Output : Index of the found element. 0, if unsuccessful.

[+ 1. r<n

while [ < r do

m < |(I+7)/2]

if Ajm| =0 then
. return m

else if Ajm] < b then
Clem+1

else

‘ r<—m-—1

return O;



Correctness

Algorithm terminates only if A is empty or b is found.

Invariant: If b is in A then b is in domain A, ..., 7]
Proof by induction

m Base clause b € A[l, .., n] (oder nicht)
m Hypothesis: invariant holds after : steps.

m Step:
b<Am|=be All,..,m—1]
b>Am]=be Am+1,..,7]



Can this be improved?

Assumption: values of the array are uniformly distributed.

Search for "Becker” at the very beginning of a telephone book while
search for "Wawrinka" rather close to the end.
Binary search always starts in the middle.

Binary search always takes m = |l + 5*].



Interpolation search

Expected relative position of b in the search interval [/, r|

b— All

:m € [0,1]

New 'middle’: [+ p - (r — )
Expected number of comparisons O(loglogn) (without proof).

@ Would you always prefer interpolation search?

® No: worst case number of comparisons €2(n).



Exponential search

Assumption: key b is located somewhere at the beginning of the
Array A. n very large.

Exponential procedure:
Determine search domainl = r, r = 1.
Double 7 until » > n or A[r] > b.
Set r <~ min(r, n).
Conduct a binary search with [ < r/2, r.



Analysis of the Exponential Search

Let m be the wanted index.

Number steps for the doubling of : maximally log, m.
Binary search then also O(log, m).

Worst case number of steps overall O(log, n).

@ When does this procedure make sense?

@ It m << n. For example if positive pairwise different keys and
b << N (N: largest key value).



Lower Bounds

Binary and exponential Search (worst case): ©(log n) comparisons.

Does for any search algorithm in a sorted array (worst case) hold
that number comparisons = 2(logn)?



Decision tree

3
b< V YAB]
1 5

X> Alll b< A[\EV Yf A
2 4 6

=

[5]

m For any input b = A[i] the
algorithm must succeed =
decision tree comprises at
least n nodes.

m Number comparisons in
worst case = height of the
tree = maximum number
nodes from root to leaf.



Decision Tree

Binary tree with height i has at most
20 ol 4. 2l =20 1 < 2" nodes.

At least n nodes in a decision tree with height h.
n < 2" = h > log, n.
Number decisions = Q(logn).

Any search algorithm on sorted data with length n requires in the
worst case ((logn) comparisons.




Lower bound for Search in Unsorted Array

Any search algorithm with unsorted data of length n requires in the
worst case €2(n) comparisons.




Attempt

@ Correct?

"Proof”: to find b in A, b must be compared with each of the n
elements Afi] (1 < i <mn).

©) Wrong argument! It is still possible to compare elements within A.




Better Argument

N | S

1 B

S~
\

/

m Consider ¢ comparisons without b and e comparisons with b.

m Comparisons geenrate g groups. Initially g = n.

m To connect two groups at least one comparison is needed:

n—g<i.

m At least one element per group must be compared with b.

m Number comparisons i +e >n—g+ g =n.




5. Selection

The Selection Problem, Randomised Selection, Linear Worst-Case
Selection [Ottman/Widmayer, Kap. 3.1, Cormen et al, Kap. 9]
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Min and Max

@10 separately find minimum an maximum in (A[1], ..., A[n]), 2n
comparisons are required. (How) can an algorithm with less than 2n
comparisons for both values at a time can be found?

@ Possible with %N comparisons: compare 2 elemetns each and
then the smaller one with min and the greater one with max.



The Problem of Selection

Input

m unsorted array A = (A4, ..., A,) with pairwise different values
m Number1l < k <n.

Output A[i] with |[{j : A[j] < A[i]}| =k —1

Special cases

k = 1: Minimum: Algorithm with n comparison operations trivial.
k = n: Maximum: Algorithm with n comparison operations trivial.
k = |n/2]: Median.
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Approaches

m Repeatedly find and remove the minimum O(k - n).
Median: O(n?)

m Sorting (covered soon): O(nlogn)

m Use a pivot O(n) !



Use a pivot

Choose a pivot p
Partition A in two parts, thereby determining the rank of p.
Recursion on the relevant part. If £ = r then found.

IA
IN
IN
IA
IN
©
V
V
\Y,
\Y,




Algorithmus Partition(A[l..7], p)

Input : Array A, that contains the sentinel p in the interval [/, ] at least once.
Output : Array A partitioned in [l..r] around p. Returns position of p.
while [ < r do
while A[l] < p do
L+l +1
while A[r] > p do
Cor+r—1
swap(A[l], A[r])
if A[l] = A[r| then
L+l +1

return |-1



Correctness: Invariant

Invariant I: A; <pVi € [0,1), A; >pVie (r,n], Ik €[l,r] : Ay = p.
while [ < r do

while A[l] < p do
Ll +1
while A[r] > p do
Corsr—1
swap(A[l], Alr])
if A[l] = A[r| then

| I« 1l+1
L I

return |-1

1

T'und A[l] > p

Tund A[r] <p
Tund A[l] < p < Alr]




Correctness: progress

while [ < r do

while A[l] < p do
Ll 1+1

while A[r] > p do
| r<r—1
swap(A[l], A[r])

if A[l] = A[r] then
ol l+1

return |-1

progress if A[l] <p
progress if A[r|] > p

progress if A[l] > p oder A[r] <p
progress if A[l] = A[r] =p



Choice of the pivot.

The minimum is a bad pivot: worst case ©(n?)

b1 D2 b3 D4 D5

A good pivot has a linear number of elements on both sides.




Analysis

Partitioning with factor ¢ (0 < ¢ < 1): two groups with ¢ - n and
(1 — q) - n elements (without loss of generality g > 1 — g).

Tn)<T(g-n)+c-n

=c-nt+q-cn+T(@ n)=..=c-n Z q' +T(1)

<c-n iz:;q :c-n-l_q:(’)(n)

geom. Reihe



How can we achieve this?

Randomness to our rescue (Tony Hoare, 1961). In each step
choose a random pivot.

N

NI
=

V) N\l (W) (§

" schlecht gute Pivots " schlecht

Probability for a good pivot in one trial: 3 =: p.
Probability for a good pivot after k trials: (1 — p)*~1 - p.
Expected value of the geometric distribution: 1/p = 2



[Expected value of the Geometric Distribution]

Random variable X € N* with P(X = k) = (1 — p)* . p.
Expected value

k=1 k=1
=Y kd" =kt =) (k1) kg
k=1 k=0



Algorithm Quickselect (A[l..7], 7)

Input : Array A with length n. Indices 1 <[ < i <r <mn, such that for all
xz € A[l..r] it holds [{j|A[j] < z}| >l and [{j|A[j] < z}| <.

Output : Partitioniertes Array A, so dass |{j|A[j] < A[i]}| =
if |=r then return;
repeat

choose a random pivot = € A[l..r]

p <1

for j = tor do

| if Alj] <z then p <+ p+1

until 21 < p < 3D

m < Partition(A[l..r], z)
if © <m then
. quickselect(A[l..m], 1)

else
| quickselect(A[m..r], 1)



Median of medians

Goal: find an algorithm that even in worst case requires only linearly
many steps.

Algorithm Select (k-smallest)

m Consider groups of five elements.

m Compute the median of each group (straighforward)

m Apply Select recursively on the group medians.

m Partition the array around the found median of medians. Result:

m If : = k then result. Otherwise: select recursively on the proper
side.



Median of medians
(T = O A

groups of five
medians

recursion for pivot
base case

pivot (level 1)
partition (level 1)

@ median = pivot level 0

B 2. recursion starts



How good is this?

NN
NN

I I
L LI

I O

N < 0
N O O

N
N

Number points left / right of the median of medians (without median
group and the rest group) >3- ([3[2]] —2) > 32 — 6

Second call with maximally [22 + 6] elements.



Analysis

Recursion inequality:

T(n)gTd

with some constant d.
Claim:

n

5

Der(]

™
— +6
10+

[)+a-n



Proof

Base clause: choose c large enough such that

T(n) <c-nfirallen < nyg.

Induction hypothesis:

T(i) <c-iflrallei <n.

Induction step:



Proof

Induction step:

7
T(n)<c- [g-‘ +c- {1—34—6—‘ +d-n

7 9
Sc-g+c+c-£+60+c+d-n=l—o-c-n+80+d-n.

Choose ¢ > 80 - d and ny = 91.

2 1
T(n)Sg—O-c-n+80+%-C-n=C- <£n+8) <c-n.
————

<nflirn > ng



Result

The k-the element of a sequence of n elements can be found in at
most O(n) steps.




Overview

1. Repeatedly find minimum O(n?)

2. Sorting and choosing A[:] O(nlogn)

3. Quickselect with random pivot O(n) expected
4. Median of Medians (Blum) O(n) worst case

=

N

=

V) N\l (W) (§

" schlecht gute Pivots " schlecht ~




6. C++ advanced (l)

Repetition: vectors, pointers and iterators, range for, keyword auto, a
class for vectors, subscript-operator, move-construction, iterators
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We look back...

#include <iostream>
#include <vector>

int main(){ We want to understand this in depth!
// Vector of length
std::vector<int> v(10,0);
// Input
for (int i = 0; i < v.length(); ++i)
std::cin >> vI[i];

// Output
for ‘(Std: :vector::iterator it = v.begin(); it != v.endQ); ++it)‘
std::cout << *it << " ", T

At least this is too pedestrian



Useful tools (1): auto (C++11)

The keyword auto:
The type of a variable is inferred from the initializer.

Examples

int x = 10;

auto y = x; // int

auto z = 3; // int

std: :vector<double> v(5);
auto i = v[3]; // double




Etwas besser...

#include <iostream>
#include <vector>

int main(Q{
std: :vector<int> v(10,0); // Vector of length 10

for (int i = 0; i < v.length(); ++i)
std::cin >> v[il;

for (auto it = x.begin(); it != x.end(); ++it){
std::cout << xit << " ';

}
}



Useful tools (2): range for (C++11)

for (range-declaration : range-expression)
statement;

range-declaration: named variable of element type specified via the sequence
in range-expression

range-expression: Expression that represents a sequence of elements via
iterator pair begin (), end () orin the form of an intializer list.

Examples

std: :vector<double> v(5);

for (double x: v) std::cout << x; // 00000
for (int x: {1,2,5}) std::cout << x; // 125
for (double& x: v) x=5;




That is indeed cool!

#include <iostream>
#include <vector>

int main(){
std::vector<int> v(10,0); // Vector of length 10

for (auto& x: v)
std::cin >> x;

for (const auto i: x)
std::cout << i << " ",



For our detailed understanding

We build a vector class with the same capabilities ourselves!

On the way we learn about

m RAIl (Resource Acquisition is Initialization) and move construction
m Index operators and other utilities

m Templates

m Exception Handling

m Functors and lambda expressions



A class for vectors

class vector{
int size;
doublex elem;
public:
// constructors
vector(): size{0}, elem{nullptr} {};

vector(int s):size{s}, elem{new double[s]} {}
// destructor
~vector () {
delete[] elem;
}

// something is missing here



Element access

class vector{

e class vector{

. . blic:
// getter. pre: 0 <= i < size; P zamo;
double get(int i) const{ vector(int s);

2. ~vector ();
return elem [1] ’ double get(int i) const;

} void set(int i, double d);

// setter. pre: 0 <= i < size; int length(). const

void set(int i, double d){ // setter
elem[i] = d;

}

// length property

int length() const {
return size;

}



What’s the problem here?

int main(){

vector v(32);

for (int i = 0; i<v.length(); ++i)
v.set(i,i);

vector w = v;

for (int i = 0; i<w.length(); ++i)
w.set(i,ixi);

return O;

class vector{
public:
vector ();
vector(int s);
~vector ();
double get(int i);
void set(int i, double d);
int length() const;

}

*xxx Error in ‘vectorl’: double free or corruption

(Iprev): 0x0000000000d23c20 **x

/1ib/x86_64-1linux-gnu/libc.so.6(+0x777e5) [0x7febabac97eb]



Rule of Three!

class vector{

public:
class vector{ vector ();
vector(int s);
: ~vector ();
public: vector(const vector &v);
double get(int i);
// Copy constructor void set(int i, double d):
vector(const vector &v): int length() const;

size{v.size}, elem{new double[v.sizel} { !
std::copy(v.elem, v.elem+v.size, elem);

}
}



Rule of Three!

class vector{

class vector{
public:

// Assignment operator vector ()
vector& operator=(const vector&v){ vector(int s);
. __ s ~vector ();
if (v.elem == elem) return xthis; vector(const vector &)
if (elem != nullptr) delete[] elem; vector& operator=(const vector&v);
. = . . double get(int i);
Size v.8lze; void set(int i, double d);
elem = new double[size]; int length() const;

std::copy(v.elem, v.elem+v.size, elem); }

return *xthis;

Now it is correct, but cumbersome.



More elegant this way:

class vector{

// Assignment operator
vector& operator= (const vector&v){
vector cpy(v);
swap (cpy) ;
return *xthis;
}
private:
// helper function
void swap(vector& v){
std::swap(size, v.size);
std::swap(elem, v.elem);
}
}

class vector{
public:

}

vector ();

vector(int s);

~vector ();

vector(const vector &v);

vector& operator=(const vector&v);

double get(int i);
void set(int i, double d);
int length() const;



Syntactic sugar.

Getters and setters are poor. We want an index operator.
Overloading! So?

class vector{

double operator[] (int pos) const{
return elem[pos];

}

void oper
elem[pos] = dou Nein!

}



Reference types!

class vector{ class vector{
public:
o vector ();
// for const objects vector(int s);
. ~vector ();
double operator[] (int pos) const{ vector(const vector &v)
return elem [pOS] H vector& operator=(const vector&v);
} double operator[] (int pos) const;
. double& operator[] (int pos);
// for non—const objects int length() const;
double& operator[] (int pos){ }

}

return elem[pos]; // return by reference!

}



So far so good.

int main(){
vector v(32); // Constructor
for (int i = 0; i<v.length(); ++i)
v[i] = i; // Index—Operator (Referenz!)

vector w = v; // Copy Constructor
for (int i = 0; i<w.length(); ++i)
wli] = ixi;

const auto u = w;
for (int i = 0; i<u.length(); ++i)

class vector{
public:

}

vector ();

vector(int s);

~vector ();

vector(const vector &v);

vector& operator=(const vector&v);
double operator[] (int pos) const;
double& operator[] (int pos);

int length() const;

std::cout << v[i] << ":" << u[i] << " "; // 0:0 1:1 2:4

return O;

}



Number copies

How often is v being copied?

vector operator+ (const vector& 1, double r){
|vector result (l)k // Kopie von 1 nach result
for (int i = 0; i < 1l.length(); ++i) result[i] = 1[i] + r;
return result; // Dekonstruktion von result nach Zuweisung

}

int main(){
vector v(16); // allocation of elems[16]

v H v +1; // copy when assigned!
return 0; // deconstruction of v

}

v is copied twice



Move construction and move assignment

class vector{

// move constructor

vector (vector&& v){
swap (V) ;

};

// move assignment

vector& operator=(vector&& v){
swap (v) ;
return xthis;

};

class vector{
public:
vector ();
vector(int s);
~vector ();
vector(const vector &v);

vector& operator=(const vector&v);

vector (vector&& v);
vector& operator=(vector&& v);

double operator[] (int pos) const;

double& operator|] (int pos);
int length() const;



Explanation

When the source object of an assignment will not continue existing
after an assignment the compiler can use the move assignment
instead of the assignment operator.® A potentially expensive copy
operations is avoided this way.

Number of copies in the previous example goes down to 1.

8 Analogously so for the copy-constructor and the move constructor



Range for

We wanted this:

vector v = ...;
for (auto x: v)
std::cout << x << " ";

In order to support this, an iterator must be provided via begin and
end .



Iterator for the vector

class vector{

// Iterator

doublex begin(){
return elem;

}

doublex end(){
return elem+size;

}

class vector{
public:
vector ();
vector(int s);
~vector ();
vector(const vector &v);
vector& operator=(const vector&v);
vector (vector&& v);
vector& operator=(vector&& v);
double operator[] (int pos) const;
double& operator|] (int pos);
int length() const;
doublex begin();
doublex end();



Const Iterator for the vector

class vector{

// Const—Iterator

const doublex begin() constq
return elem;

}

const doublex end() const{
return elem+size;

}

class vector{
public:

vector ();

vector(int s);

~vector ();

vector(const vector &v);

vector& operator=(const vector&v);
vector (vector&& v);

vector& operator=(vector&& v);
double operator[] (int pos) const;
double& operator|] (int pos);

int length() const;

doublex begin();

doublex end();

const doublex begin() const;
const doublex end() const;



Intermediate result

vector Natural(int from, int to){
vector v(to—from+1);
for (auto& x: v) x = from++;
return v;

}

int main(){
vector v = Natural(5,12);
for (auto x: v)
std::cout << x <" "; // 56789 10 11 12
std::cout << "\n";
std::cout << "sum="
<< std::accumulate(v.begin(), v.end(),0); // sum = 68
return O;



Useful tools (3): using (C++11)

using replaces in C++11 the old typedef.

using identifier = type—id;

Beispiel

using element_t = double;
class vector{
std::size_t size;
element_tx* elem;




7. Sorting |

Simple Sorting



7.1 Simple Sorting

Selection Sort, Insertion Sort, Bubblesort [Ottman/Widmayer, Kap. 2.1, Cormen et
al, Kap. 2.1, 2.2, Exercise 2.2-2, Problem 2-2
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Problem

Input: An array A = (A[1], ..., A[n]) with length n.

Output: a permutation A’ of A, that is sorted: A’[i] < A'[;] for all
1<1<7 <n.



Algorithm: IsSorted(A)

Input : Array A = (A[1], ..., A[n]) with length n.
Output : Boolean decision “sorted” or “not sorted”
for i< 1ton—1do
if Afi] > A[i + 1] then
| return “not sorted”;

return “sorted”;



Observation

IsSorted(A):“not sorted”, if A[i] > Ali + 1] for an i.
= idea:

for j < 1ton—1do
if A[j] > A[j + 1] then
swap(A[j], A[j + 1]);



Giveitatry

[5]—[6] (j=1)

2 4] 1] (j=2
(1=2) m Not sorted! ®.
[6]—{8] (j=3) = Butthe greatest

element moves to the
6] [8] (1 =4) right
. = new idea!

B =5 ©

&l
N

6] [4] [1]



., nl,
,n — 1],
,n— 2],

m Apply the procedure
1,...
1,
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Try it out
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Algorithm: Bubblesort

Input : Array A = (A[1],...

Output : Sorted Array A
fori< 1ton—1do

for j« 1ton—1do

if A[j] > Alj + 1] then
 swap(A[j], Alj + 1]);




Analysis

Number key comparisons 3.7~ (n — i) = ”(”2_1) = O(n?).
Number swaps in the worst case: O(n?)

@ What is the worst case?
O If Ais sorted in decreasing order.

@ Algorithm can be adapted such that it terminates when the array is sorted.
Key comparisons and swaps of the modified algorithm in the best case?

@ Key comparisons =n — 1. Swaps = 0.



Selection Sort

smallest (or largest)

element by
immediate search.

m lterative procedure
as for Bubblesort

m Selection of the

N~— N~— N~—

=] o] o] 0] | [eof[eo]
<] ¢ [&] o] |ok[o] o
] [o] [e0] [cofe 0] 0] o]
o o] o] [~ [&] ¥
o] |ok|a [a] o] [o] feu
(To) o I el L I
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Algorithm: Selection Sort

Input : Array A = (A[l],...,Aln]), n > 0.
Output : Sorted Array A
for i< 1ton—1do

P41

for j < i+ 1 ton do
if Aj] < A[p] then
L P

~ swap(Ali], Alp])




Analysis

Number comparisons in worst case: O(n?).
Number swaps in the worst case: n — 1 = O(n)
Best case number comparisons: ©(n?).



Insertion Sort

|

.
I

m Insert element ¢ array
block movement
potentially required

—

SN
I

T.I@ (i=1) m lterative procedure:
T@ll (i=2)  i=1l.n
T.\. 2] | [8] (i =3)  m Determine insertion
. osition flr element
6,814 1 =9 °
1] (i=5)
(i =6)




Insertion Sort

@ What is the disadvantage of this algorithm compared to sorting
by selection?

@ Many element movements in the worst case.

@ What is the advantage of this algorithm compared to selection
sort?

® The search domain (insertion interval) is already sorted.
Consequently: binary search possible.



Algorithm: Insertion Sort

Input : Array A = (A[l],..., A[n]), n > 0.
Output : Sorted Array A
for i <+ 2 to n do

x < Alil

p < BinarySearch(A[l...i — 1], z); // Smallest p & [1,7] with Alp]
for j « i — 1 downto p do
A+ 1]« A[j]

Al

>

X



Analysis

Number comparisons in the worst case:
S ta-logk = alog((n —1)!) € O(nlogn).

Number comparisons in the best case O(nlogn).*
Number comparisons in the worst case >, _,(k

4With slight modification of the function BinarySearch fot eh minimum / maximum: ©(n)

1) € O(n?

)



Different point of view

Sortierknoten:



Different point of view
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Different point of view

m Like insertion sort
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Conclusion

In a certain sense, Selection Sort, Bubble Sort and Insertion Sort
provide the same kind of sort strategy. Will be made more precise. °

5In the part about parallel sorting networks. For the sequential code of course the observations as described above still
hold.



Shellsort

Insertion sort on subsequences of the form (A;.;) (: € N) with
decreasing distances k. Last considered distance must be k£ = 1.

Good sequences: for example sequences with distances
ke {2'3710 <i,j}.
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Shellsort

insertion sort, £k = 4

9 0

2

insertion sort, k£ = 2

9 8

6

insertion sort, £k = 1

8 9

7
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8. Sorting Il

Heapsort, Quicksort, Mergesort



8.1 Heapsort

[Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]
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Heapsort

Inspiration from selectsort: fast insertion
Inspiration from insertion sort: fast determination of position

@ Can we have the best of two worlds?
@ Yes, but it requires some more thinking...



[Max-]Heap®

Binary tree with the following prop-

|
complete up to the lowest -

level /

Gaps (if any) of the tree in
the last level to the right

18 «——parent

16/20\ 15/ \

17 «—child
Heap-Condition: /\ )\ / \ / \
Max-(Min-)Heap: key of a 3 2 8 11 14
child smaller (greater) thant leaves

that of the parent node

8Heap(data structure), not: as in “heap and stack” (memory allocation)



Heap and Array

Tree — Array:
m children(i) = {2i,2i + 1}
m parent(i) = |i/2]

Vater

|22]20[18]16]12[15]17] 3| 2| 8 |11]14]

1 2 4 5

Kinder

Depends on the starting index’

N,
/1IN /w\

16 12

5 J“\ A

8] [9] [10] [11]

For array that start at 0: {24,2i + 1} — {2i +1,2i + 2}, |3/2] — [(i — 1)/2]



Recursive heap structure

A heap consists of two heaps:

20

/ N\

16 12

/\ /\

22

/18\

’ 1/\ /\



Insert

22
20 18

m Insert new element at the first free 16/ \12 15/ \17

position. Potentially violates the heap N\ \ / \
property. 8 11 14
m Reestablish heap property: climb

22
successively 2 / \@

m Worst case number of operations: 7\ Pan\
16 12

O(logn) 17
[\ N ]
3 2 8 11 14 @ /\



Remove the maximum

m Replace the maximum by the lower
right element

m Reestablish heap property: sink
successively (in the direction of the
greater child)

m Worst case number of operations:
O(logn)

20/ \18
/ \12 15/ \1

/16\ /\ /\ /7\

/\
/\ /\

/\ /\



Algorithm Sink(A, 7, m)

Input : Array A with heap structure for the children of 7. Last element m.

Output : Array A with heap structure for ¢ with last element m.
while 2 < m do

j < 2i; // j left child
if j <m and A[j] < A[j + 1] then
‘ j< j+1;// jright child with greater key
if Afi] < A[j] then
swap(A[i], A[j])
i < j; // keep sinking
else
| i m; // sinking finished




Sort heap

All,...,n] is a Heap.

While n > 1
m swap(A[l], A[n])
m Sink(A4,1,n —1);
En<n—1

swap
sink
swap
sink
swap
sink
swap
sink
swap

O 2 R

N DA =2 01 = 00NN
— 24 N N O OV OO O
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Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!



Algorithm HeapSort(A, n)

Input : Array A with length n.
Output : A sorted.
for i < n/2 downto 1 do

- Sink(A, 14, n);

// Now A is a heap.
for i < n downto 2 do
swap(A[1], Ali])
Sink(A, 1,7 —1)

// Now A is sorted.



Analysis: sorting a heap

Sink traverses at most log n nodes. For each node 2 key
comparisons. = sorting a heap costs is the worst case 2logn
comparisons.

Number of memory movements of sorting a heap also O(nlogn).
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Analysis: creating a heap

Calls to sink: n/2. Thus number of comparisons and movements:
v(n) € O(nlogn).

But mean length of sinking paths is much smaller:

[log ] n [logn] n
h=0 h=0
s(x) ==Y p  kat = e (0 <2 <1). With s(3) =2

v(n) € O(n).



8.2 Mergesort

[Ottman/Widmayer, Kap. 2.4, Cormen et al, Kap. 2.3],



Intermediate result

Heapsort: O(nlogn) Comparisons and movements.

@ Disadvantages of heapsort?

O] Missing locality: heapsort jumps around in the sorted array
(negative cache effect).

® Two comparisons before each required memory movement.
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Mergesort

Divide and Conquer!

m Assumption: two halves of the array A are already sorted.
m Minimum of A can be evaluated with two comparisons.
m lteratively: sort the presorted array A in O(n).



i 2 3 4 7 9 10 11 12 16
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~

Algorithm Merge(A, [, m, r)

Input : Array A with length n, indexes 1 <1 <m <r <n. A[l,...

Alm+1,...,r] sorted
Output : All,. .., r] sortiert
B < new Array(r — [+ 1)
1L+ m+1 k<1
while : < m and j < r do
if Ali] < A[j] then Blk] < Afi]; i+ i+1
else Bk« Aljl; j«j+1
k<« k+1;

while i <m do B[k« Afi]; i ¢ i+1; k« k+1

s while j <rdo B[]« A[j]; j«< j+1; k+ k+1

for k < [ to r do A[k] < B[k — [ + 1]

yml,



Correctness
Hypothesis: after k iterations of the loop in line 3 BJ[1,... k] is
sorted and Blk| < Ali], ifi < mand B[k] < A[j] falls j < 7.

Proof by induction:
Base clause: the empty array B]1, ..., 0] is trivially sorted.
Induction step (k — k + 1):

m wlog Afi] < A[j],i <m,j <r.

m Bl[l,..., k] is sorted by hypothesis and B[k] < A[i].

m After B[k + 1] < A[i] B[l,...,k+ 1] is sorted.

m Bk+1]=A[] < Ali+1] (ifi+1 <m)and Blk + 1] < A[j]ifj <.

m k< k+ 1,7+ i+ 1: Statement holds again.



Analysis (Merge)

If: array A with lengthn, indexes 1 <[l <r <n.m=[(l+r)/2]
and All,...,m|, Aijm +1,...,r| sorted.

