
Datenstrukturen und Algorithmen

Vorlesung am D-Math (CSE) der ETH Zürich

Felix Friedrich

FS 2017

1

Willkommen!

Course homepage

http://lec.inf.ethz.ch/DA/2017

The team:

Assistenten Alexander Pilz
Daniel Hupp
Lukas Humbel

Dozent Felix Friedrich

2

http://lec.inf.ethz.ch/DA/2017

1. Introduction

Algorithms and Data Structures, Three Examples

3

Goals of the course

Understand the design and analysis of fundamental algorithms
and data structures.
An advanced insight into a modern programming model (with
C++).
Knowledge about chances, problems and limits of the parallel and
concurrent computing.

4

Goals of the course

On the one hand

Essential basic knowlegde from computer science.

Andererseits

Preparation for your further course of studies and practical
considerations.

5

Contents
data structures / algorithms
The notion invariant, cost model, Landau notation

algorithms design, induction
searching, selection and sorting

dynamic programming
dictionaries: hashing and search trees

graphs, shortest paths, backtracking, flow
geometric algorithms, high peformance LA
Randomized algorithms (Gibbs/SA), multiscale approach

sorting networks, parallel algorithms

prorgamming with C++
RAII, Move Konstruktion, Smart Pointers,

Templates and generic programming
Exceptions

Constexpr, user defined literals

functors and lambdas
threads, mutex and monitors

promises and futures

parallel programming
parallelism vs. concurrency, speedup (Amdahl/-
Gustavson), races, memory reordering, atomir reg-
isters, RMW (CAS,TAS), deadlock/starvation

6

literature

Algorithmen und Datenstrukturen, T. Ottmann, P. Widmayer,
Spektrum-Verlag, 5. Auflage, 2011

Algorithmen - Eine Einführung, T. Cormen, C. Leiserson, R.
Rivest, C. Stein, Oldenbourg, 2010

Introduction to Algorithms, T. Cormen, C. Leiserson, R. Rivest, C.
Stein , 3rd ed., MIT Press, 2009

The C++ Programming Language, B. Stroustrup, 4th ed.,
Addison-Wesley, 2013.

The Art of Multiprocessor Programming, M. Herlihy, N. Shavit,
Elsevier, 2012.

7

1.2 Algorithms

[Cormen et al, Kap. 1;Ottman/Widmayer, Kap. 1.1]

8

Algorithm

Algorithm: well defined computing procedure to compute output data
from input data

9

example problem

Input : A sequence of n numbers (a1, a2, . . . , an)
Output : Permutation (a′1, a

′
2, . . . , a

′
n) of the sequence (ai)1≤i≤n, such that

a′1 ≤ a′2 ≤ · · · ≤ a′n

Possible input
(1, 7, 3), (15, 13, 12,−0.5), (1) . . .

Every example represents a problem instance

10

Examples for algorithmic problems

routing: shortest path
cryptography / digital signatures
time table / working plans: linear programming
DNA matching: dynamic programming
fabrication pipeline: topological sort
geometric probelms, e.g. convex hull

11

Characteristics

Extremely large number of potential solutions
Practical applicability

12

Darta Structures

Organisation of the data tailored towards the algorithms that
operate on the data.
Programs = algorithms + data structures.

13

Very hard problems.

NP-compleete problems: no known efficient solution (but the
non-existence of such a solution is not proven yet!)
Example: travelling salesman problem

14

A dream

If computers were infinitely fast and had an infinite amount of
memory ...
... then we would still need the theory of algorithms (only) for
statements about correctness (and termination).

15

The reality

Resources are bounded and not free:

Computing time→ Efficiency
Storage space→ Efficiency

16

1.3 Organisation

17

The exercise process
Mo Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So

Publication

Pre discussion

Submission

Post discussion

V V V VÜ Ü

Exercise publication each Thursday
Preliminary discussion on Friday
Latest submission Thursday one week later
Debriefing of the exercise on follong Friday. Feedback to your submissions
within a week after debriefing.