Then: in the call of Merge(A,l, m,r) a number of ©(r — l) key
movements and comparison are executed.

Proof: straightforward(Inspect the algorithm and count the
operations.)



Mergesort

5 2 6 1 8 4 3 9

5 26 1)|8 4 3 9]

5 2|6 1H8 43 9

ousmn

(&) ]
I

O — © +—

l\)(—l\)
Cﬁ)%
00 «— 00

1
l
1 4 5

»

Split
Split
Split
Merge
Merge
Merge



Algorithm recursive 2-way Mergesort(A, [, r)

Input : Array A with lengthn. 1 <1 <r<n

Output : Array All, ..., r] sorted.

if [ <r then
m < (I +7)/2] // middle position
Mergesort(A, [, m) // sort lower half
Mergesort(A,m + 1,r) // sort higher half

Merge(A, 1, m,r) // Merge subsequences



Analysis

Recursion equation for the number of comparisons and key
movements:

C(n) = O [gb o [SJ) +0(n) € Onlogn)



Algorithm StraightMergesort(A)

Avoid recursion: merge sequences of length 1, 2,4, ... directly

Input : Array A with length n
Output : Array A sorted
length < 1
while length < n do // Iteriere iiber die Langen n
right <— 0
while right + length < n do // Iteriere tiber die Teilfolgen
left < right + 1
middle < left + length — 1
right <— min(middle + length, n)
Merge(A, left, middle, right)

 length < length - 2




Analysis

Like the recursive variant, the straight 2-way mergesort always
executed a numbe rof ©(nlogn) key comparisons and key
movements.



Natural 2-way mergesort

Obserbation: the variants above do not make use of any presorting
and always execute O (n log n) memory movements.

@ How can partially presorted arrays be sorted better?

@ Recursive merging of previously sorted parts (runs) of A.



Natural 2-way mergesort

5leflz 4 88 o] 7]H]

/\

’

1 2 3 4 5 6 7 8 9




Algorithm NaturalMergesort(A)

Input : Array A with length n > 0

Output : Array A sorted

repeat

r<0

while » < n do

[+—r+1

m < [; while m < n and Ajm + 1] > A[m] do m <~ m +1

if m <n then
r < m+1; while r <nand A[r +1] > A[rjdo r < r+1
Merge(A, [, m, r);

else
L r<mn

until [ =1
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Analysis

In the best case, natural merge sort requires only n — 1
comparisons.

@ Is it also asymptotically better than StraightMergesort on
average?

ONo. Given the assumption of pairwise distinct keys, on average there are n/2
positions i with k; > k;4, i.e. n/2 runs. Only one iteration is saved on average.

o

Natural mergesort executes in the worst case and on average a
number of ©(n logn) comparisons and memory movements.



8.3 Quicksort

[Ottman/Widmayer, Kap. 2.2, Cormen et al, Kap. 7]



Quicksort

@ What is the disadvantage of Mergesort?
O] Requires O(n) storage for merging.

@ How could we reduce the merge costs?

® Make sure that the left part contains only smaller elements than
the right part.

@ How?

@ Pivot and Partition!



Quicksort (arbitrary pivot)

2 4 5 6 8(3|7 9 f
2] & 85/7 9 4
1 2 34 5 8[7|96

1 2 3 456 7 98
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Algorithm Quicksort(A[/, . . . , ]

Input : Array A with lengthn. 1 <[ <r <n.
Output : Array A, sorted between [ and r.
if [ <r then

Choose pivot p € A[l, ..., ]
k <« Partition(A[l, ..., 7], p)
Quicksort(A[l, ...,k —1])
Quicksort(Alk + 1,...,7])



Reminder: algorithm Partition(A[/, . .., 7|, p)

Input : Array A, that contains the sentinel p in [, r] at least once.

Output : Array A partitioned around p. Returns the position of p.

while [ < r do

while A[l] < p do
L+l +1

while A[r] > p do
Cor+r—1

swap(A[l], A[r])

if A[l] = A[r| then // Only for keys that are not pairwise different
L+l +1

return |-1



Analysis: number comparisons

Best case. Pivot = median; number comparisons:

T(n)=2Tn/2)+c-n, T(1)=0 = T(n) € O(nlogn)

Worst case. Pivot = min or max; number comparisons:

Tn)=Tn—-1)+c-n, T(1)=0 = T(n) € O(n?



Analysis: number swaps

Result of a call to partition (pivot 3):
2 1 36 8 5 7 9 4

@ How many swaps have taken place?

® 2. The maximum number of swaps is given by the number of keys
in the smaller part.
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Analysis: number swaps

Intellectual game

m Each key from the smaller part pay a coin when swapped.

m When a key has paid a coin then the domain containing the key is
less or equal than half the previous size.

m Every key needs to pay at most logn coins. But there are only n
keys.

Consequence: there are O(nlogn) key swaps in the worst case.



Randomized Quicksort

Despite the worst case running time of ©(n?), quicksort is used
practically very often.

Reason: quadratic running time unlikely if the choice of the pivot and
the presorting is not very disadvantageous.

Avoidance: randomly choose pivot. Draw uniformly from [Z, r|.
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Analysis (randomized quicksort)

Expected number of compared keys with input length n:
T(n)=m—1)+— Z k—1)+T(n—k), T(0)=T(1)=0

Claim T'(n) < 4nlogn.

Proof by induction:

Base clause straightforward for n = 0 (with 0log 0 := 0) and for
n = 1.

Hypothesis: T'(n) < 4nlogn fur ein n.

Induction step: (n — 1 — n)



Analysis (randomized quicksort)

n—1 n—1
2
T(n):n_1+_ZT(/<;)<n—1+ Z4klogk
=0 " k=0
n/2 n—1
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k=n/2+1
—n—1+ ((mgn).@_%(g 1))

=4nlogn —4logn — 3 < 4nlogn



Analysis (randomized quicksort)

On average randomized quicksort requires O(n -logn) comparisons.




Practical considerations

Worst case recursion depth n — 18. The also memory consumption
of O(n).

Can be avoided: recursion only on the smaller part. Then
guaranteed O(logn) worst case recursion depth and memory
consumption.

8stack overflow possible!



Quicksort with logarithmic memory consumption

Input : Array A with length n. 1 <[ <r <n.
Output : Array A, sorted between [ and 7.
while [ < r do
Choose pivot p € A[l,...,r]
k < Partition(A[l, ..., r],p)
if k—1<r—kthen

Quicksort(A[l, ...,k —1])

[+—Fk+1
else
Quicksort(Alk +1,...,7])
r<k—1
The call of Quicksort(A[l, . . ., r]) in the original algorithm has moved to iteration (tail recursion!): the if-statement became a

while-statement.



Practical considerations.

Practically the pivot is often the median of three elements. For
example: Median3(A[l], A[r], A[|l + r/2]]).

There is a variant of quicksort that requires only constant storage.
Idea: store the old pivot at the position of the new pivot.



9. C++ advanced (ll): Templates



Motivation

Goal: generic vector class and functionality.

vector<double> vd(10);
vector<int> vi(10);
vector<char> vi(20);

auto nd = vd x vd; // norm (vector of double)
auto ni = vi % vi; // norm (vector of int)




Types as Template Parameters

In the concrete implementation of a class replace the type that
should become generic (in our example: double) by a
representative element, e.g. T.

Put in front of the class the construct template<typename T>°
Replace T by the representative name).

The construct template<typename T> can be understood as “for all
types T”.

%equally:template<class T>



Types as Template Parameters

template <typename ElementType>
class vector{

size_t size;

ElementType* elem;
public:

vector(size_t s):
size{s},
elem{new ElementType[s]}{}

ElementType& operator[](size_t pos){
return elem[pos];

}



Template Instances

vector<typeName> generates a type instance vector with
ElementType=typeName.
Notation: Instantiation

vector<double> x; // vector of double
vector<int> y; // vector of int
vector<vector<double>> x; // vector of vector of double




Type-checking

Templates are basically replacement rules at instantiation time and
applied compilation. It is checked as little as necessary and as much
as possible.



Example

template <typename T>
class vector{

// pre: vector contains at least one element, elements comparable
// post: return minimum of contained elements
T min() const{
auto min = elem[0];
for (auto x=elem+1; x<elem+size; ++x){
if (xx<min) min = xx;

}
return min;
} vector<int> a(10); // ok
. auto m = a.min(); // ok
} vector<vector<int>> b(10); // ok;

auto n = b.min(); no match for operator< !



Generic Programming

Generic components should be devel-
oped rather as a generalization of one or
more examples than from first principles.

using size_t=std::size_t;
template <typename T>
class vector{

public:
vector ();
vector(size_t s);
~vector ();
vector(const vector &v);
vector& operator=(const vector&v);
vector (vector&& v);
vector& operator=(vector&& v);
T operator[] (size_t pos) const;
T& operator[] (size_t pos);
int length() const;
Tx begin();
Tx end();
const Tx* begin() const;
const Tx end() const;



Function Templates

In a concrete implementation of a function replace the type that
should become generic by a replacement, .e.g T,

Put in front of the function the construct
template<typename T>'°(Replace T by the replacement
name)

Vequally:template<class T>



Function Templates

template <typename T>
void swap(T& x, T&y){

T temp = x;
X =Y;
y = temp;

}

Types of the parameter determine the version of the function that is
(compiled) and used:

int x=5;

int y=6;

swap(x,y); // calls swap with T=int



Limits of Magic

template <typename T>
void swap(T& x, T&y){

T temp = x;
X =Y;
y = temp;

}

An inadmissible version of the function is not generated:

int x=5;
double y=6;
swap(x,y); // error: mno matching function for ...



Useful!

// Output of an arbitrary container
template <typename T>
void output(const T& t){
for (auto x: t)
std::cout << x << " '";
std::cout << "\n";

}

int main(){
std: :vector<int> v={1,2,3};
output(v); // 1 2 3

}



Powerful!

template <typename T> // square number
T sq(T x){
return x*Xx;
}
template <typename Container, typename F>
void apply(Container& c, F £){ // x <— f(x) forall x in c
for(auto& x: c)
x = £(x);
}
int main(){
std::vector<int> v={1,2,3};
apply(v,sq<int>);
output(v); // 1 4 9
}



Template Parameterization with Values

template <typename T, int size>
class CircularBuffer{
T buf[size] ;
int in; int out;
public:
CircularBuffer () :in{0}, out{0}{};
bool empty(){

return in == out;
}
bool full(){
return (in + 1) % size == out;
}
void put(T x); // declaration
T get(); // declaration



Template Parameterization with Values

template <typename T, int size>

void CircularBuffer<T,size>::put(T x){
assert(!full());
buf [in] = x;
in = (in + 1) Y% size;

}

template <typename T, int size>
T CircularBuffer<T,size>::get(){
assert (lempty());
T x = buf[out];
out = (out + 1) % size; <« Potential for optimization if size = 2.
return x;




10. Sorting lli

Lower bounds for the comparison based sorting, radix- and
bucket-sort
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10.1 Lower bounds for comparison based sorting

[Ottman/Widmayer, Kap. 2.8, Cormen et al, Kap. 8.1]



Lower bound for sorting

Up to here: worst case sorting takes 2(n logn) steps.
Is there a better way? No:

Sorting procedures that are based on comparison require in the
worst case and on average at least )(n logn) key comparisons.




Comparison based sorting

m An algorithm must identify the correct one of n! permutations of an
array (A;)i=1,..
m At the beginning the algorithm know nothing about the array

structure.

m We consider the knowledge gain of the algorithm in the form of a
decision tree:

m Nodes contain the remaining possibilities.
m Edges contain the decisions.



Decision tree

abc achb cab bac bea cba

a<b

Yes No
abc achb cab bac bea cba

b<c b<c
/ \ ach cab bac bea / \
a<c a<c
ach bca



Decision tree

The height of a binary tree with L leaves is at least log, L. = The
heigh of the decision tree h > logn! € Q(nlogn)."

Thus the length of the longest path in the decision tree € 2(nlogn).
Remaining to show: mean length M (n) of a path M (n) € Q(nlogn).

ﬂ](154/1! € O(nlogn):
logn! =37 logk < nlogn.

loghk > >0, /5logk > 5 -log 5.

o T
logn! =% Og g

d
Lak=1



Average lower bound

Decision tree 7,, with n leaves, average height
of a leaf m(T,)

Assumption m(7,,) > logn not for all n.
Choose smalles b with m(7},) < logn = b > 2

by +b. =b,wlog b >0und b, > 0=
by < b,b, < b= m(Ty) > logb und
m(Ty,) > logb,



Average lower bound

Average height of a leaf:

S

z b

b
1
(bi(log by + 1) + b, (log b, +1)) = 5 (brlog 261 + b, log 25;)

m(Ty) = —(m(Ty,) + 1) + o~(m(T,) + 1)
>

>

S = o =

(blogb) = logb.

Contradiction.

The last inequality holds because f(z) = xlogx is convex and for a convex
function it holds that f((x + y)/2) < 1/2f(x) + 1/2f(y) (x = 2b;, y = 2b, )."?
Enter z = 2b;, y = 2b,, and b; + b, = b.

2generally f(Az + (1 — N)y) < Af(x) + (1= N)f(y)for0 < X < 1.



10.2 Radixsort and Bucketsort

Radixsort, Bucketsort [Ottman/Widmayer, Kap. 2.5, Cormen et al, Kap. 8.3]



Radix Sort

Sorting based on comparison: comparable keys (< or >, often =).
No further assumptions.

Different idea: use more information about the keys.



Annahmen

Assumption: keys representable as words from an alphabet
containing m elements.

m = 10 decimal numbers 183 = 18349
m =2 dual numbers 1015

m = 16 hexadecimal numbers A0i¢

m = 26 words “INFORMATIK’

m is called the radix of the representation.



Assumptions

m keys = m-adic numbers with same length.
m Procedure 2 for the extraction of digit k& in O(1) steps.




Radix-Exchange-Sort

Keys with radix 2.
Observation: if £ > 0,

29(i, ) = 29(i,y) forall i > k

and
22(k7 ZIC) < ZQ(ka y);

then x < y.



Radix-Exchange-Sort

Idea:

m Start with a maximal k.

m Binary partition the data sets with z5(k, -) = 0 vs. 25(k,-) = 1 like
with quicksort.

mk<+—k—1



Radix-Exchange-Sort

0111 0110 1000 0011 0001

0111 0110 0001 001111000
N— 7
N N

0011 0001/(0110 0111]/1000)

0001/(0011/[0110 0111|/1000)

0001//0011/[0110/0111|/1000)




Algorithm RadixExchangeSort(A, [, r, b)

Input : Array A with length n, left and right bounds 1 <[ < r < n, bit
position b
Output : Array A, sorted in the domain [I, 7] by bits [0,...,0] .
if l>rand b > 0 then
1+1—1
J=r+1
repeat
repeat i < i + 1 until z3(b, A[i]) =1 and i > j
repeat j < j + 1 until 23(b, A[j]) =0 and i > j
if i < j then swap(A[i], A[j])
until 7 > j
RadixExchangeSort(A,l,i — 1,0 — 1)
RadixExchangeSort(A,i,7,b — 1)




Analysis

RadixExchangeSort provide recursion with maximal recursion depth
= maximal number of digits p.

Worst case run time O(p - n).
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Bucket Sort

3 8 1812212113123211929

LN

21
131 23 18 29
121 122 3 8 19

\ =

12113121122 3 23 8 181929



Bucket Sort

12113121122 3 23 8 181929
0o 1 2 3 4 o5 6

29
23
122

8 19 21

3 18 121 131

3 8 1819121 211222329



Bucket Sort

3 8 181912121 1222329

o 1 2 383 4 5 6 7
29

23

21

19

18 131

8 122

3 121

3 8 1819212329121122131 (©



implementation details

Bucket size varies greatly. Two possibilities

m Linked list for each digit.
m One array of length n. compute offsets for each digit in the first
iteration.



11. Fundamental Data Types

Abstract data types stack, queue, implementation variants for linked
lists, amortized analysis [Ottman/Widmayer, Kap. 1.5.1-1.5.2,
Cormen et al, Kap. 10.1.-10.2,17.1-17.3]
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Abstract Data Types

We recall
A stack is an abstract data type (ADR) with operations

m push(z,S): Puts element x on the stack S.

m pop(S): Removes and returns top most element of S or null
m top(S): Returns top most element of S or null.

m isEmpty(S): Returns true if stack is empty, false otherwise.
m emptyStack(): Returns an empty stack.



Implementation Push

top Tp &—— Tp-1 @ ---- »Z1 e—— null

T
push(z, S):

Create new list element with x and pointer to the value of top.
Assign the node with x to top.



Implementation Pop

top T Tpn—-1 @----- >Z1 e—— null

r

pop(S):
If top=null, then return null
otherwise memorize pointer p of top in r.
Set top to p.next and return r



Analysis

Each of the operations push, pop, top and isEmpty on a stack can
be executed in O(1) steps.



Queue (fifo)

A queue is an ADT with the following operations

m enqueue(x, Q): adds z to the tail (=end) of the queue.

m dequeue(()): removes z from the head of the queue and returns z
(null otherwise)

m head(Q): returns the object from the head of the queue (null
otherwise)

m isEmpty(Q): return true if the queue is empty, otherwise false
m emptyQueue(): returns empty queue.



Implementation Queue

rZy e—— T2 e----- > Ip—-1 &—— Ty Tnull
r e—— null

head tail

enqueue(z, S):

Create a new list element with = and pointer to null.

If tail # null, then set tail.next to the node with x.
Set tail to the node with z.

If head = null, then set head to tail.



Invariants

L1 &—— L2 @----- >»&p-1 &—— Tp, &—— null

head tail
With this implementation it holds that

m either head = tail = null,
m or head = tail # null and head.next = null

m or head # null and tail # null and head # tail and
head.next # null.



Implementation Queue

LKL &— T2 @----- >»Tpn—-1 &—— T, &—— null
T head tail
dequeue(S):

Store pointer to head in r. If r = null, then return r .
Set the pointer of head to head .next.

Is now head = null then set tail to null.

Return the value of r.



Analysis

Each of the operations enqueue, dequeue, head and isEmpty on
the queue can be executed in O(1) steps.



Implementation Variants of Linked Lists

List with dummy elements (sentinels).

Advantage: less special cases
Variant: like this with pointer of an element stored singly indirect.



Implementation Variants of Linked Lists

Doubly linked list

null <o Z1 & e T3 o

_________

head



Overview

enqueue insert delete search

(A) O(1) O(1) O(n) O(n)
(B) O(1) O(1) O(n) O(n)
(C) o(1) o(1) o(1) O(n)
(D) o(1) o(1) o(1) O(n)

(A) = singly linked

(B) = Singly linked with dummy

(C) = Singly linked with indirect element addressing

(D) = doubly linked



priority queue

Priority Queue
Operations

m insert(x,p,Q): Enter object x with priority p.
m extractMax(Q): Remove and return object x with highest priority.



Implementation Priority Queue

With a Max Heap
Thus

m insert in O(logn) and
m extractMax in O(logn).



Multistack

Multistack adds to the stack operations below

multipop(s,S): remove the min(size(.S), k) most recently inserted
objects and return them.

Implementation as with the stack. Runtime of multipop is O(k).



Academic Question

If we execute on a stack with n elements a number of n times
multipop(k,S) then this costs O(n?)?

Certainly correct because each multipop may take O(n) steps.
How to make a better estimation?



Idea (accounting)

Introduction of a cost model:

m Each call of push costs 1 CHF and additional 1 CHF will be put to
account.
m Each call to pop costs 1 CHF and will be paid from the account.

Account will never have a negative balance. Thus: maximal costs =
number of push operations times two.
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More Formal

Let ¢; denote the real costs of the operation i. Potential function
®; > 0 for the “account balance” after : operations. ®; > @, Vs.

Amortized costs of the :th operation:

a;, :=t; +d; — ;4.

It holds
iaz Z D — D) (Zt>+¢n—<b02iti.
i=1 1=1

Goal: find potential function that evens out expensive operations.



Example stack

Potential function ®; = number element on the stack.

m push(z, S): real costs t; = 1. ; — &, ; = 1. Amortized costs

a; — 2.
m pop(S): real costs t; = 1. ; — &, = —1. Amortized costs
a; = 0.

m multipop(k, S): real costs t; = k. ; — &,y = —k. amortized
costs a; = 0.

All operations have constant amortized cost! Therefore, on average
Multipop requires a constant amount of time.



Example Binary Counter

Binary counter with k bits. In the worst case for each count
operation maximally & bitflips. Thus O(n - k) bitflips for counting from
1 to n. Better estimation?

Real costs t; = number bit flips from 0 to 1 plus number of bit-flips
from 1 to O.

..01111111 41 = ...1 0000000 .

{ Einsen | Zeroes



Example Binary Counter

..011111117 41 = ...1 0000000

[ Einsen { Nullen

potential function ®,: number of 1-bits of x;.

= =Dy =11,
:>ai=ti+@i—q)i,1=l+1+(1—l)=2.

Amortized constant cost for each count operation. ©



12. Dictionaries

Dictionary, Self-ordering List, Implementation of Dictionaries with
Array / List /Skip lists. [Ottman/Widmayer, Kap. 3.3,1.7, Cormen et
al, Kap. Problem 17-5]



Dictionary

ADT to manage keys from a set X with operations

m insert(k, D): Insert k € K to the dictionary D. Already exists =
error messsage.

m delete(k, D): Delete k from the dictionary D. Not existing =
error message.

m search(k, D): Returns true if £ € D, otherwise false



Idea

Implement dictionary as sorted array
Worst case number of fundamental operations

Search O(logn) ©
Insert  O(n) ®
) ®

Delete O(n



Other idea

Implement dictionary as a linked list
Worst case number of fundamental operations

Search O(n) ®
Insert O(1)® ©
Delete O(n) ®

3Provided that we do not have to check existence.



Self Ordered Lists

Problematic with the adoption of a linked list: linear search time

Idea: Try to order the list elements such that accesses over time are
possible in a faster way

For example
m Transpose: For each access to a key, the key is moved one

position closer to the front.

m Move-to-Front (MTF): For each access to a key, the key is moved
to the front of the list.



Transpose

Transpose:

Worst case: Alternating sequence of n accesses to k,,_; and k,,.
Runtime: ©(n?)
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Move-to-Front

Move-to-Front:

Alternating sequence of n accesses to k,,_; and k,. Runtime: ©(n)

Also here we can provide a sequence of accesses with quadratic
runtime, e.g. access to the last element. But there is no obvious
strategy to counteract much better than MTF..



Analysis

Compare MTF with the best-possible competitor (algorithm) A. How
much better can A be?

Assumption: MTF and A may only move the accessed element.
MTF and A start with the same list. Let M}, and A, designate the
lists after the kth step. M, = A,.



Analysis

Costs:

m Access to z: position p of x in the list.

m No further costs, if x is moved before p

m Further costs ¢ for each element that x is moved back starting
from p.




Amortized Analysis

Let an arbitrary sequence of search requests be given and let G,(CM)
and G;A) the costs in step k for Move-to-Front and A, respectively.
Want estimation of ), GSCM) compared with >, G](CA).

= Amortized analysis with potential function .



Potential Function

Potential function ® = Number of inversions of A vs. MTF.

Inversion = Pair x, y such that for the positions of a and y
p(x) < p(j)(y) A pMD () > pM(z) or
p W (x) > p@(y) ApM(z) < pM(x)

#inversion = #crossings



Estimating the Potential Function: MTF

Element i at position
pi == pM(0).

access costs C,EM ) — Di.

x;: Number elements that are
in M before p; and in A after ¢ .

MTF removes x; inversions.

p; — x; — 1: Number elements
that in M are before p; and in
A are before i.

MTF generates p; — 1 — x;
inversions.

Ay,

M1




Estimating the Potential Function: A

m (Wlog) element ¢ at
position .

_ X,gA): number
movements to the back

(otherwise 0).

m access costs for i:
o =i

m A increases the number
of inversions by X,gA).

Ak

1

10




Estimation

Dy — O =< —x; + (pi —1-— %) + XIEA)

Amortized costs of MTF in step k:

aliM) = C]S;JW) + Oy — Dy
(4)

<pi—xi+{pi—1—xz)+ X,

A
:(pi_xi)‘i‘(pi_xi)_l—'—Xlg)
<cWic®_14xW



Estimation

Summing up costs

ZGECM):ZQEM)SZ@ <220 —1+x
k k

<ZQC +X )< 9. ZC )4 xW
ZQ.ZG](CA)
k

In the worst case MTF requires at most twice as many operations as
the optimal strategy.



Cool idea: skip lists

Perfect skip list

!

O == N W

® ® } @
([ ® ([ ([ rad - ([

ooi‘

x1 ) x3 ) x5 L6 X7

1 S wp <3 < -0 < Ty,
Example: search for a key = with z5 < = < xg.



Analysis perfect skip list (worst cases)

Search in O(logn). Insertin O(n).



Randomized Skip List

Idea: insert a key with random height H with P(H = i)

— 9ifl-
3 ® ®
2 ([ ® ([
1 ® ® ® ® ®
0 ([ ® ([ ([ ® ® ([ ([ ®
T i) T3 T4 Iy Te X7 s



Analysis Randomized Skip List

The expected number of fundamental operations for Search, Insert
and Delete of an element in a randomized skip list is O(logn).

The lengthy proof that will not be presented in this courseobserves the length of a
path from a searched node back to the starting point in the highest level.



13. C++ advanced (lll): Functors and Lambda



13.1 Appendix to previous C++ chapters



Appendix about Move-Semantics

// nonsense implementation of a "vector" for demonstration purposes
class vec{
public:
vec () {
std::cout << "default constructor\n";}
vec (const vec&) {
std::cout << '"copy constructor\n";}
veck operator = (const vec&) {
std::cout << '"copy assignment\n"; return xthis;}
~vec() {}
};



How many Copy Operations?

vec operator + (const vec& a, const vec& b){
vec tmp = a;
// add b to tmp
return tmp;

}

int main (){
vec f;
f=f+f+f + £f;

Output

default constructor
copy constructor
copy constructor
copy constructor
copy assignment

4 copies of the vector



Appendix about Move-Semantics

// nonsense implementation of a "vector" for demonstration purposes
class vec{

public:
vec () { std::cout << "default constructor\n";}
vec (const veck) { std::cout << "copy constructor\n";}
veck& operator = (const veck) {
std::cout << '"copy assignment\n"; return xthis;}
~vec() {}
// new: move constructor and assignment
vec (vec&&) {
std::cout << "move constructor\n";}
vec& operator = (vec&&) {
std::cout << "move assignment\n"; return xthis;}

};



How many Copy Operations?

vec operator + (const vec& a, const vec& b){
vec tmp = a;
// add b to tmp
return tmp;

}

int main (){
vec f;
f=f+f+f + £f;

Output

default constructor
copy constructor
copy constructor
copy constructor
move assignment

3 copies of the vector



How many Copy Operations?

vec operator + (vec a, const vec& b){

// add b to a Output
return a; default constructor
} copy constructor
move constructor
int main (){ move constructor
vec f; move constructor
f=f+f+f+f; move assignment

1 copy of the vector

Explanation: move semantics are applied when an x-value (expired value) is
assigned. R-value return values of a function are examples of x-values.

http://en.cppreference.com/w/cpp/language/value_category
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How many Copy Operations?

void swap(vec& a, vec& b){
vec tmp = a;
a=b;
b=tmp;

}

int main (){
vec £f;
vec g;
swap(f,g);

Output

default constructor
default constructor
copy constructor
copy assignment
copy assignment

3 copies of the vector



Forcing x-values

void swap(veck a, vec& b){

vec tmp = std::move(a); Output
a=std: :move(b); default constructor
b=std: :move (tmp) ; default constructor

} move constructor

int main (){ move assignment
vec f; move assignment
vec g;
swap(f,g); 0 copies of the vector

}

Explanation: With std::move an |-value expression can be transformed into an
x-value. Then move-semantics are applled. http://en.cppreference.com/w/cpp/utility/move


http://en.cppreference.com/w/cpp/utility/move

13.2 Functors and Lambda-Expressions



Functors: Motivation

A simple output filter

template <typename T, typename function>
void filter(const T& collection, function f){
for (const auto& x: collection)
if (f(x)) std::cout << x << " ";
std::cout << "\n";



Functors: Motivation

template <typename T, typename function>
void filter(const T& collection, function f);

template <typename T>
bool even(T x){
return x % 2 == 0;

}

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
filter(a,even<int>); // output: 2,4,6,16



Functor: object with overloaded operator ()

class LargerThan{
int value; // state
public:
LargerThan(int x):value{x}{};

bool operator() (int par){
return par > value;
}
};

Functor is a callable ob-
ject. Can be under-
stood as a stateful func-
tion.