18

Codeboard
Codeboard is an online-IDE: programming in the browser

Examples can be tried without
any tool installation.

Used for the exercises.

Jetzt mit C++14

19

Codeboard @ETH

Codeboard consists of two independent communicating systems:

The ETH submission
system Allows us to correct you
submissions

The online IDE The
programming environment.

User

ETH submis-
sion system

http://codeboard.ethz.ch

Login using ETH Credentials

Codeboard.io
http://codeboard.io

Login using Codeboard.io Credentials

20

http://codeboard.ethz.ch
http://codeboard.io

Codeboard

Codeboard.io registration
Go to http://codeboard.io and create an account, best is to stay
logged in

Register for the recitation sessions
Go to http://codeboard.ethz.ch/da and register for a recitation
session there.

21

http://codeboard.io
http://codeboard.ethz.ch/da

Codeboard.io registration
Should you not yet have a Codeboard.io account ...

We will be using the online IDE
Codeboard.io
create an account in order to be
able to store your progress
Login data can be chose
arbitrarily. Do not use your ETH
password.

22

Codeboard.io Login
If you have an account, log in:

23

Recitation session registration - I
Visit http://codeboard.ethz.ch/da
Login with your ETH account

24

http://codeboard.ethz.ch/da

Recitation session registration - II
Register using the dialog with a recitation session.

25

The first exercise
You are now registered and the first exercise is loaded. Follow the
guidelines in the yellow box. The exercise sheet on the course
homepage contains further instructions and explanations.

26

The first exercise – Codeboard.io Login

If you see this message, click on Sign in now and log in with your
Codeboard.io account.

27

The first exercise – store progress!

Attention! Store your progress on
a regular basis. The you can con-
tinue somewhere else easily.

28

About the exercises
Since HS 2013 no exercise certificate required any more for exam
admission
Doing the exercises and going to the recitation sessions is
optional but highly recommended!

29

Relevant for the exam

Material for the exam comprises

Course content (lectures, handout)

Exercises content (exercise sheets, recitation hours)

Written exam (120 min). Examination aids: four A4 pages (or two sheets of 2 A4
pages double sided) either hand written or with font size minimally 11 pt.

30

In your and our interest

Please let us know early if you see any problems, if

the lectures are too fast, too difficult, too ...
the exercises are not doable or not understandable ...
you do not feel well supported ...

In short: if you have
any issues that we can fix.

31

1.4 Ancient Egyptian Multiplication

Ancient Egyptian Multiplication

32

Example 1: Ancient Egyptian Multiplication1

Compute 11 · 9

11 9
22 4
44 2
88 1
99 −

9 11
18 5
36 2
72 1
99

1 Double left, integer division
by 2 on the right

2 Even number on the right⇒
eliminate row.

3 Add remaining rows on the
left.

1Also known as russian multiplication
33

Advantages

Short description, easy to grasp
Efficient to implement on a computer: double = left shift, divide by
2 = right shift

Beispiel

left shift 9 = 010012 → 100102 = 18
right shift 9 = 010012 → 001002 = 4

34

Questions

Does this always work (negative numbers?)?
If not, when does it work?
How do you prove correctness?
Is it better than the school method?
What does “good” mean at all?
How to write this down precisely?

35

Observation

If b > 1, a ∈ Z, then:

a · b =

{
2a · b2 falls b gerade,
a+ 2a · b−12 falls b ungerade.

36

Termination

a · b =


a falls b = 1,
2a · b2 falls b gerade,
a+ 2a · b−12 falls b ungerade.

37

Recursively, Functional

f(a, b) =


a falls b = 1,
f(2a, b2) falls b gerade,
a+ f(2a, b−12) falls b ungerade.

38

Implemented

// pre: b>0
// post: return a∗b
int f(int a, int b){

if(b==1)
return a;

else if (b%2 == 0)
return f(2∗a, b/2);

else
return a + f(2∗a, (b−1)/2);

}

39

Correctnes

f(a, b) =


a if b = 1,
f(2a, b2) if b even,
a+ f(2a · b−12) if b odd.

Remaining to show: f(a, b) = a · b for a ∈ Z, b ∈ N+.

40

Proof by induction

Base clause: b = 1⇒ f(a, b) = a = a · 1.
Hypothesis: f(a, b′) = a · b′ für 0 < b′ ≤ b

Step: f(a, b+ 1)
!

= a · (b+ 1)

f(a, b+ 1) =


f(2a,

≤b︷ ︸︸ ︷
b+ 1

2
) = a · (b+ 1) if b odd,

a+ f(2a,
b

2︸︷︷︸
≤b

) = a+ a · b if b even.

�
41

End Recursion
The recursion can be writen as end recursion

// pre: b>0
// post: return a∗b
int f(int a, int b){

if (b==1)
return a;

else if (b%2 == 0)
return f(2∗a, b/2);

else
return a + f(2∗a, (b−1)/2);

}

// pre: b>0
// post: return a∗b
int f(int a, int b){

if (b==1)
return a;

int z=0;
if (b%2 != 0){
−−b;
z=a;

}
return z + f(2∗a, b/2);

}

42

End-Recursion⇒ Iteration

// pre: b>0
// post: return a∗b
int f(int a, int b){

if (b==1)
return a;

int z=0;
if (b%2 != 0){
−−b;
z=a;

}
return z + f(2∗a, b/2);

}

int f(int a, int b) {
int res = 0;
while (b != 1) {

int z = 0;
if (b % 2 != 0){
−−b;
z = a;

}
res += z;
a ∗= 2; // neues a
b /= 2; // neues b

}
res += a; // Basisfall b=1
return res ;

}
43

Simplify
int f(int a, int b) {

int res = 0;
while (b != 1) {

int z = 0;
if (b % 2 != 0){
−−b;
z = a;

}
res += z;
a ∗= 2;
b /= 2;

}
res += a;
return res ;

}

Direkt in res
Teil der Division

in den Loop

// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0)
res += a;

a ∗= 2;
b /= 2;

}
return res ;

}

44

Invariants!
// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0){
res += a;
−−b;

}
a ∗= 2;
b /= 2;

}
return res;

}

Sei x = a · b.

here: x = a · b+ res

if here x = a · b+ res ...

... then also here x = a · b+ res

b even

here: x = a · b+ res

here: x = a · b+ res und b = 0

Also res = x.

45

Conclusion

The expression a · b+ res is an invariant

Values of a, b, res change but the invariant remains basically
unchanged
The invariant is only temporarily discarded by some statement
but then re-established
If such short statement sequences are considered atomiv, the
value remains indeed invariant
In particular the loop contains an invariant, called loop invariant
and operates there like the induction step in induction proofs.
Invariants are obviously powerful tools for proofs!

46

Further simplification

// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

if (b % 2 != 0)
res += a;

a ∗= 2;
b /= 2;

}
return res ;

}

// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

res += a ∗ (b%2);
a ∗= 2;
b /= 2;

}
return res ;

}

47

Analysis

// pre: b>0
// post: return a∗b
int f(int a, int b) {

int res = 0;
while (b > 0) {

res += a ∗ (b%2);
a ∗= 2;
b /= 2;

}
return res ;

}

Ancient Egyptian Multiplication corre-
sponds to the school method with
radix 2.

1 0 0 1 × 1 0 1 1
1 0 0 1 (9)

1 0 0 1 (18)
1 1 0 1 1

1 0 0 1 (72)
1 1 0 0 0 1 1 (99)

48

Efficiency
Question: how long does a multiplication of a and b take?