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};

int value=8;

filter(a,LargerThan(value)); // 9,11,16,19



Functor: object with overloaded operator ()

template <typename T>
class LargerThan{
T value;
public:
LargerThan(T x):value{x}{}; also works with a tem-
plate, of course
bool operator() (T par){
return par > value;
}
};

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int value=8;
filter(a,LargerThan<int>(value)); // 9,11,16,19



The same with a Lambda-Expression

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int value=8;

filter(a, | [value] (int x) {return x>value;}|);




Sum of Elements — Old School

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int sum = 0;
for (auto x: a)
sum += x;
std::cout << sum << "\n"; // 83



Sum of Elements — with Functor

template <typename T>
struct Sum{

T & value = O;

Sum (T& v): value{v} {}

void operator() (T par){
value += par;
}
};

std: :vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int s=0;

Sum<int> sum(s);

sum = std::for_each(a.begin(), a.end(), sum);
std::cout << s << "\n"; // 83



Sum of Elements — with A

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};

int s=0;
std::for_each(a.begin(), a.end(),

std::cout << s << "\n'";

[&s] (int x) {s += x;}




Sorting, different

// pre: i >=0
// post: returns sum of digits of i
int q(int i){
int res =0;
for(;i>0;i/=10)
res +=1i % 10;
return res;

}

std::vector<int> v {10,12,9,7,28,22,14};
std::sort (v.begin(), v.end(),

[1 (int i, int j) { return q(i) < q(j);}
);

Now v =10, 12,22, 14,7,9, 28 (sorted by sum of digits)



Lambda-Expressions in Detail

[value] (int x) ->bool {return x>value;}

— _/
~ ~" ~ ~"

capture parameters return statement
type



Closure

[value] (int x) ->bool {return x>value;}

m Lambda expressions evaluate to a temporary object — a closure

m The closure retains the execution context of the function, the
captured objects.

m Lambda expressions can be implemented as functors.



Simple Lambda Expression

[1()—>void {std::cout << "Hello World";}

call:
[1()—>void {std::cout << "Hello World";}();



Minimal Lambda Expression

(1{}

m Return type can be inferred if < 1 return statement.

[J(O {std::cout << "Hello World";}

m If no parameters and no return type, then () can be omitted.

[J{std::cout << "Hello World";}

m [...] can never be omitted.



Examples

[](int x, int y) {std::cout << x x y;} (4,5);

Output: 20



Examples

int k = 8;
[J(int& v) {v += v;} (k);
std::cout << k;

Output: 16



Examples

int k = 8;
[1(int v) {v += v;} (k);
std::cout << k;

Output: 8



Capture — Lambdas

For Lambda-expressions the capture list determines the context
accessible

Syntax:

m [x]: Access a copy of x (read-only)

m [&x]: Capture x by reference

m [&x,y]: Capture x by reference and y by value
|

[&]: Default capture all objects by reference in the scope of the
lambda expression

m [=]: Default capture all objects by value in the context of the
Lambda-Expression
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Capture — Lambdas

int elements=0;
int sum=0;
std::for_each(v.begin(), v.end(),
[&] (int k) {sum += k; elements++;} // capture all by reference

)



Capture — Lambdas

template <typename T>

void sequence(vector<int> & v, T done){
int i=0;
while (!done()) v.push_back(i++);

}

vector<int> s;
sequence(s, [&] {return s.size() >= 5;} )

nowv=01234
The capture list refers to the context of the lambda expression.



Capture — Lambdas

When is the value captured?

int v = 42;

auto func = [=] {std::cout << v << "\n"};
v =271

func();

Output: 42
Values are assigned when the lambda-expression is created.



Capture — Lambdas
(Why) does this work?

class Limited{
int limit = 10;
public:
// count entries smaller than limit
int count(const std::vector<int>& a){
int ¢ = 0;
std::for_each(a.begin(), a.end(),
[=,&c] (int x) {if (x < limit) c++;}
);
return c;
}
};

The this pointer is implicitly copied by value



Capture — Lambdas

struct mutant{

int i = 0;

void do(){ [=] {i=42;}0);}
};

mutant m;
m.do();
std::cout << m.i;

Output: 42
The this pointeris implicitly copied by value



Lambda Expressions are Functors

[x, &yl O {y = x;}

can be implemented as

unnamed {x,y};

with

class unnamed {
int x; int& y;
unnamed (int x_, int& y_) : x (x.), y (y_) {3
void operator () () {y = x;}};

};



Lambda Expressions are Functors

[=] O {return x + y;}

can be implemented as

unnamed {x,y};

with

class unnamed {
int x; int y;
unnamed (int x_, int y_) : x (x_), y (y.) {}
int operator () () {return x + y;}

};



Polymorphic Function Wrapper std: : function

#include <functiomnal>

int k= 8;

std: :function<int (int)> f;

f = [k](int i){ return i+k; };
std::cout << £(8); // 16

Kann verwendet werden, um Lambda-Expressions zu speichern.

Other Examples
std::function<int (int,int)>;
std: :function<void(double)> ...

http://en.cppreference.com/w/cpp/utility/functional/function


http://en.cppreference.com/w/cpp/utility/functional/function

14. Hashing

Hash Tables, Birthday Paradoxon, Hash functions, Perfect and
Universal Hashing, Resolving Collisions with Chaining, Open
Addressing, Probing

[Ottman/Widmayer, Kap. 4.1-4.3.2, 4.3.4, Cormen et al, Kap.
11-11.4]
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Motivation

Gloal: Table of all n students of this course
Requirement: fast access by name



Naive Ideas

Mapping Name s = s1s5. .. s;, to key

Ls

k(s) = ZSZ b

i=1
b large enough such taht different names map to different keys.

Store each data set at its index in a huge array.

Example with b = 100. Ascii-Values s;.

Anna — 71111065
Jacqueline — 102110609021813999774

Unrealistic: requires too large arrays.



Better idea?

Allocation of an array of size m (m > n).
Mapping Name s to

ls
km(s) = (Z S - bi> mod m.

=1

Different names can map to the same key (“Collision”). And then?



Estimation

Maybe collision do not really exist? We make an estimation ...



Abschatzung

Assumption: m urns, n balls (wlog n < m).
n balls are put uniformly distributed into the urns

What is the collision probability?

Very similar question: with how many people (n) the probability that
two of them share the same birthday (m = 365) is larger than 50%?



Estimation

PP(no collision) = 2. ==L . ... m—ntl _ __ml

m m (m—n)l-mm™*

Let a < m. With e$:1+x+§+... approximatel—%ze*%.
This yields:

2 —1 14 dn—1 n(n—1
1.(1—i>-<1——>-...-<1—” )ze”%‘:e—%m).
m m m

Thus

n(n—1)

P(Kollision) =1 — e 2n

Puzzle answer: with 23 people the probability for a birthday collision is 50.7%. Derived from the slightly more accurate

Stirling formula. 379



With filling degree:

P (Kollision)
15

With filling degree a :=
n/m it holds that (simplified
further) 05 |

P(collision) ~ 1 — e "

:‘é;C 280 3(;0 m
The maximal filling degree should be chosen according to the ratio
2




Nomenclature

Hash funtion h: Mapping from the set of keys K to the index set
{0,1,...,m — 1} of an array (hash table).

hiK—{0,1,...,m—1}.

Normally || > m. There are ky, ko € K with h(k1) = h(ks)
(collision).

A hash function should map the set of keys as uniformly as possible
to the hash table.



Examples of Good Hash Functions

m h(k) = k mod m, m prime

()=
i

|m(k-r—|k-r])|, rirrational, paritcularly good:
1



Perfect Hashing

Is the set of used keys known up front? Then the hash function can
be chosen perfectly. The practical construction is non-trivial.

Example: table of key words of a compiler.



Universal Hashing

m || > m = Set of “similar keys” can be chose such that a large
number of collisions occur.

m Impossible to select a “best” hash function for all cases.
m Possible, however'*: randomize!

Universal hash class H C {h: K — {0,1,...,m — 1}} is a family of
hash functions such that

Vi # ks € K2 | {h € HIh(k) = h(k2)}] < - [H].

14Similar as for quicksort



Universal Hashing

A function h randomly chosen from a universal class H of hash
functions randomly distributes an arbitrary sequence of keys from K
as uniformly as possible on the available slots.




Universal Hashing

Initial remark for the proof of the theorem:
Definewithz,y e K,he H,Y C K:

gty — {1 T0E) =R Ay
70, otherwise,
d(z,Y, h) Z(S x,y, h
yey
Oz, y, H) = 6(x,y.h
heH

H is universal if forall x,y € K, x £y : §(z,y, H) < [H|/m.



Universal Hashing

Proof of the theorem
S C K: keys stored up to now. z is added now:

En(5(x, S, h) =Y d(x, S, h)/[H]

he?—[
D) BITRIES 3} pleans
|hE’H yeS | yES heH
|H|Z“y’
yes

g [/ = 151

m
yeS



Universal Hashing is Relevant!
Let p be primeand K = {0,...,p—1}. Witha € £\ {0}, b€ K
define

hay - KK — {0,...,m — 1}, hgp(x) = ((ax + b) mod p) mod m.

Then the following theorem holds:

The class H = {haw|a,b € K,a # 0} is a universal class of hash
functions.




Resolving Collisions

Example m =7, K = {0,...,500}, h(k) = k mod m.

Keys 12,53 ,5,15,2,19 ,43

Chaining the Collisions

hash table

Colliding entries

15 53 | 12
! !
43 5
*
13




Resolving Collisions

Example m =7, K = {0,...,500}, h(k) = k mod m.
Keys 12,53 ,5,15,2,19 ,43

Direct Chaining of the Colliding entries

0 1 2 3 4 5 6

hash table \ [ o [ o] [ o [ o | |
1 1
15| 2 53 12
! !
Colliding entries 43 5
?
1
19




Algorithm for Hashing with Chaining

m search(k) Search in list from position h(k) for k. Return true if
found, otherwise false.

m insert(k) Check if & is in list at position h(k). If no, then append
k to the end of the list.

m delete(k) Search the list at position h(k) for k. If successful,
remove the list element.



Analysis (directly chained list)

Unsuccesful search. The average list lenghtis a = --. The list
has to be traversed completely.
= Average number of entries considered

/_
C, = a.

Successful search Consider the insertion history: key j sees an
average list length of (j — 1)/m.
= Average number of considered entries

1 In(n—1) o

Cn:EZ(l‘F(j—l)/m)):1‘1‘_—%14‘5-

J=1



Advantages and Disadvantages

Advantages

m Possible to overcommit: o > 1
m Easy to remove keys.

Disadvantages

m Memory consumption of the chains-



Open Addressing

Store the colliding entries directly in the hash table using a probing
function s(7,k) (0 < 7 <m, k € K)

Key table position along a probing sequence

S(k) = (h(k) — s(0,k) mod m, ..., (h(k) — (m — 1,k)) mod m



Algorithms for open addressing

m search(k) Traverse table entries according to S(k). If k is found,
return true. If the probing sequence is finished or an empty
position is reached, return false.

m insert(k) Search for £ in the table according to S(k). If k is not

present, insert k& at the first free position in the probing sequence.

15

m delete(k) Search k in the table according to S(k). If & is found,
mark the position of k£ with a deleted flag

5 A position is also free when it is non-empty and contains a deleted flag.



Linear Probing

s(7, k) =
S(k) =

Example m =7, K = {0, ...,
Key 12,53 ,5,15,2,19

0

(h ( ) mod m, (h(k) —

1

1) mod m, ...,

(h(k) + 1) mod m)

500}, h(k) = k mod m.

19

19).2

12




Analysis linear probing (without proof)

Unsuccessful search. Average number of considered entries

ol L
=3 ()

Successful search. Average number of considered entries

1 1
C,~=11 .
' 2<+1—04)




Discussion

Example a = 0.95
The unsuccessful search consideres 200 table entries on average!

@ Disadvantage of the method?
O] Primary clustering: simular hasht addresses have similar probing

sequences =- long contiguous areas of used entries.




Quadratic Probing

s(j, k) = [j/217 (=1)
S(k) = (h(k) + 1, h(k) — 1, h(k) + 4, h(k) — 4, ...) mod m

Example m =7, K = {0,...,500}, h(k) = k mod m.
Keys 12,53 ,5,15,2,19

0 1 2 3 4 5 6
J91.15].2 20|18 |8




Analysis Quadratic Probing (without Proof)

Unsuccessful search. Average number of entries considered

1 1
Cl ~ —oz+1n< )

1l -« 1l -«

Successful search. Average number of entries considered

1 «
C,~1+1 — —.
' +n<1—a> 2




Discussion

Example a = 0.95
Unsuccessfuly search considers 22 entries on average

@ Problems of this method?

@ Secondary clustering: Synonyms k and k' (with h(k)
travers the same probing sequence.

= h(k)




Double Hashing

Two hash functions h(k) and 1'(k). s(j,k) = j - ' (k).
S(k) = (h(k) — k'(k), h(k) — 21/ (k), ..., h(k) — (m — 1)}/(k)) mod m

Example:
m="17,K=1{0,...,500}, h(k) = k mod 7, (k) = 1 + k mod 5.
Keys 12,53 ,5,15,2,19

O 1 2 3 4 5 6

g e 2] 9 B8 12




Double Hashing

m Probing sequence must permute all hash addresses. Thus
h'(k) # 0 and h'(k) may not divide m, for example guaranteed
with m prime.

m /' should be independent of & (avoiding secondary clustering)
Independence:

P ((h(k) = h(K')) A (W' (k) = I'(K')) = P (h(k) = h(K')) - P (h'(k) = h'(K')) .

Independence fulfilled by h(k) = k mod m and A/(k) = 1 + k mod (m — 2) (m
prime).



Analysis Double Hashing

Let h and i’ be independent, then:

Unsuccessful search. Average number of considered entries:

1

1l -«

C;lz

Successful search. Average number of considered entries:

053 Oé4 045

o
Comldt—t—F——— 4. <2
tot Tt E gt <28
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Overview

a=0.50 a=0.90 a=0.95

Ch C/ Ch cl Cp cl
Separate Chaining 1.250 1.110 1.450 1.307  1.475 1.337
Direct Chaining 1.250 0.500 1.450 0.900 1.475 0.950
Linear Probing 1.500 2.500 5.500 50.500 10.500 200.500
Quadratic Probing  1.440 2.190 2.850 11.400 3.520  22.050
Double Hashing 1.39 2.000 2.560 10.000 3.150  20.000




15. C++ advanced (IV): Exceptions



Some operations that can fail

m Opening files for reading and writing
std::ifstream input("myfile.txt");
m Parsing

int value = std::stoi("12-8");

m Memory allocation

std: :vector<double> data(ManyMillions) ;

m Invalid data

int a = b/x; // what if x is zero?



Possibilities of Error Handling

m None (inacceptable)

m Global error variable (flags)

m Functions returning Error Codes
m Objects that keep error status

m Exceptions



Global error variables

m Common in older C-Code
m Concurrency is a problem.

m Error handling at good will. Requires extreme discipline,
documentation and litters the code with seemingly unrelated
checks.



Functions Returning Error Codes

m Every call to a function yields a result.

m Typical for large APIs (e.g. OS level). Often combined with global
error code.®

m Caller can check the return value of a function in order to check
the correct execution.

6Global error code thread-safety provided via thread-local storage.



Functions Returning Error Codes

Example

#include <errno.h>

pf = fopen ("notexisting.txt", "r+");
if (pf == NULL) {

fprintf (stderr, "Error opening file
}
else { // ...

fclose (pf);
}

: %s\n", strerror( errno ));




Error state Stored in Object

m Error state of an object stored internally in the object.

Example

int i;
std::cin >> i;
if (std::cin.good()){// success, continue

}




Exceptions

m Exceptions break the normal control flow
m Exceptions can be thrown (throw) and catched (catch)
m Exceptions can become effective accross function boundaries.



Example: throw exception

class MyException{};

void f(int i){
if (i==0) throw MyException();
f(i—1);

}

int main()
{

£(4);
return 0; terminate called after throwing an instance of "MyException’

} Aborted



Example: catch exception

class MyException{};

void f(int i){
if (i==0) throw MyException();
f(i—1);

}

int main(){
try{
f(4);
}
catch (MyException e){
std::cout << "exception caught\n";
}
}

exception caught



Resources get closed

class MyException{};
struct SomeResource{
~SomeResource(){std: :cout << "closed resource\n";}
};
void f(int i){
if (i==0) throw MyException();
SomeResource x;
f(i—1);
}
int main(){
try{£(5);}
catch (MyException e){
std::cout << "exception caught\n";

closed resource
closed resource
closed resource
closed resource
closed resource
exception caught

}
}



When Exceptions?

Exceptions are used for error handling exclusively.

m Use throw only in order to identify an error that violates the
post-condition of a function or that makes the continued execution
of the code impossible in an other way.

m Use catch only when it is clear how to handle the error
(potentially re-throwing the exception)

m Do not use throw in order to show a programming error or a
violation of invariants, use assert instead.

m Do not use exceptions in order to change the control flow. Throw
iS not a better return.



Why Exceptions?
This:

// ...code that handles the error...

may look better than this on a first sight:
try {
£0;

/] ...
} catch (std::exception& e) {

// ...code that handles the error...

¥



Why exceptions?

Truth is that toy examples do not necessarily hit the point.

Using return-codes for error handling either pollutes the code with
checks or the error handling is not done right in the first place.



That’s why

Example 1: Expression evaluation (expression parser from
Introduction to programming), cf.
http://codeboard.io/projects/46131

Input: 1 + (3 *x 6 / (/7))

Error is deap in the recursion hierarchy. How to produce a
meaningful error message (and continue execution)? Would have to
pass error code over recursion steps.


http://codeboard.io/projects/46131

Second Example

Value type with guarantee: values in range provided.

template <typename T, T min, T max>
class Range{
public:

Range () {}

Range (const T& v) : value (v) {

if (value < min) throw Underflow (); S50 Eaeling i ii® Een-

if (value > max) throw Overflow (); structor.
}
operator const T& () const {return value;}
private:
T value;

};



Types of Exceptions, Hierarchical

class
class
class
class
class

RangeException {};

Overflow : public RangeException {};
Underflow : public RangeException {};
DivisionByZero: public RangeException {};
FormatError: public RangeException {};



Operators

template <typename T, T min, T max>
Range<T, min, max> operator/ (const Range<T, min, max>& a,
const Range<T, min, max>& b){
if (b == 0) throw DivisionByZero();
return T (a) % T(b);
}

template <typename T, T min, T max>

std::istream& operator >> (std::istream& is, Range<T, min, max>& a){
T value;
if (1(is >> value)) throw FormatError();
a = value;
return is;

}

Error handling in the opera-
tor.



Error handling (central)

Range<int,—10,10> a,b,c;
try{

std::cin >> a;

std::cin >> b;

std::cin >> c;

a=a/b+4x (b — c);

std::cout << a;
}
catch(FormatError& e){ std::cout << "Format error\n"; }
catch(Underflow& e){ std::cout << "Underflow\n'"; }
catch(0Overflow& e){ std::cout << "Overflow\n"; }
catch(DivisionByZero& e){ std::cout << "Divison By Zero\n"; }



16. Binary Search Trees

[Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap. 12.1 - 12.3]



Dictionary implementation

Hashing: implementation of dictionaries with expected very fast
access times.

Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

m enumerate keys in increasing order
m next smallest key to given key



Trees

Trees are

m Generalized lists: nodes can have more than one successor

m Special graphs: graphs consist of nodes and edges. A tree is a
fully connected, directed, acyclic graph.



Trees

Use

m Decision trees: hierarchic representation of
decision rules

m syntax trees: parsing and traversing of
expressions, e.g. in a compiler

m Code tress: representation of a code, e.g.
morse alphabet, huffman code

m Search trees: allow efficient searching for an
element by value




Morsealphabet



Expression tree
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Nomenclature

Wurzel

l

w
%E%m\
/|\ /l K(_Chlld/l\

N N /NN /N /N
AN N I |

m Order of the tree: maximum number of child nodes, here: 3
m Height of the tree: maximum path length root — leaf (here: 4)



Binary Trees

A binary tree is either

m aleaf, i.e. an empty tree, or

m an inner leaf with two trees 7T; (left subtree) and T.. (right subtree)
as left and right successor.

In each node v we store key
left right

m a key v.key and

m two nodes v.left and v.right to the roots of the left and right
subtree.

m a leaf is represented by the null-pointer




Binary search tree

A binary search tree is a binary tree that fulfils the search tree
property:
m Every node v stores a key

m Keys in the left subtree v.left of v are smaller than v.key
m Key in the right subtree v.right of v are larger than v.key

7 / \18
5/ \10 17/ \30
[ ]\ \

2 99



Searching

Input : Binary search tree with root 7, key &
Output : Node v with v.key = £ or null
VT
while v # null do
if £ = v.key then
I return v
else if k£ < v.key then
L v < wv.left
else
| v <4 v.right

return null

4 / | \13
10/ \19
I\

Search (12) — null



Height of a tree

The height h(T") of a tree T" with root r is given by

() {o if  — null

1 + max{h(rleft), h(r.right)} otherwise.

The worst case run time of the search is thus O(h(T))



Insertion of a key

Insertion of the key &

m Search for k£

m If successful search: output
error

m Of no success: insert the key at
the leaf reached

Insert (5)



Remove node

Three cases possible:

m Node has no children
m Node has one child

m Node has two children

[Leaves do not count here]

3/8
\5
/

9

N
10/

/

3

\

19



Remove node

Node has no children
Simple case: replace node by leaf.

8
3 / \13
remove(4)
N\, /N =
10 19

5

/]

4 9



Remove node

Node has one child

Also simple: replace node by single child.

8
3/ \13
\, SN\,
10 19

5

/]

4 9



Remove node

The following observation helps: the
smallest key in the right subtree v.right
(the symmetric successor of v)

m is smaller than all keys in v.right
m is greater than all keys in v.left
m and cannot have a left child.

Solution: replace v by its symmetric suc-
cessor.



By symmetry...

Also possible: replace v by its symmetric
predecessor.

\@ AR
/

4 9

13

19



Algorithm SymmetricSuccessor(v)

Input : Node v of a binary search tree.
Output : Symmetric successor of v
w <— v.right
x 4 w.left
while x # null do
w<—x
x < x.left

return w
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Analysis

Deletion of an element v from a tree 7" requires O(h(T))
fundamental steps:

m Finding v has costs O(h(T))

m If v has maximal one child unequal to nullthen removal takes
O(1) steps

m Finding the symmetric successor n of v takes O(h(T")) steps.
Removal and insertion of n takes O(1) steps.



Traversal possibilities

m preorder: v, then T (v), then
Tright(v)-
8,3,5,4,13,10,9, 19

m postorder: Ti (v), then Tyt (v), then
V.

4,5,3,9,10,19, 13,8

m inorder: T (v), then v, then Tiign:(v).
3,4,5,8,9,10, 13, 19

e
\5
/

9

N
10/

/

\

3
19



Further supported operations

m Min(7T'): Read-out minimal value in
O(h)

m ExtractMin(7): Read-out and remove
minimal value in O(h)

m List(7"): Output the sorted list of
elements

m Join(71,T5): Merge two trees with
max(77) < min(73) in O(n).

e
\5
4/

9

™
10/

/

3

\

19



Degenerated search trees

4
/
/ 9\ /\8\
5 13 / 9
"N @ /%
4 8 10 19 / \
Insert 9,5,13,4,8,10,19 13\
ideally balanced / i

Insert 4,5,8,9,10,13,19
linear list

19
 \

10/ \

9/ \

&\
5/ \
4/ \
Insert 19,13,10,9,8,5,4
linear list



17. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al,
Kap. Problem 13-3]
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Objective

Searching, insertion and removal of a key in a tree generated from n
keys inserted in random order takes expected number of steps
O(logyn).

But worst case O(n) (degenerated tree).

Goal: avoidance of degeneration. Artificial balancing of the tree for
each update-operation of a tree.

Balancing: guarantee that a tree with n nodes always has a height of
O(logn).

Adelson-Venskii and Landis (1962): AVL-Trees



Balance of a node

The height balance of a node v is de-
fined as the height difference of its
sub-trees 1;(v) and 7} (v)

bal(v) := h(T:(v)) = h(Ti(v))




AVL Condition

AVL Condition: for eacn node v of a
tree bal(v) € {—1,0,1}




(Counter-)Examples

/' \
/' \
\ /N
/\ 7\
/\
AVL tree with height
2 AVL tree with height

3

/' \
[\ [
/\

No AVL tree



Number of Leaves

m 1. observation: a binary search tree with n keys provides exactly
n + 1 leaves. Simple induction argument.

m 2. observation: a lower bound of the number of leaves in a search
tree with given height implies an upper bound of the height of a
search tree with given number of keys.
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Lower bound of the leaves

/ N\

AVL tree with height 1 has
M(1) := 2 leaves.

/N /\
/\ /\
/ N\

[\ 7\

AVL tree with height 2 has
at least M(2) := 3 leaves.



Lower bound of the leaves for h > 2

m Height of one subtree > h — 1.
m Height of the other subtree > h — 2. T

Minimal number of leaves M (h) is

M(h) = M(h — 1)+ M(h —2)

Overal we have M (h) = F} o with Fibonacci-numbers Fy := 0,
F,=1,F,=F, 1+ F,_oforn>1.
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[Fibonacci Numbers: closed form]

Closed form of the Fibonacci numbers: computation via generation
functions:

Power series approach



[Fibonacci Numbers: closed form]

For Fibonacci Numbers it holds that Ffo =0, F; =1,
F, = F,_1 + F;_5 Vi > 1. Therefore:

00 00 00
f(x):a:—l—ZF@--xi:x—i—ZF}_l-xi—l—Zﬂ_g-xi
1=2 1=2 1=2
00 00
:SU—F‘CUZF’Z;l'SCZ_I—FSCQZFZ;Q'SL’Z_Q
i=2 =2

o0 o0
::U+a:ZFZ--xi+:U2ZFZ--xi
i=0 i=0

=zt f(z) +2° f().