Measure for efficiency

Total number of fundamental operations: double, divide by 2, shift, test for
“even”, addition
In the recursive code: maximally 6 operations per call

Essential criterion:

Number of recursion calls or
Number iterations (in the iterative case)

b
2n ≤ 1 holds for n ≥ log2 b. Consequently not more than 6dlog2 be
fundamental operations.

49

1.5 Fast Integer Multiplication

[Ottman/Widmayer, Kap. 1.2.3]

50

Example 2: Multiplication of large Numbers

Primary school:
a b c d
6 2 · 3 7

1 4 d · b
4 2 d · a

6 c · b
1 8 c · a

= 2 2 9 4

2 · 2 = 4 single-digit multiplications. ⇒ Multiplication of two n-digit
numbers: n2 single-digit multiplications

51

Observation

ab · cd = (10 · a+ b) · (10 · c+ d)

= 100 · a · c+ 10 · a · c
+ 10 · b · d+ b · d
+ 10 · (a− b) · (d− c)

52

Improvement?

a b c d
6 2 · 3 7

1 4 d · b
1 4 d · b
1 6 (a− b) · (d− c)
1 8 c · a

1 8 c · a
= 2 2 9 4

→ 3 single-digit multiplications.

53

Large Numbers

6237 · 5898 = 62︸︷︷︸
a′

37︸︷︷︸
b′

· 58︸︷︷︸
c′

98︸︷︷︸
d′

Recursive / inductive application: compute a′ · c′, a′ · d′, b′ · c′ and
c′ · d′ as shown above.

→ 3 · 3 = 9 instead of 16 single-digit multiplications.

54

Generalization

Assumption: two numbers with n digits each, n = 2k for some k.

(10n/2a+ b) · (10n/2c+ d) = 10n · a · c+ 10n/2 · a · c
+ 10n/2 · b · d+ b · d
+ 10n/2 · (a− b) · (d− c)

Recursive application of this formula: algorithm by Karatsuba and Ofman (1962).

55

Analysis

M(n): Number of single-digit multiplications.

Recursive application of the algorithm from above⇒ recursion
equality:

M(2k) =

{
1 if k = 0,

3 ·M(2k−1) if k > 0.

56

Iterative Substition

Iterative substition of the recursion formula in order to guess a
solution of the recursion formula:

M(2k) = 3 ·M(2k−1) = 3 · 3 ·M(2k−2) = 32 ·M(2k−2)

= . . .
!

= 3k ·M(20) = 3k.

57

Proof: induction
Hypothesis H:

M(2k) = 3k.

Base clause (k = 0):

M(20) = 30 = 1. X

Induction step (k → k + 1):

M(2k+1)
def
= 3 ·M(2k)

H
= 3 · 3k = 3k+1.

�
58

Comparison

Traditionally n2 single-digit multiplications.

Karatsuba/Ofman:

M(n) = 3log2 n = (2log2 3)log2 n = 2log2 3 log2 n = nlog2 3 ≈ n1.58.

Example: number with 1000 digits: 10002/10001.58 ≈ 18.

59

Best possible algorithm?

We only know the upper bound nlog2 3.

There are (for large n) practically relevant algorithms that are faster.
The best upper bound is not known.

Lower bound: n/2 (each digit has to be considered at at least once)

60

1.6 Finde den Star

61

Is this constructive?

Exercise: find a faster multiplication algorithm.
Unsystematic search for a solution⇒ .

Let us consider a more constructive example.

62

Example 3: find the star!

Room with n > 1 people.
Star: Person that does not
know anyone but is known by
everyone.
Fundamental operation: Only
allowed question to a person A:
”Do you know B?” (B 6= A)

known?

63

Problemeigenschaften

Possible: no star present
Possible: one star present
More than one star possible?

Assumption: two stars S1, S2.
S1 knows S2⇒ S1 no star.
S1 does not know S2 ⇒ S2 no
star. ⊥

Nein!

Nein!

64

Naive solution

Ask everyone about everyone

Result:

1 2 3 4
1 - yes no no
2 no - no no
3 yes yes - no
4 yes yes yes -

Star is 2.

Numer operations (questions): n · (n− 1).
65

Better approach?

Induction: partition the problem into smaller pieces.

n = 2: Two questions suffice
n > 2: Send one person out. Find the star within n− 1 people.
Then check A with 2 · (n− 1) questions.

Overal
F (n) = 2(n−1)+F (n−1) = 2(n−1)+2(n−2)+ · · ·+2 = n(n−1).

No benefit.

66

Improvement

Idea: avoid to send the star out.

Ask an arbitrary person A if she knows B.
If yes: A is no star.
If no: B is no star.
At the end 2 people remain that might contain a star. We check
the potential star X with any person that is out.

67

Analyse

F (n) =

{
2 for n = 2,

1 + F (n− 1) + 2 for n > 2.

Iterative substitution:

F (n) = 3+F (n−1) = 2 ·3+F (n−2) = · · · = 3 ·(n−2)+2 = 3n−4.

Proof: exercise!

68

Moral

With many problems an inductive or recursive pattern can be
developed that is based on the piecewise simplification of the
problem. Next example in the next lecture.

69

2. Efficiency of algorithms

Efficiency of Algorithms, Random Access Machine Model, Function
Growth, Asymptotics [Cormen et al, Kap. 2.2,3,4.2-4.4 |
Ottman/Widmayer, Kap. 1.1]

70

Efficiency of Algorithms

Goals

Quantify the runtime behavior of an algorithm independent of the
machine.
Compare efficiency of algorithms.
Understand dependece on the input size.

71

Technology Model

Random Access Machine (RAM)

Execution model: instructions are executed one after the other (on
one processor core).
Memory model: constant access time.
Fundamental operations: computations (+,−,·,...) comparisons,
assignment / copy, flow control (jumps)
Unit cost model: fundamental operations provide a cost of 1.
Data types: fundamental types like size-limited integer or floating
point number.

72

Size of the Input Data

Typical: number of input objects (of fundamental type).

Sometimes: number bits for a reasonable / cost-effective
representation of the data.

73

Asymptotic behavior

An exact running time can normally not be predicted even for small
input data.

We consider the asymptotic behavior of the algorithm.
And ignore all constant factors.

Example
An operation with cost 20 is no worse than one with cost 1
Linear growth with gradient 5 is as good as linear growth with
gradient 1.

74

2.1 Function growth

O, Θ, Ω [Cormen et al, Kap. 3; Ottman/Widmayer, Kap. 1.1]

75

Superficially

Use the asymptotic notation to specify the execution time of
algorithms.

We write Θ(n2) and mean that the algorithm behaves for large n like
n2: when the problem size is doubled, the execution time multiplies
by four.

76

More precise: asymptotic upper bound

provided: a function f : N→ R.

Definition:

O(g) = {f : N→ R|
∃c > 0, n0 ∈ N : 0 ≤ f(n) ≤ c · g(n) ∀n ≥ n0}

Notation:
O(g(n)) := O(g(·)) = O(g).

77

Graphic

g(n) = n2

f ∈ O(g)

h ∈ O(g)

n0

n
78

Examples

O(g) = {f : N→ R| ∃c > 0, n0 ∈ N : 0 ≤ f(n) ≤ c · g(n) ∀n ≥ n0}

f(n) f ∈ O(?) Example
3n+ 4 O(n) c = 4, n0 = 4
2n O(n) c = 2, n0 = 0
n2 + 100n O(n2) c = 2, n0 = 100
n+
√
n O(n) c = 2, n0 = 1

79

Property

f1 ∈ O(g), f2 ∈ O(g)⇒ f1 + f2 ∈ O(g)

80

Converse: asymptotic lower bound

Given: a function f : N→ R.

Definition:

Ω(g) = {f : N→ R|
∃c > 0, n0 ∈ N : 0 ≤ c · g(n) ≤ f(n) ∀n ≥ n0}

81

Example

g(n) = n

f ∈ Ω(g)h ∈ Ω(g)

n0 n

82

Asymptotic tight bound

Given: function f : N→ R.