[Fibonacci Numbers: closed form]

Thus:




[Fibonacci Numbers: closed form]

It holds that: )
(1—¢x)—(1—¢x) =52

Damit:

L (1—dz) - (1-¢u)
V5 (1 = ¢z) - (1 - o)

flz) =

B 1( 1 B 1 )
_\/5 1 — oz 1—ng5:£



[Fibonacci Numbers: closed form]

Power series of g,(z) = —— (a € R):
1 o0
_ i, 0
l—a-x Z @t
1=0

E.g. Taylor series of g,(z) at z = 0 or like this: Let > ., G; -z’ a power
series of g. By the identity g,(x)(1 — a - ) = 1 it holds that

1:iGi-xi—a-iGi-x G0+Z i—a-Giq)-
i=0 i=0

Thus GO =1and G,L = CL'GZ‘,1 :>Gz = a'.



[Fibonacci Numbers: closed form]

@ Fill in the power series:

1 1 1 L (S S bt
00 1 ' o )
- Z (6 -

I
o

7

Comparison of the coefficients with f(z) = >_°, F; - 2 yields

Lo g
Fi:ﬁ(aﬁ ')



Fibonacci Numbers

It holds that F; = J=(¢/ — ¢') with roots ¢, ¢ of the equation
_ i _ 145 0 1=V5
x? = x4 1 (golden ratio), thus ¢ = 52, ¢ = 152,

Proof (induction). Immediate for: = 0,7 = 1. Let ¢ > 2:

L i i1 L s _ 2i-2
E:Fi—1+ﬂ—2:_\/5(¢ ¢ )+_\/—(¢ %)
L i—2 Lwig 2i—2y 1 _ I oo
=%<¢ +¢"77) — ﬁ(cb +¢ )—75 (0 +1) —\/gcb (p+1)
]' 1—2 2 1 i—2 2 1 7
—\/Scé (¢7) — \/gaﬁ (6?) = —\/—( — '),



Tree Height

Because ¢ < 1, overal we have

h
M(h) € © (1 +2\/§) C Q(1.618")

and thus
h < 1.441log,n + c.

AVL tree is asymptotically not more than 44% higher than a
perfectly balanced tree.



Insertion

Balance

m Keep the balance stored in each node
m Re-balance the tree in each update-operation

New node n is inserted:

m Insert the node as for a search tree.
m Check the balance condition increasing from n to the root.



Balance at Insertion Point

/N /N ANEVAN
ANANA ANEEERARA
case 1: bal(p) = +1 case 2: bal(p) = —1

Finished in both cases because the subtree height did not change



Balance at Insertion Point

/N /N ANEEEVAN
— /\ —/\
case 3.1: bal(p) = 0 right case 3.2: bal(p) = 0, left

Not finished in both case. Call of upin(p)



upin(p) - invariant

When upin(p) is called it holds that

m the subtree from p is grown and
m bal(p) € {—1,+1}



upin(p)

Assumption: p is left son of pp'”
P 1; < P 7 O\ P I; 0\ p 7 <
ANEERA AN A

case 1: bal(pp) = +1, done. case 2: bal(pp) = 0, upin (pp)

In both cases the AVL-Condition holds for the subtree from pp

7If p is a right son: symmetric cases with exchange of +1 and —1



upin(p)

Assumption: p is left son of pp

AN
N\

case 3: bal(pp) = —1,

This case is problematic: adding n to the subtree from pp has
violated the AVL-condition. Re-balance!

Two cases bal(p) = —1, bal(p) = +1



Rotationen

case 1.1 bal(p) = —1. ™8

pp Y -1
/7 N\
r xr -1
/7 N\ —
l3 rotation
h—1 right
to
t h—1

185 right son: bal(pp) = bal(p) = +1, left rotation



Rotationen

case 1.1 bal(p) = —1. 1°

PR
N\
hY
/N
h_
ty s
h—1 h-1
h—2

199 right son: bal(pp) = +1, bal(p) = —1, double rotation right left

—
double
rotation

left-right

pp Y 0

SN\

131
h—1

£}
b
h—1 h—1
h—2



Analysis

m Tree height: O(logn).
m Insertion like in binary search tree.

m Balancing via recursion from node to the root. Maximal path
lenght O(log n).

Insertion in an AVL-tree provides run time costs of O(logn).



Deletion

Case 1: Children of node n are both leaves Let p be parent node of
n. = Other subtree has height h’ = 0, 1 or 2.

m 1/ = 1: Adapt bal(p).
m 7/ = 0: Adapt bal(p). Call upout (p).
m /' = 2: Rebalanciere des Teilbaumes. Call upout (p).

N Za\N
SN L

h=0,1,2 h=0,1,2



Deletion

Case 2: one child k& of node n is an inner node

m Replace n by k. upout (k)

N N
N /\
/' \



Deletion

Case 3: both children of node n are inner nodes

m Replace n by symmetric successor. upout (k)
m Deletion of the symmetric successor is as in case 1 or 2.
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upout (p)

Let pp be the parent node of p.
(a) p left child of pp

bal(pp) = —1 = bal(pp) < 0. upout (pp)
bal(pp) =0 = bal(pp) « +1.
bal(pp) = +1 = next slides.

(b) p right child of pp: Symmetric cases exchanging +1 and —1.



upout (p)

Case (a).3: bal(pp) = +1. Let g be brother of p
(a).3.1: bal(q) = 0.2

s )
1/ \2 () Left F?tatay) / x\o

h—1  h—1 1 9 9
3 4 h—1  h—1 ht1

h+1 h+1

20(b).3.1: bal(pp) = —1, bal(q) = —1, Right rotation 469



Case (a).3: bal(pp) = +1. (a).3.2: bal(q) = +1.7

7
— ‘{
Left Rotate(y) : ;

Bt plus upout (r).

21(p).3.2: bal(pp) = —1, bal(g) = +1, Right rotation+upout .



Case (a).3: bal(pp) = +1. (a).3.3: bal(q) = —1.22

Rotate right
(2) left (y)

h—1 h—1 h

plus upout (r).

22(b).3.3: bal(pp) = —1, bal(q) = —1, left-right rotation + upout



Conclusion

m AVL trees have worst-case asymptotic runtimes of O(logn) for
searching, insertion and deletion of keys.

m Insertion and deletion is relatively involved and an overkill for
really small problems.



18. Quadtrees

Quadtrees, Image Segmentation, Functional Minimization,
Reduction Principle
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Quadtree

A quad tree is a tree of order 4.

74 SZANS

A

... and as such it is not particularly interesting except when it is used
for ...



Quadtree - Interpretation und Nutzen

Separation of a two-dimensional range into 4 equally seized parts.

/!K
/ |
L

‘R
Pl Bl

J




Image Segmentation

EH T
e |
-
H HH
ded [
=
H
-
2238
= Ik +
e ot
T miis
-l =
T H-
i HH
L T
i ol [
hee |l
R e

(Possible applications: compression, denoising, edge detection)
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A little bit of Notation

S c 7?2

z € R®

Py

F = (fr)rCS
freR®

S

finite rectangular index set (‘Pixel’)
image

family of Partitions P C 2° von S
family of ‘regression models’ 7, C R”"
‘approximation’ with fp|, € F.,r € P
family of segmentations (P, fp)



Different Example

‘P: quad-tree with additional partition into polygons (‘wedges’),
fp: constant functions
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Minimization Problem

P Partition ~v > 0 regularization parameter
fp approxmation z image = ‘data’

Goal: Efficient mimization of the functional

H7a226_>]Ra (Pva)HfYWD‘—i_HZ_f'PH%

Result (P, fﬁ) € argmin p 1,y H, . can be interpreted as optimal
compromise between reqularity and fidelity to data.



Why Quadtrees?

H,.:6 =R, (P, fp)—~-|P|+z— frl3

m Number of all partitions extremely large (|B3| > 2°1)

m Possible to approximately minimize H using
Markov-Chain-Monte-Carlo (MCMC) Methods, very time- and
compute-intensive.

m = Restriction of the search space. Hierarchical partitioning using
quadtrees particularly well suited for a divide-and-conquer
approach.??

23Like quicksort (only 2d)!



Reduction Principle

min Y|P+ ||z — fp
Jmin AP+ 12 = ol

= min {779 + Z min (= }

ser

= Separation of searching for the best possible partition and the
local projections.



Algorithmus: Minimize(z,r,7)

Input : Image data z € R®, rectangle r C S, regularization v > 0
Output : minep f,)es V1P| + |2 — frl3
if || = 0 then return 0

m ey mingex, 3 e, (2(s) = fo(s))”
if || > 1 then

Split 7 into 7,71 T w, Tur

my < Minimize(z, ry)

mg <— Minimize(z, ry,.)

mg <— Minimize(z, r,;)

my < Minimize(z, 7,;)

m’ <— my1 + Mo + M3+ My

else

om0
if M’ <m then m < m/’
return m



Constant Functions

Minimize

pig ) (+(9) = fr(s))*

for all functions F, = u, being constant on r

Solution: z1, = £ >, 2(s)
Fast computation of u, is easily possible using prefix sums



Multiple Scales

e
0‘.‘
8 &




General Regression

Consider a family of n € N functions ¢; : S =+ R, 1 <7 < n.
Goal: minimize

n

D (=) aipi(s))

ser i=1
ina € R".
Normal equations:

&) zpi(s) = ZCMZ%(S)%‘(S)J <js<n

ser ser s



General Regression

Normal equations written in matrix form:
Y =M:a.

with a = (ai)lgign and

Y= <Z ZsSOj(S)> , M= (Z pi(s)e;(s)

ser ser

>1<i,j<n



General Regression

Let a be a solution of the system of equations above. Computation
of the approximation error:

n

Hg}__l (25 — fr(S))Q = Z(Zs - Z diSOi(S))Q
T ser ser i=1

n n
1 i=1

ser 1=
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Example: Affine Functions

=3

| (,O()(S) 1
E ¢(s) = s; (x-Koordinate von s),
B ¢2(2) = sy (y-Koordinate von s)

Regression: exercise!



Affine Regression




Effiziente lokale Berechnung

(n+1)

Required: fast computation of the = + n ‘moments’

Z%(S)Sﬁj(s) and Z zspj(8), 1 <i,5 <,
S ser
and for the computation of the approximation error

2
E ;.

ser

Using prefix sums it is possible to compute the local regression over
rectangles in O(1)



Analysis

Under the assumption that the local approximation can be computed
in O(1) the minimization algorithm over dyadic partitions (quadtrees)
takes O(|S|log |S|) steps.



Affine Regression + Wedgelets

e | 7

S H




Denoising

-

noised

v = 0.003 v =0.01

v=0.3 y=1 vy=3 v =10
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Other ideas

no quadtree: hierarchical one-dimensional modell (requires dynamic
programming)

s




19. Dynamic Programming |

Fibonacci, Langste aufsteigende Teilfolge, langste gemeinsame
Teilfolge, Editierdistanz, Matrixkettenmultiplikation,
Matrixmultiplikation nach Strassen [Ottman/Widmayer, Kap. 1.2.3,
7.1,7.4, Cormen et al, Kap. 15]
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Fibonacci Numbers

(again)

o 1 ifn <2
" \E,+F,, ifn>3.

Analysis: why ist the recursive algorithm so slow?



Algorithm FibonacciRecursive(n)

Input : n >0
Output : n-th Fibonacci number

if n <2 then
o fe1

else
. f « FibonacciRecursive(n — 1) + FibonacciRecursive(n — 2)

return f
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Analysis

T'(n): Number executed operations.

©(1)
T(n—2)+T(n—1)+ec

mn=12T(n)
mn>3:T(n)=

T(n)=Tn—2)+T(n—1)+c>2T(n—2)4c¢> 2" = (\/2)"¢

Algorithm is exponential in n.



Reason (visual)

N AN

F45 F44 F44

A0 A

Fu F3 Fiz Fy Fg Fi Fyp Fy
/N /N /N /N /N /N /N /\

Nodes with same values are evaluated often.



Memoization

Memoization (sic) saving intermediate results.

m Before a subproblem is solved, the existence of the corresponding
intermediate result is checked.

m If an intermediate result exists then it is used.

m Otherwise the algorithm is executed and the result is saved
accordingly.



Memoization with Fibonacci

Rechteckige Knoten wurden bereits ausgewertet.



Algorithm FibonacciMemoization(n)

Input : n >0
Output : n-th Fibonacci number

if n <2 then
 fe1
else if dmemol[n] then
[ < memo|n]
else
f + FibonacciMemoization(n — 1) 4 FibonacciMemoization(n — 2)
memo[n] < f

return f



Analysis

Computational complexity:

Tn)=Tn—-1)+c=..

Algorithm requires ©(n) memory.*

24But the naive recursive algorithm also requires ©(n) memory implicitly.



Looking closer ...

... the algorithm computes the values of I}, Fy, F3,...in the
fop-down approach of the recursion.

Can write the algorithm bottom-up. Then it is called dynamic
programming.



Algorithm FibonacciDynamicProgram(n)

Input : n >0
Output : n-th Fibonacci number
F[1] «+ 1
F2] +1
fori+ 3,..., n do
. Fli|« Fli — 1]+ F[i — 2]

return F[n|
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Dynamic Programming: Procedure

Use a DP-table with information to the subproblems.
Dimension of the entries? Semantics of the entries?

Computation of the base cases
Which entries do not depend on others?

Determine computation order.
In which order can the entries be computed such that dependencies are
fulfilled?

Read-out the solution
How can the solution be read out from the table?

Runtime (typical) = number entries of the table times required operations per entry.



Dynamic Programing: Procedure with the example

Dimension of the table? Semantics of the entries?

n x 1 table. nth entry contains nth Fibonacci number.

Which entries do not depend on other entries?
Values F; and F;, can be computed easily and independently.

What is the execution order such that required entries are always available?
F; with increasing .

Wie kann sich Lésung aus der Tabelle konstruieren lassen?

F,, ist die n-te Fibonacci-Zahl.




Longest Ascending Sequence (LAS)

O|w
Ol»
Olo
Olo
Q\l

«O
O
O
O
alO
@
NI@) Oln
O
alO O
Olo
=0 O

Connect as many as possible fitting ports without lines crossing.



Formally

m Consider Sequence A = (aq,. .., a,).

2 6
m Search for a longest increasing OO0 QO
subsequence of A.
m Examples of increasing subsequences: Al90 0000

(3,4,5), (2,4,5,7), (3,4,5,7), (3,7).

Generalization: allow any numbers, even with duplicates. But only
strictly increasing subsequences are permitted. Example:
(2,3,3,3,5,1) with increasing subsequence (2, 3, 5).



First idea

Assumption: LAS L; known for k£ Now want to compute L for
E+1.

If a1 fitsto Ly, then Ly, 1 = Ly ® apyq

Counterexample A5 = (1,2,5,3,4). Let A3 = (1,2,5) with L3 = A.
Determine L4 from L3?

It does not work this way, we cannot infer L., from L;.



Second idea.

Assumption: a LAS L; is known for each j < k. Now compute LAS
Ly for k+ 1.

Look at all fitting L1 = L; ® ar+1 (j < k) and choose a longest
sequence.

Counterexample: A; = (1,2,5,3,4). Let Ay = (1,2,5,3) with
Li=(),Ly=(1,2), Ly = (1,2,5), Ly = (1,2,5). Determine Ls
from Lq, ..., L4?

That does not work either: cannot infer L., from only an arbitrary
solution L;. We need to consider all LAS. Too many.



Third approach

Assumption: the LAS L;, that ends with smallest element is known
for each of the lengths 1 < 5 < k.

Consider all fitting L; @ ax+1 (7 < k) and update the table of the
LAS,that end with smallest possible element.

Example: A = (1,1000,1001,2, 3,4, ....,999)

A LAT

(1) (1)

(1,1000) (1), (1, 1000)

(1,1000, 1001) (1), (1,1000), (1, 1000, 1001)
(1,1000,1001,2)  (1),(1,2), (1,1000,1001)
(1,1000,1001,2,3) (1), (1,2),(1,2,3)




DP Table

m |dea: save the last element of
an increasing sequence at slot
7.

m Example: 3 2 5 1 6 4

m Problem: Table does not
contain the subsequence, only
the last value.

m Solution: second table with the
predecessors.

Index
Wert
Predecessor

8
»—w—w—nwwwg_u
s g g gl
>822 3 3w
222228 8|s



Dynamic Programming Algorithm LAS

Table dimension? Semantics?
Two tables T[0,...,n] and V[1,...,n]. Start with T[0] < —o0,
T[i] < co Vi > 1

Computation of an entry

Entries in T" sorted in ascending order. For each new entry a;,, binary
search for [, such that T'[l] < ax < T'[l + 1]. Set T[l + 1] + ax,;. Set
VIk] = T[l].




Dynamic Programming algorithm LAS

Computation order
Traverse the list anc compute T'[k] and V'[k] with ascending &

How can the solution be determined from the table?

Search the largest [ with T'[l] < oo. [ is the last index of the LAS. Starting at [
search for the index i < [ such that V'[I] = A[i], i is the predecessor of I.
Repeat with [ < i until T[] = —c0




Analysis

m Computation of the table:

m Initialization: ©(n) Operations

m Computation of the kth entry: binary search on positions {1,...,k} plus
constant number of assignments.
n
Z(longr(’)( +Zlog O(nlogn).
k=1

m Reconstruction: traverse A from rlght to left: O(n).

Overal runtime:
©(nlogn).



Longest common subsequence

Subsequences of a string:
Subsequences(KUH): (), (K), (U), (H), (KU), (KH), (UH),
(KUH)

Problem:

m Input: two strings A = (ay,...,an,), B = (by,...,b,) with lengths
m > 0andn > 0.
m Wanted: Longest common subsequecnes (LCS) of A and B.

Application: DNA sequence alignment.



Longest Common Subsequence

Examples:
LGT(IGEL,KATZE)=E, LGT(TIGER,ZIEGE)=IGE

Ideas to solve?

zieaE "
Z E G E



Recursive Procedure

Assumption: solutions L(i, j) known for A[1,...,:] and BJ[1,...,j]
foralll1 <:<mand1<j <n,butnotfori=mandj=n.

ZieGE "
Z E G E

Consider characters a,,, b,,. Three possibilities:

A is enlarged by one whitespace. L(m,n) = L(m,n — 1)

B is enlarged by one whitespace. L(m,n) = L(m — 1,n)

L(m,n) = L(m —1,n — 1) + &, With 6,,,, = 1 if a,,, = b, and
Omn = 0 otherwise



Recursion

L(m,n) < max{L(m —1,n—1) + 0y, L(m,n — 1), L(m — 1,n)}

for m,n > 0 and base cases L(-,0) =0, L(0,-) =

0 z I E G E
1o 00 0 0 O
T|0 00 0 0 O
10 O 1 1 1 1
G|0O O 11 2 2
E|0O O 1 2 2 3
RO O 1 2 2 3




Dynamic Programming algorithm LCS

Dimension of the table? Semantics?

Table L[0,...,m][0,...,n]. L[i, j]: length of a LCS of the strings (a4, ..., a;)
and (bl, 200 ,bj)

Computation of an entry

L[0,i] < 0Y0 < i < m, L[j,0] + 0Y0 < j < n. Computation of L[i, j]
otherwise via L[i, j] = max(L[i — 1,j — 1] + &;;, L[i,j — 1], L[i — 1, j]).




Dynamic Programming algorithm LCS

Computation order

Rows increasing and within columns increasing (or the other way round).

Reconstruct solution?

m Start with j = m, ¢ = n. If a; = b; then output a; otherwise, if
Lli,j] = Lli,j — 1] continue with j < j — 1 otherwise if L[i, j| = L[i — 1, j]
continue with 7 <— ¢ — 1 . Terminate for: = 0 or j = 0.




Analysis LCS

m Number table entries: (m + 1) - (n + 1).

m Constant number of assignments and comparisons each. Number
steps: O(mn)

m Determination of solition: decrease i or j. Maximally O(n + m)
steps.

Runtime overal:
O(mn).



Editing Distance

Editing distance of two sequences A = (aq, ..., an),
B=(bi,... by).

Editing operations:

] of a character
m Deletion of a character
m Replacement of a character

Question: how many editing operations at least required in order to
transform string A into string B.

TIGER ZIGER ZIEGER ZIEGE

Editing Distance = Levenshtein Distance



Procedure?

m Two dimensional table E[0, ..., m][0, ..., n] with editing distances
Eli, j] of strings A; = (a1,...,a;) and B; = (by, ..., b;).
m Consider the last characters of A; and B;. Three possible cases:

Delete last character of A;: 2° Efi — 1, j] + 1.
Append character to A;:26 Efi,j — 1] + 1.
Replace A; by Bj: E[Z — 1,] — 1] +1-— 5@]

Eli, j] ¢ min { E[i—1,j]+1, Bli,j — 1+ 1, Eli—1,j — 1]+ 1-0d;}

250r append character to B,
20r delete last character of B;



DP Table

Eli,jl + min{E[i—1,j]+1,E[t,j -1+ 1,Ei—1,j—1]+1—6;}

E G E

2 21 2 3 4

0lo 1 2 3 4 5
T|1 1 2 3 4 5

Gl3 3 2 2 2 3

El4 4 3 2 3 2

Ri5 5 43 3 3

Algorithm: exercise
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Matrix-Chain-Multiplication

Task: Computation of the product A; - A, - ... - A,, of matrices Ay, ...,
A,.

Matrix multiplication is associative, d.h. the order of execution can be
chosen arbitrarily

Goal: efficient computation of the product.

Assumption: multiplicaiton of an (r x s)-matrix with an (s x u)-matrix
provides costs r - s - u.
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Does it matter?

1

Al A2
k? Opera’uonen!

k Operationen!

Il

A

As - As

A A Ay As

Ay - A - Ag
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Recursion

m Assume that the best possible computation of (A; - Ay --- 4;) and
(Ais1 - Airo- -+ A,) is known for each i.

m Compute best 7, done.

n x n-table M. entry M|p, q] provides costs of the best possible
bracketing (A, - Ap1---Ay).

M]p, q] + min (M|p,i] + M][i + 1,q] + costs of the last multiplication)

p<i<p



Computation of the DP-table

m Base cases M|[p,p| < Oforall 1 <p <n.

m Computation of M[p, q] depends on M |i, j] with p < i < j <Jgq,
(2,7) # (p,q)-
In particular M{[p, q| depends at most from entries M, j] with
1—7<q—Dp.
Consequence: fill the table from the diagonal.



Analysis

DP-table has n? entries. Computation of an entry requires
considering up to n — 1 other entries.

Overal runtime O(n?).

Readout the order from M : exercise!



Digression: matrix multiplication

Consider the mutliplicaiton of two n x n matrices.
Let

= (aij)1<ij<ns B = (bij)1<ij<n, C = (¢ij)1<ij<n;

then

Cij: E aikbkj.

k=1

Naive algorithm requires ©(n?) elementary multiplications.



a b

c d
ea+ fc eb+ fd
ga+hc  gb+hd
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Divide and Conquer

m Assumption n = 2", i

m Number of elementary multiplications: c d
M(n) =8M(n/2), M(1) = 1.

m yields M (n) = 82" = ploe2® — 3 No S A il ety
advantage ®

g h ga+hc  gb+hd



Strassen’s Matrix Multiplication

m Nontrivial observation by Strassen (1969):
It suffices to compute the seven products
A=(e+h)-(a+d),B=(g9+h)-a,
C=e-(b—d),D=h-(c—a), E=(e+[)-d,
F=(—e¢) -(a+b),G=(f—h) (c+d). Denn:
eca+ fc=A+D—-FE+G,eb+ fd=C+ E,
gao+hc=B+D,gb+hd=A—-B+C+F.

m This yields M’(n) = TM(n/2), M'(1) = 1.
Thus M/(n) — 7log2n — nlog27 ~ n2.807.

m Fastest currently known algorithm:
(’)(n2'37)

h

ea+ fc

ga + he

eb+ fd

gb+ hd



20. Dynamic Programming li

Subset sum problem, knapsack problem, greedy algorithm, solutions
with dynamic programming, FPTAS, Optimal Search Tree
[Ottman/Widmayer, Kap. 7.2, 7.3, 5.7, Cormen et al, Kap. 15,35.5]
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Task

Hannes and Niklas shall get a significant amount of presents with
different monetary value.

The parents want to distribute the presents in a fair way such that no
conflict arises.

Answer: people with children know that there is no solution to this
task.
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More Realistic Task

Partition the set of the “item” above into two set such that both sets
have the same value.

A solution:




Subset Sum Problem

Consider n € N numbers ay,...,a, € N.
Goal: decide if a selection I C {1,...,n} exists such that

Sa= Y a

iel ie{1,..n\I



Naive Algorithm

Check for each bit vector b = (b1, ...,b,) € {0, 1}, if

Zbaz—21—b)

Worst case: n steps for each of the 2" bit vectors b. Number of
steps: O(n - 2").



Algorithm with Partition

m Partition the input into two equally sized parts ay, . .., a,/» and
an/2+1, P

m lterate over all subsets of the two parts and compute partial sum
St,.... 8, (k=1,2).

m Sort the partial sums: S} < S5 < ... < Sk .

m Check if there are partial sums such that S} + 57 = 3> 1 a; =: h

Start with i = 1, j = 27/,

If S} + S? = h then finished

If S} +S? > hthenj« j—1
If S} +S? < htheni «+i+1



Example

Set {1,6,2,3,4} with value sum 16 has 32 subsets.

Partitioning into {1,6} , {2, 3,4} yields the following 12 subsets with
value sums:

{1,6} {2,3,4}
{+ {1 {6y {16} {3 {2} {3} {4 {23} {24} {34} {234}

06702345 6 9

< One possible solution: {1,3,4}



Analysis

m Generate partial sums for each part: O(2"/2 - n).
m Each sorting: O(2"/?1og(2"/?)) = O(n2"/?).
m Merge: O(2"/?)

Overal running time
0 (n-2%) =0 (n(v2)").

Substantial improvement over the naive method —
but still exponential!



Dynamic programming

Task: let z = $ >"" | a;. Find a selection I C {1,...,n}, such that

Ziel a; = 2.

DP-table: [0,...,n] x [0,..., z]-table T" with boolean entries. T'[k, s]
specifies if there is a selection I, C {1, ..., k} such that

Ez’elk a; = S.

Initialization: 7°[0, 0] = true. T'[0, s| = false for s > 1.
Computation:

Tk, s| «+ {

for increasing k£ and then within £ increasing s.

Tk—1,s] if s < ay
Tk—-1,s]VTk—1,s—ag] ifs>a



Example

{1,6,2,5} _summe s |
012345678910 11 12 13 14

Tt N Oy +m O
../
./..
®e - -

Determination of the solution: if T'[k, s] = T'[k — 1, s] then a;, unused and continue with T'[k — 1, s] , otherwise a;, used

and continue with T'[k — 1, s — a] .



That is mysterious

The algorithm requires a number of O(n - z) fundamental operations.

What is going on now? Does the algorithm suddenly have
polynomial running time?



Explained

The algorithm does not necessarily provide a polynomial run time. z
is an number and not a quantity!

Input length of the algorithm = number bits to reasonably represent
the data. With the number z this would be ¢ = log z.

Consequently the algorithm requires O(n - 2¢) fundamental
operations and has a run time exponential in (.