Definition:

Θ(g) := Ω(g) ∩ O(g).

Simple, closed form: exercise.

83

Example

g(n) = n2

f ∈ Θ(n2)

h(n) = 0.5 · n2

n
84

Notions of Growth

O(1) bounded array access
O(log log n) double logarithmic interpolated binary sorted sort
O(log n) logarithmic binary sorted search
O(
√
n) like the square root naive prime number test

O(n) linear unsorted naive search
O(n log n) superlinear / loglinear good sorting algorithms
O(n2) quadratic simple sort algorithms
O(nc) polynomial matrix multiply
O(2n) exponential Travelling Salesman Dynamic Programming
O(n!) factorial Travelling Salesman naively

85

Small n

2 3 4 5 6

20

40

60

lnn
n

n2

n4
2n

86

Larger n

5 10 15 20

0.2

0.4

0.6

0.8

1
·106

log n
n
n2

n4

2n

87

“Large” n

20 40 60 80 100

0.2

0.4

0.6

0.8

1
·1020

log n
n
n2n4

2n

88

Logarithms

10 20 30 40 50

200

400

600

800

1,000

n

n2

n3/2

log n

n log n

89

Time Consumption

Assumption 1 Operation = 1µs.

problem size 1 100 10000 106 109

log2 n 1µs 7µs 13µs 20µs 30µs

n 1µs 100µs 1/100s 1s 17 minutes

n log2 n 1µs 700µs 13/100µs 20s 8.5 hours

n2 1µs 1/100s 1.7 minutes 11.5 days 317 centuries

2n 1µs 1014 centuries ≈ ∞ ≈ ∞ ≈ ∞

90

A good strategy?

... Then I simply buy a new machine If today I can solve a problem of
size n, then with a 10 or 100 times faster machine I can solve ...

Komplexität (speed ×10) (speed ×100)

log2 n n→ n10 n→ n100

n n→ 10 · n n→ 100 · n

n2 n→ 3.16 · n n→ 10 · n

2n n→ n+ 3.32 n→ n+ 6.64

91

Examples

n ∈ O(n2) correct, but too imprecise:
n ∈ O(n) and even n ∈ Θ(n).
3n2 ∈ O(2n2) correct but uncommon:
Omit constants: 3n2 ∈ O(n2).

2n2 ∈ O(n) is wrong: 2n2

cn = 2
cn →n→∞∞ !

O(n) ⊆ O(n2) is correct
Θ(n) ⊆ Θ(n2) is wrong n 6∈ Ω(n2) ⊃ Θ(n2)

92

Useful Tool

Theorem
Let f, g : N→ R

+ be two functions, then it holds that

1 limn→∞
f(n)
g(n) = 0⇒ f ∈ O(g), O(f) (O(g).

2 limn→∞
f(n)
g(n) = C > 0 (C constant)⇒ f ∈ Θ(g).

3
f(n)
g(n) →n→∞∞⇒ g ∈ O(f), O(g) (O(f).

93

About the Notation

Common notation
f = O(g)

should be read as f ∈ O(g).

Clearly it holds that

f1 = O(g), f2 = O(g)6⇒f1 = f2!

Beispiel
n = O(n2), n2 = O(n2) but naturally n 6= n2.

94

Algorithms, Programs and Execution Time

Program: concrete implementation of an algorithm.

Execution time of the program: measurable value on a concrete
machine. Can be bounded from above and below.
Beispiel
3GHz computer. Maximal number of operations per cycle (e.g. 8). ⇒ lower bound.
A single operations does never take longer than a day⇒ upper bound.

From an asymptotic point of view the bounds coincide.

95

Complexity
Complexity of a problem P : minimal (asymptotic) costs over all
algorithms A that solve P .