If, however, z is polynomial in n then the algorithm has polynomial
run time in n. This is called pseudo-polynomial.

547



NP

It is known that the subset-sum algorithm belongs to the class of
NP-complete problems (and is thus NP-harad).

P: Set of all problems that can be solved in polynomial time.

NP: Set of all problems that can be solved Nondeterministically in
Polynomial time.

Implications:

m NP contains P.

m Problems can be verified in polynomial time.

m Under the not (yet?) proven assumption?” that NP # P, there is no
algorithm with polynomial run time for the problem considered

—above.

27The most important unsolved question of theoretical computer science.



The knapsack problem

We pack our suitcase with ...

m toothbrush Toothbrush toothbrush

m dumbell set Air balloon coffe machine

m coffee machine m Pocket knife m pocket knife
m uh oh —too heavy. m identity card m identity card
m dumbell set m Uh oh —too heavy.

m Uh oh —too heavy.

Aim to take as much as possible with us. But some things are more
valuable than others!



Knapsack problem

Given:

m setof n € Nitems {1,...,n}.
m Each item ¢ has value v; € N and weight w; € N.
m Maximum weight W € N.

m Input is denoted as £ = (v;, w;)i—1

Wanted:

a selection I C {1,...,n} that maximises )
Zie] w; < W.

.....

;e Vi under



Greedy heuristics

Sort the items decreasingly by value per weight v; /w;: Permutation p
Wlth Upi/wpi 2 Upi+1/wpi+1

Add items in this order (I < I U {p;}), if the maximum weight is not
exceeded.

That is fast: ©(n logn) for sorting and ©(n) for the selection. But is it
good?



Counterexample

1)1:1 w1:1 ’Ul/wlzl

UQZW—l wQIW Ug/wgz%

Greed algorithm chooses {v;} with value 1.
Best selection: {v,} with value W — 1 and weight V.

Greedy heuristics can be arbitrarily bad.



Dynamic Programming

Partition the maximum weight.

Three dimensional table m|i, w, v] (“doable”) of boolean values.
mli, w,v] = true if and only if

m A selection of the first ¢ parts exists (0 < i < n)

m with overal weight w (0 < w < W) and
m avalueofatleastv (0 <v <>7"  v).



Computation of the DP table

Initially

m mfi, w,0] < true fur alle > 0 und alle w > 0.
m m|0, w,v] < false fur alle w > 0 und alle v > 0.
Computation

mli — 1, w,v] Vmli — 1L, w—w;,v—uv] ifw>w,undv > v,

mli, W, v| < .
i, w, ] {m[z’—l,w,v} otherwise.

increasing in ¢ and for each ¢ increasing in w and for fixed 2 and w
increasing by wv.

Solution: largest v, such that m|i, w, v] = true for some i and w.



Observation

The definition of the problem obviously implies that

m for m[i, w, v] = true it holds:
m[i’,w,v] =true Vi’ > i,
mli,w',v] = true Vu' > w,
mli, w,v'] = true Vo' < w.

m fpr m[i, w, v] = false it holds:
mli', w,v] = false Vi’ <1,
mli,w’,v] = false Vv’ < w,
mli, w,v'] = false Vv’ > w.

This strongly suggests that we do not need a 3d table!



2d DP table

Table entry t[i, w| contains, instead of boolean values, the largest v,
that can be achieved®® with

mitemsl,....1 (0<1<n)
m at maximum weight w (0 < w < W).

28We could have followed a similar idea in order to reduce the size of the sparse table.



Computation

Initially
m [0, w] « 0 forall w > 0.

We compute

t[i, w] « {

increasing by ¢ and for fixed 7 increasing by w.

tli — 1, w] if w < w;
max{t[i — 1L,w|,t[i — 1, w —w;] +v;} otherwise.

Solution is located in t[n, w]
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Example
E={(2,3),(4,5),(1,1)} w

—

01 234567
B
1(4)()%8

NN NN\

(1,1) 01 3 4 56 8 9

Reading out the solution: if ¢[i, w] = ¢[i — 1, w] then item ¢ unused and continue with ¢[¢ — 1, w] otherwise used and

continue with t[i — 1, s — w;] .



Analysis

The two algorithms for the knapsack problem provide a run time in
O(n-W->"  v;) (3d-table) and ©(n - W) (2d-table) and are thus
both pseudo-polynomial, but they deliver the best possible result.

The greedy algorithm is very fast butmight deliver an arbitrarily bad
result.

Now we consider a solution between the two extremes.



Approximation

Let e € (0,1) given. Let I, an optimal selection.

No try to find a valid selection I with

Zviz (1—¢) Zvi.

iel i€lopt

Sum of weights may not violate the weight limit.



Different formulation of the algorithm

Before: weight limit w — maximal value v
Reversal: value v — minimal weight w

= alternative table g[i, v] provides the minimum weight with

m a selection of the first 2 items (0 < ¢ < n) that
m provide a value of exactly v (0 < v < Y7 | v;).



Computation

Initially
m g[0,0] « 0
m ¢[0,v] + oo (Value v cannot be achieved with 0 items.).
Computation
: gli — 1,7] falls v < v;
gli, v] {min{g[i —1,v],g[i —1,v —v;] +w;} sonst.

incrementally in ¢ and for fixed 7 increasing in v.
Solution can be found at largest index v with g[n, v] < w.



Example
E = {(273) ( )7 L, 1)} v

_

1 2 3 4 5 6 7 8 9

(
0
) 0coo o0 00 0 O © O O
(2,3)0@0@0@
ik(45)00®oo2oo4oooo6oo
(1,1) 0

\ AVEEAN N

1 oo 2 3 4 5 oo 6 7

Read out the solution: if g[i, v] = g[¢ — 1, v] then item ¢ unused and continue with g[¢ — 1, v] otherwise used and continue

with g[i — 1,b — v;] .



The approximation trick

Pseduopolynomial run time gets polynmial if the number of occuring
values can be bounded by a polynom of the input length.

Let K > 0 be chosen appropriately. Replace values v; by “rounded

values” v; = |v;/ K | delivering a new input £ = (w;, 0;)i=1..n-
Apply the algorithm on the input £’ with the same weight limit V.



Idea

Example K =5
Values

1,2,3,4,5,6,7,8,9,10,...,98,99, 100
_>
0,0,0,0,1,1,1,1,1,2,...,19,19,20

Obviously less different values



Properties of the new algorithm

m Selection of items in E' is also admissible in . Weight remains
unchanged!

m Run time of the algorithm is bounded by O(n? - vyax/K)
(Vmax := max{v;|1 < i < n})



How good is the approximation?

It holds that "
Let I, be an optimal solution of £'. Then
|Iopt|§n 5 5
Zvi —n-K < Z(Ui_K)SZ(K'Ui):KZUi
i€ Iopy i€ Iopy i€ opy i€ Lopy
Lopoptimal zezl’: zezl’: zg;

opt opt
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Choice of K

Requirement:

Zviz (1—¢) Zvi.

el’ 1€ 1ot

Inequality from above:

Zviz Zvi —-n-:

iGIépt 1€ Lopt

Zie[opt Ui
n

thus: K = ¢



Choice of K

Diclyy Vi . .
Choose K = e—>— el°"t . The optimal sum is unknown. Therefore we
choose K’ = 5“;* 29

It holds that v, < Zidopt v; and thus K’ < K and the
approximation is even slightly better.

The run time of the algorithm is bounded by

ON? - Vpax/K') = O(n* - Vax /(€ - Vmax /1)) = O(n?/e).

29\We can assume that items 4 with w; > W have been removed in the first place.



FPTAS

Such a family of algorithms is called an approximation scheme: the
choice of e controls both running time and approximation quality.

The runtime O(n?/¢) is a polynom in n and in <. The scheme is
therefore also called a FPTAS - Fully Polynomial Time
Approximation Scheme



Optimal binary Search Trees

Given: search probabilities p; for each key k; (: = 1,...,n) and g; of
each interval d; ( = 0, ..., n) between search keys of a binary
searchtree. > pi+ > 0 qq =1,

Wanted: optimal search tree T with key depths depth(-), that
minimizes the expected search costs

sz (depth(k;) + 1) + Z q¢; - (depth(d;) + 1)
=0

=1+ Zpi - depth(k;) + Z q; - depth(d;)

=1 1=0



Example

Expected Frequencies
7 \ 0 1 2 3 4 5

Di 0.15 0.10 0.05 0.10 0.20
¢; | 0.05 0.10 0.05 0.05 0.05 0.10




Example

/\
/\ /\

/
N p

Search tree with expected dy d
costs 2.8 Search tree with expected
costs 2.75

/\
/\ /\



Structure of a optimal binary search tree

m Subtree with keys k;, ..., k; and intervals d;_1, . . ., d; must be
optimal for the respective sub-problem.=°

m Consider all subtrees with roots &, and optimal subtrees for keys
ki, ce 7kr—1 and kr—l—l; ce ,kj

30The usual argument: if it was not optimal, it could be replaced by a better solution improving the overal solution.



Sub-trees for Searching

k.
N
di—1
ki1, ki v Kry1.
/N /N /N
di - d; dy - oy |dy - |d;

empty left subtree non-empty left and

right subtrees

diiy - dj_y

empty right subtree



Expected Search Costs

Let depth,(k) be the depth of a node k in the sub-tree T'. Let k be
the root of subtrees 7, and 77, and Tr_be the left and right sub-tree
of T,. Then

depthy(k;) = depthy, (ki) +1, (i <)
depthy (ki) = depthy, (ki) +1, (i > 1)



Expected Search Costs

Let e[i, j] be the costs of an optimal search tree with nodes
ki, ..., k;.

Base case eli, i — 1], expected costs d;_;

Let 1U(Z, .]) = {:Z‘ b + Z{:i—l qi-
If &, is the root of an optimal search tree with keys £;, ..., k;, then

eli, 5] = pr + (eli,r — 1] +w(i,r — 1)) + (e[r + 1, 5] + w(r +1,5))
with w(i, 7) = w(i,r — 1) + p, + w(r + 1, 5):

eli,j] = eli,r — 1] +e[r + 1, j] + w(i, 7).



Dynamic Programming

eli, ] = {q’i,l | o
min;<,<;{e[i,r — 1] +e[r + 1, j] + wli, j]}

if j=i— 1,
ifi < j



Computation

Tablese[l...n+1,0...nJ,w[l...n+1,0...m],r[l...n,1...n]
Initially
meli,i— 1]« q_1,wi,i — 1]+ ¢ forall 1 <i<n+1.
We compute
wli, j] = wli, j — 1]+ p; + g;
eli,j] = min{eli,r — 1] +elr+ 1, j] + wli, j]}

rli, j] = arg min{eli,r — 1] + e[r + 1, j| + wli, j|}

1<r<j
for intervals [, j] with increasing lengths [ = 1, ..., n, each for
i=1,...,n—10+ 1. Resultin e[l, n], reconstruction via r. Runtime

O(n?).



Example

j w
0 0.05
ilo 1 2 3 4 5 1030 010
2 0.45 0.25 0.05
i 0.15 0.10 0.05 0.10 0.20 : e e
¢ | 0.05 0.10 005 0.05 0.05 0.10 Do
5 1.00 0.80 0.60 0.50 0.35 0.10
1 2 3 4 5 6
j € .
J
0 0.05
1 1
1 0.45 0.10
2 1 2
2 0.90 0.40 0.05
3 2 2 3
3 1.25 0.70 0.25 0.05
4 2 2 4
4 1.75 1.20 0.60 0.30 0.05
5 2 4 5 5 5
5 2.75 2.00 1.30 0.90 0.50 0.10
1 2 3 5 7

1 2 3 4 5 6 )



21. Greedy Algorithms

Activity Selection, Fractional Knapsack Problem, Huffman Coding
Cormen et al, Kap. 16.1, 16.3



Activity Selection

Coordination of activities that use a common resource exclusively.

Activities S = {ay, as, .. ., a,} with start- and finishing times
0 <s; < f; < oo, increasingly sorted by finishing times.
a1 = (1,4) I

az = (3,5) I
as = (0,6)

a10 = (2, 14) |
a1l = (12,16) I

Activity Selection Problem: Find a maximal subset of compatible
(non-intersecting) activities.



Dynamic Programming Approach?

Let Sij = {ak : fi < s A fir. < s,}. Let A;; be a maximal subset of
compatible activities from S;;. Moreover, let a;, € A;; and
Az’k; = Szk; N Aij! Akz = Skj N Aij, thus Aij = Azk + {ak} + Ak:j-

A a Apj
fi Sj

Straightforward: A;, and A;; must be maximal, otherwise
A = Air + {ar} + Ax; would not be maximal.



Dynamic Programming Approach?

Let ¢;; = | A;;|. Then the following recursion holds ¢;; = ¢, + cx; + 1,
therefore

0 falls S7J = @7
Cii =
T Y maxg,es, {cin+ cxy + 1} falls Sy # 0.

Could now try dynamic programming.



Greedy

Intuition: choose the activity that provides the earliest end time (a,).
That leaves maximal space for other activities.

Remaining problem: activities that start after a; ends. (There are no
activites that can end before a; starts.)
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Greedy

Given: Subproblem Sy, a,, an activity from S;. with earliest end time.
Then a,, is contained in a maximal subset of compatible activities

from S;..

Let A, be a maximal subset with compatible activities from S and
a; be an activity from A;, with earliest end time. If a; = a,,, = done.
If a; # a,,. Then consider A}, = A, — {a;} U {ax}. A conists of
compatible activities and is also maximal because |A} | = |Ax|.



Algorithm RecursiveActivitySelect(s, f, £, n)

Input : Sequence of start and end points (s;, fi), 1 <i <mn, s; < f;,
figfzqu for all 3. 1§k§n
Output : Set of all compatible activitivies.

m<+—k+1
while m <n and s, < f; do
‘ m<+— m-+1

if m <n then
- return {a,,} U RecursiveActivitySelect(s, f,m,n)
else
. return ()




Algorithm lterativeActivitySelect(s, f, n)

Input : Sequence of start and end points (s;, fi), 1 <i <mn, s; < f;,
fi < fi+1 for all 7.

Output : Maximal set of compatible activities.

A {al}

k<1

for m < 2 to n do

if s, > fi. then
A+~ AU{an}

k+m

return A

Runtime of both algorithms: ©(n)



The Fractional Knapsack Problem

set of n € Nitems {1,...,n} Each item i has value v; € N and
weight w; € N. The maximum weight is given as W € N. Input is

—1y...

Wanted: Fractions 0 < ¢; < 1 (1 <12 < n) that maximise the sum
> i1 @i viunder Y g w; < WL



Greedy heuristics

Sort the items decreasingly by value per weight v; /w;.
Assumption v; /w; > vi1 /Wi

Let j = max{0 < k <n:>"  w; < W}. Set
mg=1foralll <: <.

B gj+1 = %ﬁ‘llwl

mqg=0forall:>j+1.

That is fast: ©(nlogn) for sorting and ©(n) for the computation of
the qi-



Correctness

Assumption: optimal solution (7;) (1 < i < n).

The knapsack is full: >, r; - w; = >, ¢ - w; = W.

Consider k: smallest ¢ with r; # ¢; Definition of greedy: ¢, > rj. Let
r=q — 1> 0.

Construct a new solution (77): r; = r;Vi < k. . = q;. Remove
weight >, | 0; = - wy, from items k + 1 to n. This works because
Dok T Wi = Y G Wi



Correctness

n

n
V Vi
/
E TV = TRUp + TWwE— + E (riw; — 0;)—
i=k i= k+1
> 1R + :L’wk— + E (5 —
Wy, wz Wy,
i=k+1
n
Vg
= 1. + :z:wk— — :z:wk— + rlwl = E T;U;.
w .
k i=k+1 i=k

Thus (r}) is also optimal. Iterative application of this idea generates
the solution (g;).



Huffman-Codes

Goal: memory-efficient saving of a sequence of characters using a
binary code with code words..

Example
File consisting of 100.000 characters from the alphabet {a, ..., f}.

a b c d e f
Frequency (Thousands) 45 13 12 16 9 5
Code word with fix length 000 001 010 011 100 101
Code word variable length 0 101 100 111 1101 1100

File size (code with fix length): 300.000 bits.
File size (code with variable length): 224.000 bits.




Huffman-Codes

m Consider prefix-codes: no code word can start with a different
codeword.

m Prefix codes can, compared with other codes, achieve the optimal
data compression (without proof here).

m Encoding: concatenation of the code words without stop character
(difference to morsing).
affe—0-1100-1100-1101 — 0110011001101

m Decoding simple because prefixcode
0110011001101 — 0 - 1100 - 1100 - 1101 — af fe



Code trees

100
PN
6 14

oSN Y
O/ \1 0/ \1 0/ \1

a:45 b:13 c:12 d:16 e

Code words with fixed length

/ \
N
s g
e g

Code words with variable length



Properties of the Code Trees

m An optimal coding of a file is alway represented by a complete
binary tree: every inner node has two children.

m Let C be the set of all code words, f(c) the frequency of a
codeword ¢ and dr(c) the depth of a code word in tree 7. Define
the cost of a tree as

BT) = 3" £(e) - dr(0).

ceC

(cost = number bits of the encoded file)

In the following a code tree is called optimal when it minimizes the
costs.



Algorithm Idea

Tree construction bottom

up

m Start with the set C of
code words

m Replace iteriatively the
two nodes with smallest
frequency by a new
parent node.

100

/ \30

/\ /\

a:45 b:13 ci12 d:16 e9

f:5

597



Algorithm

Input :
Output :
n <+ |C]
Q<+ C

Huffman(C)

code words ¢ € C
Root of an optimal code tree

fori=1ton—1do
allocate a new node z
z.left <— ExtractMin(Q) // extract word with minimal frequency.
z.right <— ExtractMin(Q)
z.freq + z.left.freq + z.right.freq

Insert(Q, 2)

return ExtractMin(Q)



Analyse

Use a heap: build Heap in O(n). Extract-Min in O(logn) for n
Elements. Yields a runtime of O(nlogn).



The greedy approach is correct

Theorem

Let x, y be two symbols with smallest frequencies in C' and let T (C")
be an optimal code tree to the alphabet C' = C' — {x,y} + {z} with a
new symbol z with f(z) = f(x) + f(y). Then the tree T'(C') that is
constructed from T'(C") by replacing the node = by an inner node
with children x and y is an optimal code tree for the alphabet C'.




Proof

It holds that f(x) - dr(z) + f(y) - dr(y) =

(f(z) + () - (dr(2) +1) = f(2) - dr(x) + f(x) + f(y). Thus
B(T") = B(T) — f(z) — f(y).

Assumption: 7" is not optimal. Then there is an optimal tree 7" with
B(T") < B(T). We assume that x and y are brothers in T". Let T""
be the tree where the inner node with children x and y is replaced by
z. Then it holds that

B(T") = B(T") — f(z) — f(y) < B(T) — f(z) — f(y) = B(T").
Contradiction to the optimality of 7".

The assumption that = and y are brothers in 7" can be justified
because a swap of elements with smallest frequency to the lowest
level of the tree can at most decrease the value of B.



22. Graphs

Reflexive transitive closure, Graph Traversal (DFS, BFS), Connected
components, Topological Sorting Ottman/Widmayer, Kap. 9.1 -
9.4,Cormen et al, Kap. 22



Konigsberg 1736

KONINGSBERGA
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edge
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Cycles

m Is there a cycle through the town (the
graph) that uses each bridge (each edge)
exactly once?

m Euler (1736): no.

m Such a cycle is called Eulerian path.

m Eulerian path < each node provides an
even number of edges (each node is of an
even degree).

‘=" ist straightforward, “<” ist a bit more difficult



Notation

A directed graph consists of aset V' = {vy,...,v,} of nodes
(Vertices) and a set E C V' x V of Edges. The same edges may not
be contained more than once.



Notation

An undirected graph consists of a set V' = {vy,...,v,} of nodes a
and aset £ C {{u,v}|u,v € V'} of edges. Edges may bot be
contained more than once.?'

a complete undirected graph

31As opposed to the introductory example — otherwise call it multi-graph.



Notation

A graph G = (V, E) with E comprising all edges is called complete.

A graph where V' can be partitioned into disjoint sets U and T such
that each e € E provides a node in U and a node in Wis called
bipartite.

A weighted graph G = (V, E, ¢) is a graph G = (V, E) with an edge
weight function ¢ : E — R. c¢(e) is called weight of the edge e.



Notation

For directed graphs G = (V. E)

m w € Viscalled adjacentto v € V, if (v,w) € £

m Predecessorsof v € V: N~ (v) := {u € V|(u,v) € E}.
Successors: Nt (v) :={u € V|(v,u) € E}

m /n-Degree: deg™ (v) = [N~ (v)],
Out-Degree: deg™ (v) = [N (v)|

S G

deg™(v) = 3,deg™(v) =2  deg (w) =1, deg™ (w) = 1



Notation

For undirected graphs G = (V, E):

m w € Viscalled adjacenttov € V,if {v,w} € £
m Neighbourhoodof v € V: N(v) = {w € V|{v,w} € E}

m Degree of v: deg(v) = |N(v)| with a special case for the loops:
increase the degree by 2.

Ny G

deg(v) =5 deg(w) =2



Relationship between node degrees and number of
edges

For each graph G = (V, FE) it holds

ey deg”(v) = >, oy deg”(v) = | E|, for G directed
> ey deg(v) = 2|E|, for G undirected.



Paths

m Path: a sequence of nodes (vy, ..., vx11) such that for each
i€ {1...k} thereis an edge from v; to v; 1 .

m Length of a path: number of contained edges k.

m Weight of a path (in weighted graphs): Zle c((vi, vi11)) (bzw.
> e({vi, viga})

m Simple path: path without repeating vertices

m Connected: undirected graph where for each pair v, w € V there
is a connecting path.



Cycles

m Cycle: path (vy, ..., v51) With v; = v

m Simple cycle: Cycle with pairwise different vy, ..., v, that does
not use an edge more than once.

m Acyclic: graph without any cycles.

Conclusion: undirected graphs cannot contain cycles with length 2
(loops have length 1)



Representation using a Matrix

Graph G = (V, E) with nodes v, . .., v, stored as adjacency matrix
Ag = (aij)1<ij<n With entries from {0, 1}. a;; = 1 if and only if edge
from v; to v;.

OO OO
OO = O =
_ o O O
SO = O =
— O = O O

Memory consumption O(|V'|?). Ag is symmetric, if G undirected.



Representation with a List

Many graphs G = (V,E) with nodes
v1,...,v, provide much less than n?
edges. Representation with adjacency
list. Array A[l],..., Aln], A; comprises a
linked list of nodes in N (v;).

Ol«<—0 W«——7"T0 O’

A—0 W0 N —7F0 —
Q<0 h<—0 ND<—0| W

Memory Consumption ©(|V| + |E]).



Runtimes of simple Operations

Operation Matrix List

Find neighbours of v € V O(n) O(deg'v)
find v € V without neighbour  O(n?) O(n)
(u,v) € E? O(1)  O(deg™ v)
Insert edge o) 0O()
Delete edge O(1)  O(deg" v)



Adjacency Matrix Product

|

01011
00000
00101
00000
01112

I

01110
00000
B=A,=|01011
00000
00101

617



Interpretation

LetG = (V, F) be a graph and k € N. Then the element ag? of the

matrix (ag?)lgmgn = A¥, provides the number of paths with length k
from v; to Vj .




Proof

By Induction.

Base case: straightforward for k = 1. a; ; = a
Hypothesis: claim is true for all £ <[

Step(l — 1+ 1):

(1)

(N

=Yl
k=1
ar,; = 1 iff egde & to j, O otherwise. The sum above counts the
number of nodes having a direct connection to v; where a path of
length [ exists from v; i.e. all paths with length [ + 1.



Shortest Path

Question: is there a path from 7 to 7 How long is the shortest path?
()
J

Answer: exponentiate A¢ until for some k < n it holds that a; ; > 0.

k provides the path length of the shortest path. If agi.) = 0 for all

1 < k < n, then there is no path from 7 to ;.



Number triangles

Question: How many triangular path does an undirected graph

contain?

Answer: Remove all cycles (diagonal entries). Compute A?.. agf)

determines the number of paths of length 3 that contain 2. There are
6 different permutations of a triangular path. Thus for the number of

triangles: 7, a” /6.

3

001 1 1 41488 8
001 1 1 41488 8 B
L1011 | -|sssgsgs | =2406=4
11100 3 8 8 4 4 | Dreiecke.

11100 88 8 4 4




Graphs and Relations

Graph G = (V, E) with adjacencies Az = Relation £ C V x V over
v

m reflexive & a;; = 1foralle=1,...,n.

W symmelric < a; ; = a;,; foralli,7 = 1,...,n (undirected)

m fransitive < (u,v) € E, (v,w) € £ = (u,w) € F,

Equivalence relation < collection of complete, undirected graphs
where each element has a loop.

Reflexive transitive closure of G < Reachability relation E*:
(v,w) € E*iff 3 path from node v to w.



Computation of the Reflexive Transitive Closure

Goal: computation of B = (b;;)1<i j<n With b;; = 1 & (v;,v;) € E*
Observation: a;; = 1 already implies (v;,v,) € E*.
First idea:

m Start with B < A and set b;; = 1 for each i (Reflexivity.).

m lterate over i, j, k and setb;; = 1, if b, = 1 and b;; = 1. Then all
paths with lenght 1 and 2 taken into account.

m Repeated iteration = all paths with length 1. . .4 taken into
account.

m [log, n| iterations required.



Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {v; : i < k}.
Add node v.



Algorithm ReflexiveTransitiveClosure(A;)

Input : Adjacency matrix Ag = (a;;)!

ij=1
Output : Reflexive transitive closure B = (by)7;—; of G
B+ AG
for k < 1 ton do
agr < 1 // Reflexivity

for i <~ 1 ton do
for j + 1 ton do
L bij < max{bi;, by - by} // All paths via vy,

return B

Runtime ©(n?).



Correctness of the Algorithm (Induction)

Invariant (k): all paths via nodes with maximal index < k considered.

m Base case (k = 1): All directed paths (all edges) in Ag
considered.

m Hypothesis: invariant (k) fulfilled.

m Step (k — k£ + 1): For each path from v; to v; via nodes with
maximal index k: by the hypothesis b;, = 1 and b;; = 1. Therefore
in the k-th iteration: b;; < 1.



Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.
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Algorithm Depth First visit DFS-Visit(G', v)

Input : graph G = (V, E), Knoten wv.

Mark v visited
foreach (v,w) € E do
if —(w visited) then
| DFS-Visit(w)

Depth First Search starting from node v. Running time (without
recursion): ©(deg™ v)



Algorithm Depth First visit DFS-Visit(G)

Input : graph G = (V, E)

foreach v € V do
if —(v visited) then
. DFS-Visit(G,v)

Depth First Search for all nodes of a graph. Running time:
O(IV] + X ev(deg” (v) + 1)) = (V| + | E)).

Problem with recursion?

With large graphs a stack overflow can happen.



lterative DFS-Visit(G, v)
Input : graph G = (V, E)

Stack S < 0; push(S,v)
while S # () do
w < pop(S)
if —(w visited) then
mark w visited
foreach (w,c) € E do // (in reverse order, potentially)
if —(c visited) then
L  push(S,z)

Stack size up to | E|, for each node an extra of ©(deg™ (w) + 1)
operations. Overal: O(|V| + | E|)

Including all calls from the above main program: O(|V| + |E|) -



Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.
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lterative BFS-Visit(G, v)

Input : graph G = (V, E)
Queue Q <+ ()

Mark v as active

enqueue(Q, v)

while Q # () do

w < dequeue(Q)

mark w visited

foreach (w,c) € £ do

if —(c visited V ¢ active) then
L Mark ¢ as active

enqueue(Q, ¢)

m Algorithm requires extra
space of O(|V]).(Why
does that simple
approach not work with
DFS?)

m Running time including
main program:

(V] + [E]).



Connected Components

Connected components of an undirected graph G: equivalence
classes of the reflexive, transitive closure of G. Connected
component = subgraph G' = (V' E'), E' = {{v,w} € Elv,w € V'}
with

{H{v,wy e EveV'VvweV'} =E={{v,w} e Elve V' AweV'}

a—@ ©

Graph with connected compo-
9 9 nents {1,2,3,4}, {5,7}, {6}.




Computation of the Connected Components

m Computation of a partitioning of V' into pairwise disjoint subsets
‘/17 SR Vk
m such that each V; contains the nodes of a connected component.

m Algorithm: depth-first search or breadth-first search. Upon each
new start of DFSSearch(G, v) or BESSearch(G, v) a new empty
connected component is created and all nodes being traversed
are added.



Topological Sorting

Topological Sorting of an acyclic directed graph G = (V, E):
Bijective mapping

ord: V —{1,...,|V]} | ord(v) <ord(w)V (v,w) € E.

Can identify 7 with v;. Topological sorting = (v1, ..., vy)).



(Counter-)Examples

Cyclic graph: cannot be sorted topologically.

Unternose ——— Hoso )
Gosend>——Cooune D CHania)
CUntatemd >——sCPulover > (Une)

A possible toplogical sorting of the graph:
Unterhemd,Pullover,Unterhose,Uhr,Hose,Mantel,Socken,Schuhe



Observation

A directed graph G = (V, E') permits a topological sorting if and only
if it is acyclic.

Proof “=": If G contains a cycle it cannot permit a topological
sorting, because in a cycle (v;,,...,v; ) it would hold that
Vi, < e <0 < Uy

1



Inductive Proof Opposite Direction

m Base case (n = 1): Graph with a single node without loop can be
sorted topologically, setord(v;) = 1.

m Hypothesis: Graph with n nodes can be sorted topologically
m Step (n — n + 1):

G contains a node v, with in-degree deg™ (v,) = 0. Otherwise iteratively
follow edges backwards — after at most n + 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.

Graph without node v, and without its edges can be topologically sorted
by the hypothesis. Now use this sorting and set ord(v;) < ord(v;) + 1 for
all i # ¢ and set ord(v,) < 1.



Preliminary Sketch of an Algorithm

Graph G = (V, E). d + 1
Traverse backwards starting from any node until a node v, with
in-degree 0 is found.

If no node with in-degree 0 found after n stepsm, then the graph
has a cycle.

Set ord(v,) + d.
Remove v, and his edges from G.
IfV #£0,thend < d+1, go to step 1.

Worst case runtime: Q(|V]?).



Improvement

Idea?

Compute the in-degree of all nodes in advance and traverse the
nodes with in-degree 0 while correcting the in-degrees of following
nodes.



Algorithm Topological-Sort(()

Input : graph G = (V, E).
Output : Topological sorting ord

Stack S «+ )
foreach v € V do Afv] <~ 0
foreach (v,w) € E do A[w] - AJw] +1 // Compute in-degrees
foreach v € V' with A[v] =0 do push(S,v) // Memorize nodes with in-degree 0
141
while S # () do
v < pop(S); ord[v] < i; i <— i+ 1 // Choose node with in-degree 0
foreach (v,w) € £ do // Decrease in-degree of successors
Alw] = Afw] -
if Ajw|]=0 then push (.S, w)

if i = |V|+ 1 then return ord else return “Cycle Detected”



Algorithm Correctness

Let G = (V, FE) be a directed acyclic graph. Algorithm
TopologicalSort(G) computes a topological sorting ord for G with
runtime ©(|V| + |E)).

Proof: follows from previous theorem:

Decreasing the in-degree corresponds with node removal.

In the algorithm it holds for each node v with A[v] = 0 that either the node
has in-degree 0 or that previously all predecessors have been assigned a
value ord[u] + i and thus ord[v] > ord[u] for all predecessors u of v. Nodes
are put to the stack only once.

Runtime: inspection of the algorithm (with some arguments like with graph
traversal)



Algorithm Correctness

Let G = (V, F) be a directed graph containing a cycle. Algorithm
TopologicalSort(G) terminates within ©(|V | + |E|) steps and detects

a cycle.

Proof: let (v;,,...,v;, ) be acyclein G. In each step of the algorithm remains
Alv;;,] > 1forall j =1,..., k. Thus k nodes are never pushed on the stack und
therefore atthe end it holds that: < V + 1 — k.

The runtime of the second part of the algorithm can become shorter. But the
computation of the in-degree costs already O(|V| + | E]).



23. Shortest Paths

Motivation, Dijkstra’s algorithm on distance graphs, Bellman-Ford
Algorithm, Floyd-Warshall Algorithm

[Ottman/Widmayer, Kap. 9.5 Cormen et al, Kap. 24.1-24.3,
25.2-25.3]



River Crossing (Missionaries and Cannibals)

Problem: Three cannibals and three missionaries are standing at a
river bank. The available boat can carry two people. At no time may
at any place (banks or boat) be more cannibals than missionaries.
How can the missionaries and cannibals cross the river as fast as
possible? 32

32There are slight variations of this problem. It is equivalent to the jealous husbands problem.



Problem as Graph

Enumerate permitted configurations as nodes and connect them

with an edge, when a crossing is allowed. The problem then

becomes a shortest path problem.

Example
links | rechts
Missionare 3 0
Kannibalen 3 0

Boot X

Uberfahrt méglich

6 Personen am linken Ufer

links | rechts
Missionare 2 1
Kannibalen 2 1
Boot X

4 Personen am linken Ufer




The whole problem as a graph

6 5 4 3 4
310 3|0 3|0 3|0 2 |1 112 0|3 0|3 0|3
3|0 2 |1 1] 2 0|3 2 |1 1] 2 1] 2 2 |1 3 (0
X X X X X X X X X
3|0 3|0 3|0 2 |1 112 0|3 0|3 0|3
2|1 1] 2 0|3 2 |1 112 112 2 |1 3|0
X X X X X X X X




Example Mystic Square

Want to find the fastest solution for
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Problem as Graph

112[3] [1]2]3] [1]2]3

4/5/6—456—4|5/6

708 7] 8 708

112[3] [1]2]3] [1][2]3

4|5 4] |5 4|5

7/8]6| |7]8]6| [7]8]6
123 2[46]
{485} 715]3
7| [6] IBE




Route Finding

Provided cities A - Z and Distances between cities.

YN NN
N

N
\//

What is the shortest path from A to Z?




Simplest Case

Constant edge weight 1 (wlog)
Solution: Breadth First Search

55




Graphs with positive weights

Given: G = (V,E,c),c: E— R*,s,t € V.

Wanted: Length of a shortest path (weight) from s to ¢.
Path: (s = vg,v1, ..., = t), (v;,vi11) € E (0 <i < k)
Weight: 37 c((vi, vig1)).

/i
2 U K
S/’\ t

Path with weight 9



Observation

4
u
s
0~7 7
S —m V

Sl

w

———— upper bounds

/

Smallest upper bound
global minimum!



Basic Idea

Set V' of nodes is partitioned into

m the set // of nodes for which a
shortest path from s is already known,

mtheset R =J,.,, V" (v) \ M of
nodes where a shortest path is not yet
known but that are accessible directly
from M,

m the set of nodes that
have not yet been considered.




Existence of Shortest Path

Assumption: There is a path from sto ¢t in G.
Claim: There is a shortest path from sto ¢t in G.

Proof: There can be infinitely many paths from s to ¢ (cycles are
possible). However, since c is positive, a shortest path must be
acyclic. Thus the maximal length of a shortest path is bounded by
some n € N and there are only finitely many candidates for a
shortest path.

Remark: There can be exponentially many paths. Example

I*ITITIT*I

—0—0—0—



Induction

Induction over |M|: choose nodes from
R with smallest upper bound. Add r to M
and update R and U accordingly.

Correctness: if within the “wavefront” a
node with minimal weight has been found
then no path with greater weight over dif-
ferent nodes can provide any improve-
ment.




Algorithm Dijkstra(G, s)

Input : Positively weighted Graph G = (V, E, ¢), starting point s € V,

Output : Minimal weights d of the shortest paths.

M={s}; R=N*(s),U=V\R
d(s) <= 0; d(u) < 0o Yu # s
while R # () do
74— argmin,e g Min,,en—(rynm d(m) + c(m,r)
d(r) <= min,en-(ynm d(m) + c(m, )
M« MU {r}
R+ R—{r}UNT(r)\ M

return d
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Example

M = {s,a}
R ={b,c}
U={d,e}



Implementation: Naive Variant

m Find minimum: traverse all edges (u,v) foru € M,v € R .
m Overal costs: O(|V| - |E|)



Implementation: Better Variant

m Update of all outgoing edges when inserting new w in M
foreach (w,v) € E do
if d(w) + ¢(w,v) < d(v) then
d(v) + d(w) + c(w,v)
m Costs of updates: O(|E|), Find minima: O(|V|?), overal costs
O(IV]*)



Implementation: Data Structure for R?

Required operations:

m ExtractMin (over R)
m DecreaseKey (Update in R)

foreach (m,v) € £ do
if d(m) + c¢(m,v) < d(v) then

d(v) < d(m) + c(m,v)
if v € R then
DecreaseKey(R, v) // Update of a d(v) in the heap of R
else
. R+ RU{v} // Update of d(v) in the heap of R

m Heap Data Structure. Problem: unclear how to find v in R for
DecreaseKey.



DecreaseKey

m DecreaseKey: climbing in MinHeap in O(log |V |)
m Position in the heap: possibility (a): Store position at the nodes
m Position in the heap: possibility (b): Hashtable of the nodes



Runtime

m |V|x ExtractMin: O(|V|log |V])

m |F|x Insert or DecreaseKey: O(|E|log |V])
m 1x Init: O(|V])

m Overal: O(|E|log |V|).

Can be improved when a data structure optimized for ExtractMin and
DecreaseKey ist used (Fibonacci Heap), then runtime
O(|E| + [V[log |[V]).



Reconstruct shortest Path

m Memorize best predecessor during the update step in the
algorithm above. Store it with the node or in a separate data
structure.

m Reconstruct best path by traversing backwards via best
predecessor



Example

M ={s,a,b}
R = {c,d}
U = {e}



General Weighted Graphs

Relaxing works the same way:
Relax(u,v) (u,v € V, (u,v) € F)
if ds(v) > ds(u) + c(u,v) then

ds(v) < ds(u) + c(u,v)

return true

return false

Problem: cycles with negative weights can shorten the path, a
shortest path is not guaranteed to exist.




Observations

m Observation 1: Sub-paths of shortest paths are shortest paths.

Let p = (vo, ..., vx) be a shortest path from v, to v;. Then each of
the sub-paths p;; = (v;, ..., v;) (0 <i < j < k) is a shortest path
from v; to Vj.

Proof: if not, then one of the sub-paths could be shortened which
immediately leads to a contradiction.

m Observation: If there is a shortest path then it is simple, thus does
not provide a node more than once.
Immediate Consequence of observation 1.
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Dynamic Programming Approach (Bellman)

Induction over number of edges d;|i, v]: Shortest path from s to v via
maximally ¢ edges.

ds[i,v] = min{d[i — 1, 0], (m)inE(dS[i — 1, u] + c(u,v))
u,v)e

ds[0, s] = 0,ds[0,v] = 0o Vv # s.



Dynamic Programming Approach (Bellman)

s v w A
0 |0 co 0o o0 o0 /
0 co 7 oo —2 B

n—110 -+ -+« ...

Algorithm: lterate over last row until the relaxation steps do not
provide any further changes, maximally n — 1 iterations. If still
changes, then there is no shortest path.



Algorithm Bellman-Ford(G, s)

Input : Graph G = (V, E, ¢), starting point s € V
Output : If return value true, minimal weights d for all shortest paths from s,
otherwise no shortest path.

d(v) <= oo Vv e V; d(s) « 0
fori < 1to |V]| do
f « false
foreach (u,v) € £ do
[« fVRelax(u,v)

if f = false then return true

return false;

Runtime O(|E| - |V]).



All shortest Paths

Compute the weight of a shortest path for each pair of nodes.
m |V|x Application of Dijkstra’s Shortest Path algorithm
O(|V|-|E] -log|V]) (with Fibonacci Heap:
O(|[V[*1og [V] + V|- |EY))
m |V|x Application of Bellman-Ford: O(|E| - |V]?)
m There are better ways!



Induction via node number33

Consider weights of all shortest paths S* with intermediate nodes in
VE .= {v,..., v}, provided that weights for all shortest paths S*~!
with intermediate nodes in V*~! are given.

m v; no intermediate node of a shortest path of v; ~ v; in vk
Weight of a shortest path v; ~ v; in S*=1is then also weight of
shortest path in S*.

m v}, intermediate node of a shortest path v; ~ v; in VV*: Sub-paths
v; ~ v and v ~ v; contain intermediate nodes only from S~

33Jike for the algorithm of the reflexive transitive closure of Warshall



DP Induction

d*(u,v) = Minimal weight of a path u ~ v with intermediate nodes in
Vk
Induktion

d*(u,v) = min{d* ! (u,v), d" (u, k) + d" " (k,0)}(k > 1)

d(u,v) = c(u,v)



DP Algorithm Floyd-Warshall((Z)

Input : Acyclic Graph G = (V, E, ¢)
Output : Minimal weights of all paths d
d’ + ¢
for k< 1to |V] do
for i < 1to |V| do
for j < 1to |V]| do
d¥(vi,vy) = min{d" (v, v;), &g, v) + (v, v5)

Runtime: O(|V]3)
Remark: Algorithm can be executed with a single matrix d (in place).



Reweighting

ldea: Reweighting the graph in order to apply Dijkstra’s algorithm.

The following does not work. The graphs are not equivalent in terms
of shortest paths.

sl/ll\x - ;/11\2
Nt NS



Reweighting

Other Idea: “Potential” (Height) on the nodes

m G = (V, E,c) aweighted graph.
m Mapping h: V — R
m New weights

c(u,v) = c(u,v) + h(u) — h(v), (u,v € V)



Reweighting

Observation: A path p is shortest path inin G = (V, E, ¢) iff it is
shortest path inin G = (V, E, ¢)

M-

k
&(p) = Z c(vim1,v;) = c(vi—1,v;) + h(vi—1) — h(v;)

=1 =1

= h(vg) — h(vg) + c(vi—1,v;) = ¢(p) + h(vg) — h(vg)

-

=1

Thus ¢&(p) minimal in all vy ~> vy, <= ¢(p) minimal in all vy ~> v.

Weights of cycles are invariant: ¢(vy, ..., vx = v9) = c(vo, . .., Uk = o)



Johnson’s Algorithm

Add a new node s ¢ V:

G' = (V',E /)

V=V uU{s}

E'=FU{(s,v):veV}
d(u,v) = c(u,v), u # s
d(s,v) =0(veV)



Johnson’s Algorithm

If no negative cycles, choose as height function the weight of the
shortest paths from s,

h(v) = d(s,v).
For a minimal weight d of a path the following triangular inequality holds:
d(s,v) <d(s,u) + c(u,v).
Substitution yields h(v) < h(u) + ¢(u, v). Therefore

é(u,v) = c(u,v) + h(u) — h(v) > 0.



Algorithm Johnson(()

Input : Weighted Graph G = (V, E, ¢)
Output : Minimal weights of all paths D.

New node s. Compute G' = (V' E', )

if BellmanFord(G’, s) = false then return "graph has negative cycles”

foreach v € V' do
h(v) < d(s,v) // d aus BellmanFord Algorithmus

foreach (u,v) € £’ do
- e(u,v) < c(u,v) + h(u) — h(v)
foreach © € V do
d(u,-) < Dijkstra(G", u)
foreach v € V do
‘ D(u,v) < d(u,v) + h(v) — h(u)



Analysis

Runtimes

m Computation of G': O(|V|)
m Bellman Ford G": O(|V| - |E|)
m |V|x Dijkstra O(|V| - |E| - log |V])
(with Fibonacci Heap: O(|V |*log |V | + |V - | E]))
Overal O(|V| - |E| - log |V])
(O(VFlog [V] + [V] - |E]))



24. Minimum Spanning Trees

Motivation, Greedy, Algorithm Kruskal, General Rules, ADT
Union-Find, Algorithm Jarnik, Prim, Dijkstra, Fibonacci Heaps

[Ottman/Widmayer, Kap. 9.6, 6.2, 6.1, Cormen et al, Kap. 23, 19]



Problem

Given: Undirected, weighted, connected graph G = (V, E, ¢).

Wanted: Minimum Spanning Tree T' = (V, E'), E' C E, such that
Y e C(€) minimal.

/

Application: cheapest / shortest cable network



Greedy Procedure

Recall:

m Greedy algorithms compute the solution stepwise choosing locally
optimal solutions.

m Most problems cannot be solved with a greedy algorithm.

m The Minimum Spanning Tree problem constitutes one of the
exceptions.



Greedy Idea

Construct 1" by adding the cheapest edge that does not generate a

cycle.

(Solution is not unique.)



Algorithm MST-Kruskal((G)

Input : Weighted Graph G = (V, E, ¢)

Output : Minimum spanning tree with edges A.

Sort edges by weight c(e;) < ... < ¢(en)
A0
for k =1 to |E| do
if (V, AU {er}) acyclic then
L A+ E'U {ek}

return (V, A, ¢)



Correctness

At each point in the algorithm (V, A) is a forest, a set of trees.

MST-Kruskal considers each edge e;. exactly once and either
chooses or rejects e,

Notation (snapshot of the state in the running algorithm)
m A: Set of selected edges

m R: Set of rejected edges
m U: Set of yet undecided edges
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Cut

A cut of GG is a partition S,V — S of V. (§ C V).

An edge crosses a cut when one of its endpoints is in S and the
otherisin V' \ S.



Rules

Selection rule: choose a cut that is not crossed by a selected
edge. Of all undecided edges that cross the cut, select the one
with minimal weight.

Rejection rule: choose a circle without rejected edges. Of all
undecided edges of the circle, reject those with minimal weight.



Rules

Kruskal applies both rules:

A selected e, connects two connection components, otherwise
it would generate a circle. e; is minimal, i.e. a cut can be
chosen such that ¢, crosses and e, has minimal weight.

A rejected ¢, is contained in a circle. Within the circle e, has
minimal weight.



Correctness

Every algorithm that applies the rules above in a step-wise manner
until U = () is correct.

Consequence: MST-Kruskal is correct.



Selection invariant

Invariant: At each step there is a minimal spanning tree that contains
all selected and none of the rejected edges.

If both rules satisfy the invariant, then the algorithm is correct.
Induction:

m At beginning: U = E, R = A = (). Invariant obviously holds.
m Invariant is preserved.
m Attheend: U =0, RUA = FE = (V, A) is a spanning tree.

Proof of the theorem: show that both rules preserve the invariant.



Selection rule preserves the invariant

At each step there is a minimal spanning tree 7" that contains all selected and none of the rejected edges.

Choose a cut that is not crossed by a selected edge. Of all undecided edges that cross the cut, select the egde e with
minimal weight.

m Case 1: e € T' (done)

m Case2: e ¢ T. Then T'U {e} contains a circle that contains e
Circle must have a second edge ¢’ that also crosses the cut.*
Because e’ € R, e’ € U. Thus c(e) < c(¢/)and T" =T\ {e'} U{e}
is also a minimal spanning tree (and c(e) = ¢(€')).

34Such a circle contains at least one node in .S and one node in V' \ S and therefore at lease to edges between S and
V\S.



Rejection rule preserves the invariant

At each step there is a minimal spanning tree 7" that contains all selected and none of the rejected edges.

Choose a circle without rejected edges. Of all undecided edges of the circle, reject an edge e with minimal weight.

m Case 1: e € T (done)

m Case 2: e € T. Remove e from T, This yields a cut. This cut must
be crossed by another edge ¢’ of the circle. Because c(¢’) < ¢(e) ,
T' =T\ {e}U{e'} is also minimal (and c(e) = c(€')).



Implementation Issues

Consider a set of sets : = A; C V. To identify cuts and circles:

membership of the both ends of an edge to sets?

.

®
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Implementation Issues

General problem: partition (set of subsets) .e.g.
{{1,2,3,9},{7,6,4},{5,8},{10}}

Required: ADT (Union-Find-Structure) with the following operations

m Make-Set(i): create a new set represented by .
m Find(e): name of the set 7 that contains e .
m Union(z, 5): union of the sets 7 and j.



Union-Find Algorithm MST-Kruskal(G)

Input : Weighted Graph G = (V, E, ¢)
Output : Minimum spanning tree with edges A.

Sort edges by weight c(e;) < ... < ¢(en)
A0
for k =1 to |V]| do
. MakeSet(k)
for k. =1to |E| do
(u,v) < ep
if Find(u) # Find(v) then
Union(Find(u), Find(v))
A+ AU €L

return (V, A, ¢)
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Implementation Union-Find

Idea: tree for each subset in the partition,e.g.

{{1,2,3,9},{7,6,4},{5,8},{10}}

D 6D )
2/\3 7/\4 1
T

9

roots = names of the sets,
trees = elements of the sets



Implementation Union-Find

O ) o)
2/\3 7/\4 1
|

9

Representation as array:

Index 1 2 3 4 5 6
Parent 1 1 1 6 5 6

78
)

2D

9
3

10
10



Implementation Union-Find

Index
Parent

-
N
[@)ENTEN
QT Ot
Sy O
SIEEN
ol 0o
w ©
-
oo

Operations:
m Make-Set(:): pli] < ¢; return i

m Find(i): Wr'::i r?[f] # i) do i + pli]

m Union(z, j): plj] < ¢; return i
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Optimisation of the runtime for Find

Tree may degenerate. Example: Union(1, 2), Union(2, 3),
Union(3, 4), ...

Idea: always append smaller tree to larger tree. Additionally
required: size information g

Operations:
m Make-Set(i):  pli] < 4; g[i] < 1; return ¢

if[%[j} > g[i] then swap(i, 7)
m Union(z, j): Jli] gm + gl
return ¢
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Observation

The method above (union by size) preserves the following property
of the trees: a tree of height h has at least 2" nodes.

Immediate consequence: runtime Find = O(logn).



Proof

Induction: by assumption, sub-trees have at
least 2" nodes. WLOG: hy < h;

| h2<h1:

WM& Ty) =h = g(Th & Ty) > 2"

| hgzhl:

g(Th) > g(Tp) > 2"
=Sg(Ty & Ty) = g(T) + g(Ty) > 2- 22 = QMN1OT2)

hi



Further improvement

Link all nodes to the root when Find is called.
Find(z):
j 1
while (p[i] # i) do i + pli]
while (j # i) do
t<j
j < pljl
B plt] « i
return ¢
Amortised cost: amortised nearly constant (inverse of the
Ackermann-function).
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MST algorithm of Jarnik, Prim, Dijkstra

ldea: start with some v € V' and grow the spanning tree from here
by the acceptance rule.

S+ {’Uo}

fori < 1to |V]| do
Choose cheapest (u,v) mitu e S, v & S
A+ AU{(u,v)}
S+ Su{v}




Running time

Trivially O(|V'| - |E)).
Improvements (like with Dijkstra’s ShortestPath)

m Memorize cheapest edge to S: foreach v € V' \ S. deg”(v) many
updates for each new v € S. Costs: || many minima and
updates: O(|V |2+ >,y deg™ (v)) = O(JV ]2 + | E|)

m With Minheap: costs |V| many minima = O(|V |log|V|), | F]
Updates: O(|F|log|V]), Initialization O(|V]): O(|E| - log |V].)

m With a Fibonacci-Heap: O(|E| + |V| - log|V]).
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Fibonacci Heaps

Data structure for elements with key with operations

MakeHeap(): Return new heap without elements
Insert(H, z): Add z to H
Minimum(/7): return a pointer to element m with minimal key

ExtractMin(/): return and remove (from H) pointer to the element
m

m Union(H, H>): return a heap merged from H; and H,
m DecreaseKey(H, z, k): decrease the key of z in H to k
m Delete (H, x): remove element x from H



Advantage over binary heap?

Binary Heap Fibonacci Heap
(worst-Case) (amortized)

MakeHeap O(1) O(1)
Insert O©(logn) O(1)
Minimum O(1) O(1)
ExtractMin ©(logn) O(logn)
Union O(n) O(1)
DecreaseKey  ©(logn) O(1)

Delete O(logn) O(logn)
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Structure

Set of trees that respect the Min-Heap property. Nodes that can be
marked.



Implementation

Doubly linked lists of nodes with a marked-flag and number of
children. Pointer to minimal Element and number nodes.

n=14
min

|

23 17 24

/I(')\ 1 IU ‘Z\O

18 «—52 <—38 26 <46

30

%VI) =5
0 0 0

35

<&&'s s TS




Simple Operations

m MakeHeap (trivial)
m Minimum (trivial)
m Insert(H,e)

Insert new element into root-list

If key is smaller than minimum, reset min-pointer.

m Union (Hq, H»)

Concatenate root-lists of H; and H,
Reset min-pointer.

m Delete(H, e)

DecreaseKey(H, e, —)
ExtractMin(H)
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ExtractMin

Remove minimal node m from the root list
Insert children of m into the root list

Merge heap-ordered trees with the same degrees until all trees
have a different degree:

Array of degrees al0, ..., n] of elements, empty at beginning.
For each element e of the root list:

a Let g be the degree of e

b If alg] = nil: alg] + e.

c If € := a[g] # nil: Merge e with ¢’ resutling in ¢” and set a[g] < nil. Set
e’ unmarked. Re-iterate with e < ¢” having degree g + 1.



DecreaseKey (1, e, k)

Remove e from its parent node p (if existing) and decrease the
degree of p by one.

Insert(H, e)
Avoid too thin trees:
a If p = nil then done.

b If p is unmarked: mark p and done.

c If p marked: unmark p and cut p from its parent pp. Insert (H, p). lterate
with p < pp.
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Estimation of the degree

Let p be a node of a F-Heap H. If child nodes of p are sorted by time
of insertion (Union), then it holds that the ith child node has a
degree of at least i — 2.

Proof: p may have had more children and lost by cutting. When the :th child p;
was linked, p and p; must at least have had degree i — 1. p; may have lost at least
one child (marking!), thus at least degree i — 2 remains.



Estimation of the degree

Every node p with degree k of a F-Heap is the root of a subtree with
at least F. .1 nodes. (F': Fibonacci-Folge)

Proof: Let Si be the minimal number of successors of a node of degree k in a
F-Heap plus 1 (the node itself). Clearly Sy = 1, S; = 2. With the previous theorem
Sp>2+ zf;; S;, k > 2 (p and nodes p; each 1). For Fibonacci numbers it holds

that (induction) Fj, > 2 + EfZQ F;, k > 2 and thus (also induction) S, > Fjo.

Fibonacci numbers grow exponentially fast (O(¢*)) Consequence: maximal
degree of an arbitrary node in a Fibonacci-Heap with n nodes is O(logn).



Amortized worst-case analysis Fibonacci Heap

t(H): number of trees in the root list of H, m(H): number of marked

nodes in H not within the root-list, Potential function

O(H)=t(H)+ 2-m(H). At the beginnning ®(H) = 0. Potential

always non-negative.

Amortized costs:

m Insert(H,x): t/(H) =t(H)+ 1, m'(H) = m(H), Increase of the
potential: 1, Amortized costs O(1) + 1 = O(1)

m Minimum(H): Amortized costs = real costs = O(1)

m Union(H,, H,): Amortized costs = real costs = O(1)



Amortized costs of ExtractMin

m Number trees in the root list t(H).

m Real costs of ExtractMin operation O(logn + t(H)).

m When merged still O(log n) nodes.

m Number of markings can only get smaller when trees are merged
m Thus maximal amortized costs of ExtractMin

O(logn +t(H)) + O(logn) — O(t(H)) = O(logn).



Amortized costs of DecreaseKey

m Assumption: DecreaseKey leads to c cuts of a node from its
parent node, real costs O(c)

m c nodes are added to the root list
m Delete (¢ — 1) mark flags, addition of at most one mark flag
m Amortized costs of DecreaseKey:

Ole)+ (t(H)+c)+2-(m(H)—c+2))— (t(H)+2m(H)) = O(1)



25. Flow in Networks

Flow Network, Maximal Flow, Cut, Rest Network, Max-flow Min-cut
Theorem, Ford-Fulkerson Method, Edmonds-Karp Algorithm,
Maximal Bipartite Matching [Ottman/Widmayer, Kap. 9.7, 9.8.1],
[Cormen et al, Kap. 26.1-26.3]
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Motivation

Modelling flow of fluents, components on conveyors, current in
electrical networks or information flow in communication networks.
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Flow Network

m Flow network G = (V, E, ¢): directed
graph with capacities

m Antiparallel edges forbidden:
(u,v) € B = (v,u) ¢ E.

m Model a missing edge (u, v) by
c(u,v) = 0.

m Source s and sink t: special nodes.
Every node v is on a path between s
andt:s~ vt

S

12
V) —— U3

16/‘
4

AN

Vg — U4
14

\2‘0



Flow

A Flow f : V x V — R fulfills the

following conditions:

m Bounded Capacity:.
Forall u,v € V:
0 < f(u,v) < c(u,v).
m Conservation of flow:
Forallu e V'\ {s,t}:

s 4/4 716 t
9/4
13/10 4/4

Value of the flow:

w(f) = ZUEV f(S, U) _ZUEV f(v? 5)'

Here w(f) = 18.



How large can a flow possibly be?

Limiting factors: cuts

m cut separating s from t: Partition of V into S and T with s € S,
tefT.

m Capacity of acut: ¢(S,T) = > g er (v, ')
m Minimal cut. cut with minimal capacity.
m Flow overthe cut: f(S,T) =} ,cower f(0,0) =3 cswer f(V,0)



How large can a flow possibly be?
For each flow and each cut it holds that f(S,7") = w(f):

f(SvT) = Z f(v’v/)f Z f(vl,’u)

veSW ET veSwW ET

= Z f(vzvl) - Z f(’U, ’U/) - Z f(vl’ ’U) + Z f(vlz U)
veSw' ev veSw'es veSW' eV veES,WES

= Z f(svv/)f Z f(vlas)
v eV v eV

Second equality: amendment, last equality: conservation of flow.

12/12

4/4




Maximal Flow ?

In particular, for each cut (S, 7)) of V.

c(S,T)



Maximal Flow ?

Naive Procedure

12/12
v ——— v3

V 20/14
s m 716 ¢
0/4
13/10 41

Vg —————— Uy
14/10

12/12
VY —— U3

V 20017

s 4/4| ]7/7 ¢
012

1\‘ an

@ 14/11 b

12/12
v

1 Vs
V 20/15
s 4/4 7 t
9/4
13/11 4/4

Vg ———— Uy
14/11

12/12
V) —— U3

16/10 20/19
s 4,’2| ]T/T t
9/0
13/13 4/4

2 14/11 U4
/

Conclusion: greedy increase of flow does not solve the problem.



The Method of Ford-Fulkerson

m Start with f(u,v) =0forall u,v € V

m Determine rest network™ Gy and expansion path in G
m Increase flow via expansion path*

m Repeat until no expansion path available.

*Will now be explained



Increase of flow, negative!

Let some flow f in the network be given.
Finding:

m Increase of the flow along some edge possible, when flow can be
increased along the edge,i.e. if f(u,v) < c(u,v).
Rest capacity ¢f(u,v) = c(u,v) — f(u,v).

m Increase of flow against the direction of the edge possible, if flow
can be reduced along the edge, i.e. if f(u,v) > 0.
Rest capacity c(v,u) = f(u,v).
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Rest Network

Rest network Gy provided by the edges with positive rest capacity:

12

12/12
i

U3
S 1/4 716
| 9/4 ]

Vg ——— Uy
14/10

Rest networks provide the same kind of properties as flow networks with the exception of permitting antiparallel edges



Observation

Theorem

LetG = (V, E, c) be a flow network with source s and sinkt and f a
flow in G. Let G be the corresponding rest networks and let f' be a
flow in G;. Then f & f’ defines a flow in G with value w(f) + w(f’).

0 (u,0) ¢ E.

(f ® f)(u,v) = {f(%U) + f'(u,v) — f'(v,u) (u,v) €F




Proof

Limit of capacity:

(f D f/)(uvv) - f(uvv) + f/(u7v) - fl(v7u)
> Fluro) + fuv) — fluv) = Flu,v) > 0

(f D f/)<u7 U) = f(u,v) + f/(uvv) - f/(va u)
< fluv) + f'(u, v)
< f(u7 U) + Cf(“? U)
= f(u,v) + c(u,v) — f(u,v) = c(u,v).



Proof

Conservation of flow

Y (fe uwo)=> fluv)+> fwv) =Y f(vu)

ucV ucV ucV ueV
—E:ffuu—i-EfUu Ef/(uﬂf)
FI tion of f and
(Flow conservation of f and f’) eV uev ucV

—ZfGBf v, u)

ueV



Beweis

Value of f @ f' (in the sequel N* := N*(s), N~ := N~ (s)):

wife )= (f&f)(sv) -

S (fo f)w,

veENT vEN—

= fls0)+ fi(s,v)— f

veNt
=2 s = I
veNt vEN—

veV veV

= w(f) +u(f)

)
= Y fv,s)+ f(v,5) = f(s,0)

vEN—

v, S) Z f(s,0) + Z f'(v,s)

veEN+TUN— veNtTUN—

_Zfsv vas+2fsv+2fvs

veV

veV



Flow in G'¢

expansion path p: path from s to ¢ in the rest network G/;.
Rest capacity c¢;(p) = min{cy(u,v) : (u,v) edge in p}
Theorem

The mapping f, : V xV = R,

c if (u,v) edge in
fp(u,v): f(p) ( ) g p
0 otherwise

provides a flow in Gy with value w(f,) = c;(p) > 0.

[Proof: exercise]



Consequence

Strategy for an algorithm:

With an expansion path p in G the flow f @ f, defines a new flow
with value w(f @ f,) = w(f) +w(f,) > w(f)



Max-Flow Min-Cut Theorem

Theorem
Let f be a flow in a flow network G = (V, E, ¢) with source s and
sink t. The following statementsa are equivalent:

f is a maximal flow in G
The rest network Gy does not provide any expansion paths
It holds that w(f) = ¢(S,T) fora cut (S,T) of G.




Proof

m (3)= (1):
It holds that w(f) < ¢(S,T) for all cuts S, T. From w(f) = ¢(S,T)
it follows that w( f) is maximal.

m (1) = (2):
f maximal Flow in G. Assumption: Gy has some expansion path
w(f @ f,) =w(f)+ w(f,) > w(f). Contradiction.



Proof (2) = (3)

Assumption: Gy has no expansion path. Define
S={veV: thereisapath s~ vinG}. (S,T) = (S,V\ 9)is a cut:
seS,tgS. Letue Sandv € T.

m If (u,v) € E, then f(u,v) = c(u, v), otherwise it would hold that (u,v) € Ey.

m If (v,u) € E, then f(v,u) = 0, otherwise it would hold that
ce(u,v) = f(v,u) >0and (u,v) € Ey
)

m If (u,v) € Fand (v,u) € E, then f(u,v) = f(v,u) = 0.
Thus

w(f)=FS,T) =" flu,0) =Y Y fv,u)

ueS veT veT u€s

:ZZduﬂ)) —ZZOIZZC(U,U) :C(S,T).

ueS veT veET u€s ueS veT



Algorithm Ford-Fulkerson((, s, t)

Input : Flow network G = (V, E, ¢)
Output : Maximal flow f.

for (u,v) € E do
- flu,v) <0

while Exists path p : s ~» t in rest network Gy do
cs(p) < min{cs(u,v) : (u,v) € p}
foreach (u,v) € p do

if (u,v) € E then

- fluv) = f(u,v) + ¢4 (p)
else

- f(v,u) = f(u,v) —cs(p)
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Analysis

m The Ford-Fulkerson algorithm does not
necessarily have to converge for irrational
capacities. For integers or rational numbers it
terminates.

m For an integer flow, the algorithms requires

maximally w( fi.ax) iterations of the while loop.

Search a single increasing path (e.g. with
DFS or BFS O(|E|)) Therefore O( finax|E|).

1()()>\4 A)()()

(%

With an unlucky choice the al-
gorithm may require up to 2000
iterations here.
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Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in G+ the
expansion path of shortest possible length (e.g. with BFS)



Edmonds-Karp Algorithm

When the Edmonds-Karp algorithm is applied to some integer
valued flow network G = (V, E) with source s and sink t then the

number of flow increases applied by the algorithm is in O(|V| - | E|)

[Without proof]



Application: maximal bipartite matching

Given: bipartite undirected graph G = (V, E).
M: M C Esuchthat|{me M:vem}| <lforallvelV.
Maximal Matching M: Matching M, such that |M| > |M’| for each

matching M.
\ T
/ /



Corresponding flow network

Construct a flow network that corresponds to the partition L, R of a
bipartite graph with source s and sink ¢, with directed edges from s
to L, from L to R and from R to ¢t. Each edge has capacity 1.

_— >
s <>

/N



Integer number theorem

If the capacities of a flow network are integers, then the maximal
flow generated by the Ford-Fulkerson method provides integer
numbers for each f(u,v), u,v € V.

[without proof]

Consequence: Ford-Fulkerson generates for a flow network that
corresponds to a bipartite graph a maximal matching

M = {(u,v) : f(u,v) = 1}.



26. Geometric Algorithms

Properties of Line Segments, Intersection of Line Segments, Convex
Hull, Closest Point Pair [Ottman/Widmayer, Kap. 8.2,8.3,8.8.2,
Cormen et al, Kap. 33]
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Properties of line segments.

Cross-Product of two vectors p; =
(21,91), P2 = (22, 92) in the plane

IrT T

p1 X p2 = det [ " y; ] = T1Y2 — T2Y1

Signed area of the parallelogram

P2

P11+ P2

y4

DL+

S 4



Turning direction

nach links:
(p1—po) % (P2 —po) >0

nach rechts:
(p1—po) % (P2 —po) <0
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Intersection of two line segments

P4
D2

b1
b3

Intersection: p; and p2
opposite w.r.t p3ps and

p3, pa Opposite w.r.t.

pip2

2 P4 D
D2
/ 4!
Y4l
Ps3 DPs3

No intersection: p; and
p2 on the same side of

p3pa

2

Intersection: p1 on P3pa

No intersection: p3 and
p4 on the same side of

p1p2



Cutting many line segments



Sweepline Principle




Simplifying Assumptions

m No vertical line segments
m Each intersection is formed by at most two line segments.



Ordering line segments

Preorder (partial order without
anti-symmetry)

_/,

So <p, S1
_/,

s 51 =h, 52
_/,

S2 <p, S1

A sg =p, So

/

W.r.t. h3 the line segments are
uncomparable.

>
—

>=
no

>
w



Moving the sweepline

m Sweep-Line Status : Relationship of all objects intersected by
sweep-line

m Event List: Series of event positions, sorted by z-coordinate.
Sweep-line travels from left to right and stops at each event
position.
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Sweep-Line Status

Preorder 1" of the intersected line segments Required operations:

m /nsert(T, s) Insert line segment s in T’

m Delete(T’, s) Remove s from T'

m Above(T', s) Return line segment immediately above of s in T’
m Below(T' s) Return line segment immediately below of s in T’

Possible Implementation: Blanced tree (AVL-Tree, Red-Black Tree
etc.)

755



Algorithm Any-Segments-Intersect(.S)

Input : List of line segments S
Output : Returns if S contains intersecting segments
T <+ ()
Sort endpoints of line segments in S from left to right (left before right and lower
before upper)
for Sorted end points p do
if p left end point of a segment s then
Insert(T), s)
if Above(T,s)Ns# 0 V Below(T,s) N s # () then return true
if p right end point of a segment s then

if Above(T,s) N Below(T,s) # () then return true
~ Delete(T), s)

return false;
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lllustration
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Analysis

Runtime of the algorithm Any-Segments-Intersect

m Sorting O(nlogn)
m 1 iterations of the for loop. Each operation on the balanced tree
O(logn)

Overal O(nlogn)
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Convex Hull

Konvexe Hille CH(Q) einer Menge () von Punkten: kleinstes
konvexes Polygon P, so dass jeder Punkt entweder auf dem Rand
oder im Inneren liegt.

P1o

P15




Algorithm Graham-Scan

Input : Set of points @
Output : Stack S of points of the convex hull of Q)
Po: point with minimal y coordinate (if required, additionally minimal x-) coordinate
(p1,-..,pm) remaining points sorted by polar angle counter-clockwise in relation to
po; if points with same polar angle available, discard all except the one with
maximal distance from pg
S0
if m < 2 then return S
Push(.S, po); Push(S, p1); Push(S, ps)
for i < 3 to m do
while Winkel (NextToTop(S), Top(.S), p;) nicht nach links gerichtet do
. Pop(9);
PUSh(S, pl)
return S
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lllustration Graham-Scan

Stack:

P15
P14
g
Pe
b2
P
Po



Analysis

Runtime of the algorithm Graham-Scan

m Sorting O(nlogn)
m n lterations of the for-loop

m Amortized analysis of the multipop on a stack: amortized constant
runtime of mulitpop, same here: amortized constant runtime of the
While-loop.

Overal O(nlogn)
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Jarvis Marsch / Gift Wrapping algorithm

Starte mit Extrempunkt (z.B. unterster Punkt) p = py

Suche Punkt ¢, so dass pqg am weitesten rechts liegende
Gerade, d.h. jeder andere Punkt liegt links von der Geraden pq
(oder auf der Geraden néher bei p).

Fahre mit p <— ¢ bei (2) weiter, bis p = py.
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lllustration Jarvis

P13




Analysis Gift-Wrapping

m Let h be the number of corner points of the convex hull.
m Runtime of the algorithm O(h - n).
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Closest Point Pair

Euclidean Distance d(s, t) of two points s
and ¢:

Problem: Find points p and ¢ from () for
which

d(p,q) < d(s,t)Vs,t €Q,s #t.

Naive: all () = ©(n?) point pairs.
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Divide And Conquer

m Set of points P, starting with P < @)

m Arrays X and Y, containing the
elements of P, sorted by z- and
y-coordinate, respectively.

m Partition point set into two
(approximately) equally sized sets 7
and Pp, separated by a vertical line
through a point of P.

m Split arrays X and Y accrodingly in
XL, XR YL and YR



Divide And Conquer

m Recursive call with P, X;,Y; and
Pr, Xz, Yr. Yields minimal distances
01, OR.

m (If only k£ < 3 points: compute the
minimal distance directly)

m After recursive call § = min(dz, dp).

Combine (next slides) and return best
result.

—@®-- -
—— e — —-



Combine

m Generate an array Y holding y-sorted
points from Y, that are located within a
26 band around the dividing line

m Consider for each point p € Y’ the
seven! (!) points after p . Compute
minimal distance ¢'.

m If 9’ < 6, then a closer pair in P than in
P;, and Py found. Return minimal
distance.

*It can be shown that maximally eight points from P can be located in the

shown rectangle. Here without proof.

0
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Implementation

m Goal: recursion equation (runtime) T'(n) = 2 - T'(35) + O(n).
m Consequence: forbidden to sort in each steps of the recursion.
m Non-trivial: only arrays Y and Y’

m |dea: merge reversed: run through Y that is presorted by
y-coordinate. For each element follow the selection criterion of the
x-coordinate and append the element either to Y7, or Yz. Same
procedure for Y’. Runtime O(|Y']).

Overal runtime: O(nlogn).



27. Parallel Programming |

Moore’s Law and the Free Lunch, Hardware Architectures, Parallel
Execution, Flynn’s Taxonomy, Scalability: Amdahl and Gustafson,
Data-parallelism, Task-parallelism, Scheduling

[Task-Scheduling: Cormen et al, Kap. 27]



The Free Lunch

The free lunch is over 3°

35"The Free Lunch is Over", a fundamental turn toward concurrency in software, Herb Sutter, Dr. Dobb’s Journal, 2005



Moore’s Law

Observation by Gordon E. Moore: Gordon £ Hoore (1929

The number of transistors on integrated circuits doubles
approximately every two years.




Moore’s Law

Microprocessor Transistor Counts 1971-2011 & Moore's Law

16-Care SPARC TS
Sb-Core Corei

2,600,000,000 - SocCore Xeon um\'\. O ———
Duatcore arwam 2 s mecovery
1,000,000,000 o o ¥ Bt Bt
Core 7 (Quad)
Coe 2000
100,000,000 |
pensuma, ®20m
curve shows ransistor (L
E 10000000 gount doubling every i
=1 Pentum il
=] s
© renm
2
@ 1,000,000 iy,
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=
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[
100,000
10,000
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Date of introduction

15193542

y Wgsimon, https://commons.wikimedia.org/w/index.php?curid=

~B
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https://commons.wikimedia.org/w/index.php?curid=15193542

For a long time...

m the sequential execution became faster (Instruction Level
Parallelism, Pipelining, Higher Frequencies)

m more and smaller transistors = more performance
m programmers simply waited for the next processor generation



Today

m the frequency of processors does not increase significantly and
more (heat dissipation problems)

m the instruction level parallelism does not increase significantly any
more

m the execution speed is dominated by memory access times (but
caches still become larger and faster)



Trends
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Multicore

m Use transistors for more compute cores
m Parallelism in the software

m Programmers have to write parallel programs to benefit from new
hardware



Forms of Parallel Execution

m Vectorization

m Pipelining

m Instruction Level Parallelism
m Multicore / Multiprocessing
m Distributed Computing



Vectorization

Parallel Execution of the same operations on elements of a vector

(register)
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Home Work




More efficient
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Pipeline
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Throughput

m Throughput = Input or output data rate
m Number operations per time unit

m larger througput is better

m Approximation

1

throughput =
TOUBAPIE = ax(computationtime(stages) )

ignores lead-in and lead-out times

784



Latency

m Time to perform a computation

m Pipeline latency only constant when Pipeline is balanced: sum of
all operations over all stages

m Unbalanced Pipeline

m First batch as with the balanced pipeline
® In a balanced version, latency= #stages - max(computationtime(stages))

785



Homework Example

Washing Ty = 1h, Drying T1 = 2h, lroning T5 = 1h, Tidy up
T35 = 0.5h

m Latency first batch: L =Ty + 11 + 15 + 13 = 4.5h
m Latency second batch: L =17 + T + 15+ 15 = 5.5h
m In the long run: 1 batch every 2h (0.5/h).
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Throughput vs. Latency

m Increasing throughput can increase latency

m Stages of the pipeline need to communicate and synchronize:
overhead



Pipelines in CPUs

Fetch Decode Execute Data Fetch Writeback

Multiple Stages

m Every instruction takes 5 time units (cycles)
m In the best case: 1 instruction per cycle, not always possible
(“stalls”)

Paralellism (several functional units) leads to faster execution.



ILP - Instruction Level Parallelism

Modern CPUs provide several hardware units and execute
independent instructions in parallel.

m Pipelining

m Superscalar CPUs (multiple instructions per cycle)

m Out-Of-Order Execution (Programmer observes the sequential
execution)

m Speculative Execution

789



27.2 Hardware Architectures



Shared vs. Distributed Memory

Shared Memory Distributed Memory
CPU||CPU || CPU CPU||CPU  CPU
Mem

Mem | | Mem | Mem

Interconnect




Shared vs. Distributed Memory Programming

m Categories of programming interfaces

m Communication via message passing
m Communication via memory sharing

m It is possible:

m to program shared memory systems as distributed systems (e.g. with
message passing MPI)

m program systems with distributed memory as shared memory systems
(e.g. partitioned global address space PGAS)
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Shared Memory Architectures

m Multicore (Chip Multiprocessor - CMP)

m Symmetric Multiprocessor Systems (SMP)
m Simultaneous Multithreading (SMT = Hyperthreading)

m one physical core, Several Instruction Streams/Threads: several virtual
cores

m Between ILP (several units for a stream) and multicore (several units for
several streams). Limited parallel performance.

m Non-Uniform Memory Access (NUMA)

Same programming interface

793



Overview

core

core

CPU

CPU

[uTul]
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CPU
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Memory

CMP

SMP
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NUMA



An Example

AMD Bulldozer:
tween CMP and SMT

m 2x integer core

be-

m 1x floating point core

Instruction

Module block
(incl. 2 cores)

Format | Format
Docode | Docode

Echsdn\sr

Rl

L1 data cache
16k four-wa

Ress

Core Interface Unit

L2 Data Cache
2048KB (shared,Max)

JWikipedia



Flynn’s Taxonomy

Single-Core Fault-Tolerance

SISD MISD

|Instruction| |Instruction | Instructionllnstructionl
} | |
| Data | | Data |

SIMD MIMD
| Instruction | |InstructionlInstmctionllnstruction|
! | l
| Data | Data I Data | | Data | Data | Data |

Vector Computing / GPU Multi-Core



Massively Parallel Hardware

[General Purpose] Graphical Processing
Units ([GP]GPUs)
m Revolution in High Performance
Computing
m Calculation 4.5 TFlops vs. 500 GFlops

m Memory Bandwidth 170 GB/s vs. 40
GB/s

m SIMD

m High data parallelism
m Requires own programming model. Z.B.
CUDA / OpenCL

rrrrrrrrrrrrrrrr




27.3 Multi-Threading, Parallelism and Concurrency



Processes and Threads

m Process: instance of a program

B each process has a separate context, even a separate address space
m OS manages processes (resource control, scheduling, synchronisation)

m Threads: threads of execution of a program

m Threads share the address space
m fast context switch between threads
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Why Multithreading?

m Avoid “polling” resources (files, network, keyboard)
m Interactivity (e.g. responsivity of GUI programs)

m Several applications / clients in parallel

m Parallelism (performance!)



Multithreading conceptually

Thread 1 ----- - [ [
Single Core Thread 2 --------- - -
Thread 3 -------------- - -
Thread 1 ----- I - - - -
Multi Core Thread 2 ----- I, - - - -
Thread 3 ----- I - - - -



Thread switch on one core (Preemption)

thread 1 thread 2
busyl |
Interrupt ! idll
i > Store State t; (e
I ) 2
! Load State ¢
idle i busy
i Interrupt
! Store State 5 < r
: ¥ !
I : idle

¢ Load State t;
busyl



Parallelitat vs. Concurrency

m Farallelism: Use extra resources to solve a problem faster
m Concurrency: Correctly and efficiently manage access to shared

resources
m Begriffe Uberlappen offensichtlich. Bei parallelen Berechnungen

besteht fast immer Synchronisierungsbedarf.

Parallelism Concurrency

Work Requests

S7INS N7

Resources Resources



Thread Safety

Thread Safety means that in a concurrent application of a program
this always yields the desired results.

Many optimisations (Hardware, Compiler) target towards the correct
execution of a sequential program.

Concurrent programs need an annotation that switches off certain
optimisations selectively.



Example: Caches

m Access to registers faster than to
shared memory.

m Principle of locality.
m Use of Caches (transparent to the
programmer)

If and how far a cache coherency is guar-
anteed depends on the used system.




27.4 Scalability: Amdahl and Gustafson



Scalability

In parallel Programming:

m Speedup when increasing number p of processors
m What happens if p — co?
m Program scales linearly: Linear speedup.

807



Parallel Performance

Given a fixed amount of computing work T/ (number computing
steps)

Sequential execution time T

Parallel execution time on p CPUs

m Perfection: T, =11 /p
m Performance loss: T, > T} /p (usual case)
m Sorcery: T, < T /p



Parallel Speedup

Parallel speedup S, on p CPUs:

w/T, Th
Sp=—"— = —.
w/T, T,
m Perfection: linear speedup .S, = p
m Performance loss: sublinear speedup 7, > 17 /p (the usual case)
m Sorcery: superlinear speedup 7, < T /p

Efficiency:E, = S,/p



Reachable Speedup?

Parallel Program

Parallel Part Seq. Part
80% 20%
T =10
Ty =7
Ty = 10'80'8+10-0.2:1+2:3
7 10

Sq=—=—=23.33

p—— o~



Amdahl’s Law: Ingredients

Computational work ¥ falls into two categories

m Paralellisable part W,

m Not parallelisable, sequential part IV,

Assumption: W can be processed sequentially by one processor in
W time units (17 = W):

T =W, + W,
T,>Ws+W,/p



Amdahl’s Law

=




Amdahl’s Law

With sequential, not parallelizable fraction A\: W, = AW,
W, =(1-X\W:
1

A4 =2

S, <

Thus

n
8
I
> =



lllustration Amdahl’s Law

W,

W,




Amdahl’s Law is bad news

All non-parallel parts of a program can cause problems
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Gustafson’s Law

m Fix the time of execution

m Vary the problem size.

m Assumption: the sequential part stays constant, the parallel part
becomes larger
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Gustafson’s Law
Work that can be executed by one processor in time T
Ws+W,=T
Work that can be executed by p processors in time T':
Ws+p-Wy=AX-T+p-(1—-XN)-T
Speedup:

PTTW, W, pr1=A)+

=p—Alp—1)




Amdahl vs. Gustafson

Amdabhl

p:

4

p:

Gustafson

4




27.5 Task- and Data-Parallelism



Parallel Programming Paradigms

m Jask Parallel: Programmer explicitly defines parallel tasks.

m Data Parallel: Operations applied simulatenously to an aggregate
of individual items.



Example Data Parallel (OMP)

double sum = 0, A[MAX];
#pragma omp parallel for reduction (+:ave)
for (int i = 0; i< MAX; ++i)
sum += A[i];
return sum;



Example Task Parallel (C++11 Threads/Futures)

double sum(Iterator from, Iterator to)
{
auto len = from — to;
if (len > threshold){
auto future = std::async(sum, from, from + len / 2);
return sumS(from + len / 2, to) + future.get();
}
else
return sumS(from, to);



Work Partitioning and Scheduling

m Partitioning of the work into parallel task (programmer or system)

m One task provides a unit of work
m Granularity?

m Scheduling (Runtime System)

m Assignment of tasks to processors
m Goal: full resource usage with little overhead



Example: Fibonacci P-Fib

if n <1 then
| return n

else
x < spawn P-Fib(n — 1)
y < spawn P-Fib(n — 2)
sync
.~ return z + y;
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P-Fib Task Graph

£(4)

(2)| g—>9—ye7




P-Fib Task Graph




Question

m Each Node (task) takes 1 time unit.
m Arrows depict dependencies.

m Minimal execution time when number
of processors = 00?

critical path




Performance Model

B D Processors
m Dynamic scheduling
m 7,: Execution time on p processors



Performance Model

m 7,: Execution time on p processors

m 7: work: time for executing total work
on one processor

m 7 /T,: Speedup



Performance Model

m T.: span: critical path, execution time
on oo processors. Longest path from
root to sink.

m 71 /T.: Parallelism: wider is better
m Lower bounds:

T, >Ti/p Work law
T, > T, Spanlaw



Greedy Scheduler

Greedy scheduler: at each time it schedules as many as availbale
tasks.

Theorem

On an ideal parallel computer with p processors, a greedy scheduler
executes a multi-threaded computation with work T7 and span I, in
time

Tp S Tl/p"'Too




Assume p = 2.

833



Proof of the Theorem

Assume that all tasks provide the same amount of work.

m Complete step: p tasks are available.
m incomplete step: less than p steps available.

Assume that number of complete steps larger than |77 /p].
Executed work > P - (|T1/p| -p) =T — Ty mod p+p > T1.
Contradiction. Therefore maximally |7} /p| complete steps.

Each incomplete step executed at any time all available tasks ¢ with
deg™ (t) = 0 and decreases the length of the span. Otherwise the
chosen span would not have been maximal. Number of incomplete
steps thus maximally 77,..



Consequence

ifp < Ti/Tw,ie. Too < T1/p, then T, = T1/p.

Example Fibonacci

Ti(n)/Tx(n) = ©(¢"/n). For moderate sizes of n we can use a lot
of processors yielding linear speedup.




Granularity: how many tasks?

m #Tasks = #Cores?

m Example: 9 units of work. 3 core.

m Problem if a core cannot be fully used %

Scheduling of 3 sequential tasks.

Exclusive utilization:

P1 s
P2 s2
P3 s3

Execution Time: 3 Units

Foreign thread disturbing:

P1 s
P2 s2 s
P3 s3

Execution Time: 5 Units



Granularity: how many tasks?

m #Tasks = Maximum?

m Example: 9 units of work. 3 cores. e

Scheduling of 9 sequential tasks.

Exclusive utilization: Foreign thread disturbing:

P1 s1 s4 s7 P1 si

P2 s2 s5 s8 P2 s2 s4 s5 s8

P3 s3 s6 s9 P3 s3 s6 s7 s9
Execution Time: 3 4 ¢ Units Execution Time: 4 Units. Full uti-

lization.
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Granularity: how many tasks?

m #Tasks = Maximum?

m Example: 10 tiny units of work.
P1
P2
P3

Execution time: dominiert vom Overhead.



Granularity: how many tasks?

Answer: as many tasks as possible with a sequential cutoff such that
the overhead can be neglected.



Example: Parallelism of Mergesort

m Work (sequential runtime) of
Mergesort T1(n) = O(nlogn).

m Span T (n) = O(n)

m Parallelism T31(n)/Tx(n) = ©(logn)
(Maximally achievable speedup with
p = 00 Processors)

merge



28. Parallel Programming I

C++ Threads, Shared Memory, Concurrency, Excursion: lock
algorithm (Peterson), Mutual Exclusion Race Conditions [C++
Threads: Anthony Williams, C++ Concurrency in Action]



C++11 Threads

#include <iostream>
#include <thread>

void hello(){
std::cout << "hello\n";
}

int main(){
// create and launch thread t
std: :thread t(hello);
// wait for termination of t
t.join();
return O;

,
create thread

hello

join

)Y



C++11 Threads

void hello(int id){
std::cout << "hello from " << id << "\n";

} b 4

create threads
int main(){ \
) 4

std: :vector<std::thread> tv(3);
int id = 0;
for (auto & t:tv) 3
t = std::thread(hello, ++id);

std::cout << "hello from main \n";
for (auto & t:tv)

t.join();
return O;

join




Nondeterministic Execution!

One execution:

hello from main
hello from 2
hello from 1
hello from 0

Other execution:

hello from 1
hello from main
hello from 0
hello from 2

Other execution:

hello from main

hello from 0

hello from hello from 1
2



Technical Detail

To let a thread continue as background thread:

void background();
void someFunction(){

std::thread t(background);
t.detach();

} // no problem here, thread is detached



More Technical Details

m With allocating a thread, reference parameters are copied, except
explicitly std::ref is provided at the construction.

m Can also run Functor or Lambda-Expression on a thread

m In exceptional circumstances, joining threads should be executed
in a catch block

More background and details in chapter 2 of the book C++ Concurrency in Action,
Anthony Williams, Manning 2012. also available online at the ETH library.



28.2 Shared Memory, Concurrency



Sharing Resources (Memory)

m Up to now: fork-join algorithms: data parallel or
divide-and-conquer

m Simple structure (data independence of the threads) to avoid race
conditions

m Does not work any more when threads access shared memory.



Managing state

Managing state: Main challenge of concurrent programming.

Approaches:

m Immutability, for example constants.
m Isolated Mutability, for example thread-local variables, stack.

m Shared mutable data, for example references to shared memory,
global variables



Protect the shared state

m Method 1: locks, guarantee exclusive access to shared data.

m Method 2: lock-free data structures, exclusive access with a much
finer granularity.

m Method 3: transactional memory (not treated in class)



Canonical Example

class BankAccount {
int balance = 0;
public:
int getBalance(){ return balance; }
void setBalance(int x) { balance = x; }
void withdraw(int amount) {
int b = getBalance();
setBalance(b — amount);
}
// deposit etc.
};

(correct in a single-threaded world)



Bad Interleaving

Parallel call to widthdraw(100) on the same account

Thread 1 Thread 2

int b = getBalance();
int b = getBalance();
setBalance (b—amount) ;

setBalance (b—amount) ;



Tempting Traps

WRONG:

void withdraw(int amount) {
int b = getBalance();
if (b==getBalance())
setBalance(b — amount);

Bad interleavings cannot be solved with a repeated reading



Tempting Traps

also WRONG:

void withdraw(int amount) {
setBalance(getBalance() — amount);

}

Assumptions about atomicity of operations are almost always wrong



Mutual Exclusion

We need a concept for mutual exclusion

Only one thread may execute the operation withdraw on the same
account at a time.

The programmer has to make sure that mutual exclusion is used.



More Tempting Traps

class BankAccount {
int balance = 0;
bool busy = false;
public:
void withdraw(int amount) {
while (busy); // spin wait
busy = true; C%%g
()
int b = getBalance();
setBalance(b — amount);
busy = false;
}

// deposit would spin on the same boolean

};



Just moved the problem!

Thread 1
while (busy); //spin
busy = true;

int b = getBalance();

setBalance(b — amount);

Thread 2

while (busy); //spin
busy = true;

int b = getBalance();

setBalance(b — amount);



How ist this correctly implemented?

m We use /ocks (mutexes) from libraries

m They use hardware primitives, Read-Modify-Write (RMW)
operations that can, in an atomic way, read and write depending
on the read result.

m Without RMW Operations the algorithm is non-trivial and requires
at least atomic access to variable of primitive type.



28.3 Excursion: lock algorithm



Alice’s Cat vs. Bob’s Dog

A A
¥ ).



Required: Mutual Exclusion

A

f




Required: No Lockout When Free

A A
A E




Communication Types

m Transient: Parties participate at the same time

m Persistent: Parties participate at different times

(el o
beryh¥
peck!



Communication Idea 1




Access Protocol




Problem!




Communication Idea 2

My pet is in
the yard

=



Access Protocol 2.1




Different Scenario




Problem: No Mutual Exclusion

o



Checking Flags Twice: Deadlock

AXZ



Access Protocol 2.2

=




Access Protocol 2.2:Provably Correct

2

NE



Weniger schwerwiegend: Starvation

CORNC)



Final Solution

Next
time cat
goes first




General Problem of Locking remains
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Peterson’s Algorithm3¢

for two processes is provable correct and free from starvation

non—critical section

flag[mel = true // I am interested
victim = me // but you go first
// spin while we are both interested and you go first:
while (fla, ou] && victim == me ;
( g [Y ] ) {} > The code assumes that the access to flag
/ victim is atomic and particularly lineariz-
critical section able or sequential consistent. An assump-
tion that — as we will see below — is not nec-
essarily given for normal variables. The
flag [me] = false Peterson-lock is not used on modern hard-
ware.

36not relevant for the exam



28.4 Mutual Exclusion



Critical Sections and Mutual Exclusion

Critical Section
Piece of code that may be executed by at most one process (thread)
at a time.

Mutual Exclusion
Algorithm to implement a critical section
acquire_mutex();  // entry algorithm\\

. /[ critical section
release_mutex(); // exit algorithm



Required Properties of Mutual Exclusion

Correctness (Safety)

m At most one process executes the
critical section code

Liveness

m Acquiring the mutex must terminate in
finite time when no process executes
in the critical section

.2



Almost Correct

class BankAccount {

int balance = 0;

std::mutex m; // requires #include <mutex>
public:

void withdraw(int amount) {
m.lock();
int b = getBalance();
setBalance(b — amount);
m.unlock();

}
};

What if an exception occurs?



RAII Approach

class BankAccount {
int balance = 0;
std: :mutex m;
public:

void withdraw(int amount) {
std::lock_guard<std::mutex> guard(m);
int b = getBalance();
setBalance(b — amount);

} // Destruction of guard leads to unlocking m

};

What about getBalance / setBalance?



Reentrant Locks

) &
thread

Reentrant Lock (recursive lock) 2 I
m remembers the currently affected thread;
m provides a counter

m Call of lock: counter incremented
m Call of unlock: counter is decremented. If counter = 0 the lock is released.



Account with reentrant lock

class BankAccount {
int balance = 0;
std: :recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;
public:
int getBalance(){ guard g(m); return balance;
}
void setBalance(int x) { guard g(m); balance = x;
}
void withdraw(int amount) { guard g(m);
int b = getBalance();
setBalance(b — amount);
}
};



28.5 Race Conditions



Race Condition

m A race condition occurs when the result of a computation depends
on scheduling.
m We make a distinction between bad interleavings and data races

m Bad interleavings can occur even when a mutex is used.



Example: Stack

Stack with correctly synchronized access:

template <typename T>
class stack{

std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;
public:
bool isEmpty(){ guard g(m); ... }
void push(T value){ guard g(m); R |
T popO{ guard g(m); ...}
};



Peek

Forgot to implement peek. Like this?

template <typename T>

T peek (stack<T> &s){ /)O”/)
T value = s.pop(); /‘@
s.push(value) ; O'
return value; ef@ /

}

Despite its questionable style the code is correct in a sequential
world. Not so in concurrent programming.



Bad Interleaving!

Initially empty stack s, only shared between threads 1 and 2.

Thread 1 pushes a value and checks that the stack is then
non-empty. Thread 2 reads the topmost value using peek().

Thread 1 Thread 2

s.push(5);
int value = s.popQ);
t assert(!s.isEmpty());
s.push(value);

return value;



The fix

Peek must be protected with the same lock as the other access
methods



Bad Interleavings

Race conditions as bad interleavings can happen on a high level of
abstraction

In the following we consider a different form of race condition: data
race.



How about this?

class counterq{
int count = 0;
std: :recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;
public:
int increase(){
guard g(m); return ++count;
}
int get(O{
return count;
} N0t thr, ead-

S
3 afel



Why wrong?

It looks like nothing can go wrong because the update of count
happens in a “tiny step”.

But this code is still wrong and depends on
language-implementation details you cannot assume.
This problem is called Data-Race

Moral: Do not introduce a data race, even if every interleaving you
can think of is correct. Don’t make assumptions on the memory
order.



A bit more formal

Data Race (low-level Race-Conditions) Erroneous program behavior
caused by insufficiently synchronized accesses of a shared resource
by multiple threads, e.g. Simultaneous read/write or write/write of
the same memory location

Bad Interleaving (High Level Race Condition) Erroneous program
behavior caused by an unfavorable execution order of a
multithreaded algorithm, even if that makes use of otherwise well
synchronized resources.



We look deeper

class C {
int x = 0;
int y = 0;
public:
void £() {
@ x =1;
® y=1;
}
void g() {
© int a =y;
©

int b = x;

assert(b >= a);
} &\\\

}

Can this fail?

There is no interleaving of f and g that
would cause the assertion to fail:

m ABCDV
m ACBDV
m ACDBV
m CABDV
mCCDBV
m CDABV

It can nevertheless fail!



One Resason: Memory Reordering

Rule of thumb: Compiler and hardware allowed to make changes
that do not affect the semantics of a sequentially executed program

void £() {
X

y
z

void £() {
1; b'd

x+1; <
x+1; sequentially equivalent

1;
x+1;
x+1;

z
y



From a Software-Perspective

Modern compilers do not give guarantees that a global ordering of
memory accesses is provided as in the sourcecode:

m Some memory accesses may be even optimized away completely!
m Huge potential for optimizations — and for errors, when you make
the wrong assumptions

897



Example: Self-made Rendevouz

int x; // shared

void wait(){ Assume thread 1 calls wait, later thread 2
x =1; calls arrive. What happens?
while(x == 1);

} thread 1 —— wait —

void arrive(){ thread 2 arrive —
X = 2;

}



Compilation

Source

int x; // shared

void wait(){

x =1;

while(x == 1);
}

void arrive(){
X = 2;

}

Without optimisation

wait:
movl $0x1, x
test:
mov x, heax
cmp $0x1, Yeax
je test

if equal

arrive:
movl $0x2, x

With optimisation

wait:
movl $0x1, x

test:
jmp te$ always

arrive
movl $0x2, x



Hardware Perspective

Modern multiprocessors do not enforce global ordering of all
instructions for performance reasons:

m Most processors have a pipelined architecture and can execute
(parts of) multiple instructions simultaneously. They can even
reorder instructions internally.

m Each processor has a local cache, and thus loads/stores to shared
memory can become visible to other processors at different times



Memory Hierarchy
Registers

L1 Cache

L2 Cache

System Memory

fast,low latency, high cost, low capacity

slow,high latency,low cost,high capacity



An Analogy

Anna
Eee=A-c
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local data

global data
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> [olelReb [



CPU 1 CPU 2
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Memory Models

When and if effects of memory operations become visible for
threads, depends on hardware, runtime system and programming
language.

A memory model (e.g. that of C++) provides minimal guarantees for
the effect of memory operations

m leaving open possibilities for optimisation

m containing guidelines for writing thread-safe programs

For instance, C++ provides guarantees when synchronisation with a
mutex is used.



Fixed

class C {
int x = 0;
int y = 0;
std: :mutex m;
public:
void £() {
m.lock(); x = 1; m.unlock();
m.lock(); y = 1; m.unlock();
}
void g() {
m.lock(); int a = y; m.unlock();
m.lock(); int b = x; m.unlock();
assert(b >= a); // cannot happen
}
};



Atomic

Here also possible:

class C {

std::atomic_int x{0}; // requires #include <atomic>
std::atomic_int y{0};

public:
void £() {
x=1;
y=1;
}
void g() {
int a = y;

int b = x;
assert(b >= a); // cannot happen
}
};



29. Parallel Programming |li

Deadlock and Starvation Producer-Consumer, The concept of the
monitor, Condition Variables



Deadlock Motivation

class BankAccount {
int balance = 0;
std: :recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:

void withdraw(int amount) { guard g(m); ... }
void deposit(int amount){ guard g(m); ... }

void transfer(int amount, BankAccount& to){
guard g(m);
withdraw(amount) ; Problem?
to.deposit(amount) ;



Deadlock Motivation

Suppose BankAccount instances x and y

Thread 1: x.transfer(1,y);

Thread 2: y.transfer(1,x);
acquire lock for x < [g] <-.

withdraw from x ““ acquire lock for y «—
acquire lock for y v withdraw from y

. *-- acquire lock for x

A
[]
]
.

~
~
~
~ -
.......
--------------



Deadlock

Deadlock: two or more processes are
mutually blocked because each process
waits for another of these processes to

proceed.

g
r
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Threads and Resources

m Grafically ¢ and Resources (Locks) "

m Thread ¢ attempts to acquire resource a: t

m Resource b is held by thread ¢: A b

— Q



Deadlock — Detection

A deadlock for threads ¢, . . ., t,, occurs when the graph describing
the relation of the n threads and resources r4, ..., r, contains a
cycle.

wants) Tl t4

rg/\tQ i]t
\ /7

¢ T3
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Techniques

m Deadlock detection detects cycles in the dependency graph.
Deadlocks can in general not be healed: releasing locks generally
leads to inconsistent state

m Deadlock avoidance amounts to techniques to ensure a cycle can
never arise

m Coarser granularity “one lock for all”
m Two-phase locking with retry mechanism
m Lock Hierarchies
]
]

Resource Ordering



Back to the Example

class BankAccount {
int id; // account number, also used for locking order
std: :recursive_mutex m;

public:

void transfer(int amount, BankAccount& to){
if (id < to.id){
guard g(m); guard h(to.m);
withdraw(amount); to.deposit(amount);
} else {
guard g(to.m); guard h(m);
withdraw(amount); to.deposit(amount);

}



C++11 Style

class BankAccount {

std: :recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;
public:

void transfer(int amount, BankAccount& to){
std::lock(m,to.m); // lock order done by C++
// tell the guards that the lock is already taken:
guard g(m,std::adopt_lock); guard h(to.m,std::adopt_lock);
withdraw(amount) ;
to.deposit(amount) ;



By the way...

class BankAccount {

int balance = 0;

std: :recursive_mutex m;

using guard = std::lock_guard<std::recursive_mutex>;
public:

void withdraw(int amount) { guard g(m); ... }
void deposit(int amount){ guard g(m); ... }

void transfer(int amount, BankAccount& to){

withdraw(amount) ; :
to.deposit (amount) ; This would have worked here also.

} But then for a very short amount of
}; time, money disappears, which does
not seem acceptable (transient incon-

sistencv!) 916



Starvation und Livelock

Starvation: the repeated but unsuccess-
ful attempt to acquire a resource that was
recently (transiently) free.

Livelock: competing processes are able
to detect a potential deadlock but make
no progress while trying to resolve it.




Politelock




Producer-Consumer Problem

Two (or more) processes, producers and consumers of data should
become decoupled by some data structure.

Fundamental Data structure for building pipelines in software.

t] — — 1




Sequential implementation (unbounded buffer)

class BufferS {
std: :queue<int> buf;
public:
void put(int x){

buf . push(x) ; y a\e

} (e
Aot A\

int get(){

while (buf.empty()){} // wait until data arrive

int x = buf.front();

buf.pop() ;

return X;
}



How about this?

class Buffer {
std: :recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;
std: :queue<int> buf;
public:
void put(int x){ guard g(m);
buf .push(x) ;
}

int get(O{ guard g(m); dhod‘
while (buf.empty()){} De?
int x = buf.front();
buf.pop(;
return x;
}



Well, then this?

void put(int x){
guard g(m);
buf . push(x) ;
}
int get(){
m.lock();
while (buf.empty()){
m.unlock();
m.lock();
}
int x = buf.front();
buf.pop();
m.unlock();
return x;

Ok this works, but it wastes CPU
time.



Better?

void put(int x){
guard g(m);
buf.push(x);

}

int get(O{

m.lock(); : . . .
ihile (buf.empty()){ Ok a little bit better, limits reactiv

m.unlock() ; ity though.
std::this_thread::sleep_for(std::chrono::milliseconds(10));
m.lock();

}

int x = buf.front(); buf.pop();

m.unlock();

return x;



Moral

We do not want to implement waiting on a condition ourselves.
There already is a mechanism for this: condition variables.
The underlying concept is called Monitor.



Monitor

Monitor abstract data structure equipped
with a set of operations that run in mutual
exclusion and that can be synchronized.

Invented by C.A.R. Hoare and Per Brinch

Hansen (cf. Monitors — An Operating SyS- — cAR.Hoare,  Per Brinch Hansen

*1934 (1938-2007)

tem Structuring Concept, C.A.R. Hoare
1974)



Monitors vs. Locks

shared

shared

monitor

monitor
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Monitor and Conditions

Monitors provide, in addition to mutual exclusion, the following
mechanism:

Waiting on conditions: If a condition does not hold, then

m Release the monitor lock
m Wait for the condition to become true
m Check the condition when a signal is raised

Signalling: Thread that might make the condition true:

m Send signal to potentially waiting threads

927



Condition Variables

#include <mutex>
#include <condition_variable>

class Buffer {
std: :queue<int> buf;

std: :mutex m;
// need unique_lock guard for conditions
using guard = std::unique_lock<std::mutex>;
std::condition_variable cond;

public:

};



Condition Variables

class Buffer {
public:
void put(int x){
guard g(m);

buf . push(x) ;
cond.notify_one();

}
int get(O){
guard g(m);
cond.wait(g, [&]{return !buf.empty();});
int x = buf.front(); buf.pop();
return X;
}



Technical Details

m A thread that waits using cond.wait runs at most for a short time
on a core. After that it does not utilize compute power and
“sleeps”.

m The notify (or signal-) mechanism wakes up sleeping threads that
subsequently check their conditions.

m cond.notify_one signals one waiting thread
m cond.notify_all signals all waiting threads. Required when waiting
thrads wait potentially on different conditions.



Technical Details

m Many other programming langauges
offer the same kind of mechanism.
The checking of conditions (in a loop!)
has to be usually implemented by the

programmer.

Java Example

synchronized long get() {
long x;
while (isEmpty())
try {

wait ();

} catch (InterruptedException e) { }
x = doGet();
return Xx;

}

synchronized put(long x){
doPut(x);
notify ();

}



By the way, using a bounded buffer..

class Buffer {

CircularBuffer<int,128> buf; // from lecture 6
public:

void put(int x){ guard g(m);
cond.wait(g, [&]l{return !buf.full();});
buf.put (x);
cond.notify_all();

}

int get(){ guard g(m);
cond.wait(g, [&]{return !buf.empty();});
cond.notify_all();
return buf.get();



30. Parallel Programming IV

Futures, Read-Modify-Write Instructions, Atomic Variables, ldea of
lock-free programming



Futures: Motivation

Up to this point, threads have been functions without a result:

void action(some parameters){
}
std::thread t(action, parameters);

t.join();
// potentially read result written via ref—parameters



Futures: Motivation

Now we would like to have the following

T action(some parameters){

return value;

}
std::thread t(action, parameters);

value = get_value_from_thread();

main

action



We can do this already!

m We make use of the producer/consumer pattern, implemented
with condition variables

m Start the thread with reference to a buffer
m We get the result from the buffer.
m Synchronisation is already implemented



Reminder

template <typename T>
class Buffer {
std: :queue<T> buf;
std: :mutex m;
std::condition_variable cond;
public:

void put(T x){ std::unique_lock<std::mutex> g(m);

buf.push(x);
cond.notify_one();

}
T get(O{ std::unique_lock<std::mutex> g(m);

cond.wait(g, [&]{return (!buf.empty());});
T x = buf.front(); buf.pop(); return x;
}
};



Application

void action(Buffer<int>& c){ main
// some long lasting operation ...
c.put(42);
} action
&

int main(){
Buffer<int> c;
std: :thread t(action, std::ref(c));
t.detach(); // no join required for free running thread
// can do some more work here in parallel
int val = c.get();
// use result
return O;



With features of C++11

int action(){
// some long lasting operation
return 42;

}

int main(){
std::future<int> f = std::async(action);
// can do some work here in parallel
int val = f.get();
// use result
return O;

}

main

action



30.2 Read-Modify-Write



Example: Atomic Operations in Hardware

CMPXCHG Compare and Exchange ;5 | ock prefix

CMPXCHG mem, reg

«compares the value in Register A
with the value in a memory location
If the two values are equal, the
instruction copies the value in the

«The lock prefix causes certain kinds '

of memory read-modify-write
instructions to occur atomically»

second operand to the first operand |
and sets the ZF flag in the flag
regsiters to 1. Otherwise it copies

the value in the first operand to A
register and clears ZF flag to O»

AMDG64 Architecture
Programmer’s Manual




Read-Modify-Write

Concept of Read-Modify-Write: Read, modify and write back at one
point in time (atomic).



Example: Test-And-Set

bool TAS(bool& variable)q{
bool o0ld = variable;
variable = true;

return old;

« atomic



Application example TAS in C++11

class SpinLock{
std::atomic_flag taken {false};
public:
void lock(){
while (taken.test_and_set());
}

void unlock(){
taken.clear();
}
};



30.2 Read-Modify-Write



Compare-And-Swap

bool CAS(int& variable, int& expected, int desired){
if (variable == expected){
variable = desired;
return true;
}
else{
expected = variable;
return false;

}

atomic

}



Lock-free programming

Data structure is called

m /ock-free: at least one thread always makes progress in bounded
time even if other algorithms run concurrently. Implies
system-wide progress but not freedom from starvation.

m wait-free: all threads eventually make progress in bounded time.
Implies freedom from starvation.

947



Progress Conditions

Non-Blocking Blocking
Everyone makes Wait-free Starvation-free
progress
Someone makes Lock-free Deadlock-free

progress




Implication

m Programming with locks: each thread can block other threads
indefinitely.

m Lock-free: failure or suspension of one thread cannot cause
failure or suspension of another thread !



Lock-free programming: how?

Beobachtung:

m RMW-operations are implemented wait-free by hardware.
m Every thread sees his result of a CAS or TAS in bounded time.
Idea of lock-free programming: read the state of a data sructure and

change the data structure atomically if and only if the previously read
state remained unchanged meanwhile.



Example: lock-free stack

Simplified variant of a stack in the following

m pop prift nicht, ob der Stack leer ist
m pop gibt nichts zurlick



(Node)

Nodes:
struct Node {

};

T value;

Node<T>x* next;
Node(T v, Node<T>* nxt): value(v), next(nxt) {}

value
next

value
next

value
next

value
next



(Blocking Version)

template <typename T>
class Stack {
Node<T> *top=nullptr;
std: :mutex m;
public:
void push(T val){ guard g(m);
top = new Node<T>(val, top);
}
void pop(){ guard g(m);
Node<T>* old_top = top;
top = top—>next;
delete old_top;

top —»

value
next

value
next

value
next

value
next



Lock-Free

template <typename T>
class Stack {
std: :atomic<Node<T>*> top {nullptr};
public:
void push(T val){
Node<T>* new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node—>next, new_node));
}
void pop({
Node<T>* old_top = top;
while (!top.compare_exchange_weak(old_top, old_top—>next));
delete old_top;
}
};



Push

void push(T val){
Node<T>% new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node—>next, new_node));

}
2 Threads:

new

/l
/l

new



Pop

void pop(){
Node<T>* old_top = top;
while (!top.compare_exchange_weak(old_top, old_top—>next));
delete old_top;

}

2 Threads:

top -



Lock-Free Programming - Limits

m Lock-Free Programming is complicated.

m If more than one value has to be changed in an algorithm
(example: queue), it is becoming even more complicated: threads
have to “help each other” in order to make an algorithm lock-free.

m The ABA problem can occur if memory is reused in an algorithm.
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