Complexity of the single-digit multiplication of two numbers with n
digits is Ω(n) and O(nlog3 2) (Karatsuba Ofman).

Example:

Problem Complexity O(n) O(n) O(n2)
↑ ↑ ↑

Algorithm Costs2 3n− 4 O(n) Θ(n2)
↓ l l

Program Execution
time

Θ(n) O(n) Θ(n2)

2Number funamental operations
96

3. Design of Algorithms

Maximum Subarray Problem [Ottman/Widmayer, Kap. 1.3]
Divide and Conquer [Ottman/Widmayer, Kap. 1.2.2. S.9; Cormen et
al, Kap. 4-4.1]

97

Algorithm Design

Inductive development of an algorithm: partition into subproblems,
use solutions for the subproblems to find the overal solution.

Goal: development of the asymptotically most efficient (correct)
algorithm.

Efficiency towards run time costs (# fundamental operations) or /and
memory consumption.

98

Maximum Subarray Problem
Given: an array of n rational numbers (a1, . . . , an).

Wanted: interval [i, j], 1 ≤ i ≤ j ≤ n with maximal positive sum∑j
k=i ak.

Example: a = (7,−11, 15, 110,−23,−3, 127,−12, 1)

1 2 3 4 5 6 7 8 9
0

50

100

∑
k ak = max

99

Naive Maximum Subarray Algorithm

Input : A sequence of n numbers (a1, a2, . . . , an)

Output : I, J such that
∑J

k=I ak maximal.

M ← 0; I ← 1; J ← 0
for i ∈ {1, . . . , n} do

for j ∈ {i, . . . , n} do
m =

∑j
k=i ak

if m > M then
M ← m; I ← i; J ← j

return I, J

100

Analysis
Theorem
The naive algorithm for the Maximum Subarray problem executes
Θ(n3) additions.

Beweis:
n∑
i=1

n∑
j=i

(j − i) =
n∑
i=1

n−i∑
j=0

j =
n∑
i=1

n−i∑
j=1

j ==
n∑
i=1

(n− i)(n− i+ 1)

2

=
n−1∑
i=0

i · (i+ 1)

2
=

1

2

(
n−1∑
i=0

i2 +
n−1∑
i=0

i

)
=

1

2

(
Θ(n3) + Θ(n2)

)
= Θ(n3).

�
101

Observation

j∑
k=i

ak =

(
j∑

k=1

ak

)
︸ ︷︷ ︸

Sj

−

(
i−1∑
k=1

ak

)
︸ ︷︷ ︸

Si−1

Prefix sums

Si :=
i∑

k=1

ak.

102

Maximum Subarray Algorithm with Prefix Sums

Input : A sequence of n numbers (a1, a2, . . . , an)

Output : I, J such that
∑J

k=J ak maximal.

S0 ← 0
for i ∈ {1, . . . , n} do // prefix sum
Si ← Si−1 + ai

M ← 0; I ← 1; J ← 0
for i ∈ {1, . . . , n} do

for j ∈ {i, . . . , n} do
m = Sj − Si−1

if m > M then
M ← m; I ← i; J ← j

103

Analysis

Theorem
The prefix sum algorithm for the Maximum Subarray problem
conducts Θ(n2) additions and subtractions.

Beweis:
n∑
i=1

1 +
n∑
i=1

n∑
j=i

1 = n+
n∑
i=1

(n− i+ 1) = n+
n∑
i=1

i = Θ(n2)

�

104

divide et impera
Divide and Conquer
Divide the problem into subproblems that contribute to the simplified
computation of the overal problem.

Solution

S2

S22

S21

S1

S12

S11

Problem P

P1

P11

P12

P2

P21

P22

105

Maximum Subarray – Divide

Divide: Divide the problem into two (roughly) equally sized halves:
(a1, . . . , an) = (a1, . . . , abn/2c, abn/2c+1, . . . , a1)

Simplifying assumption: n = 2k for some k ∈ N.

106

Maximum Subarray – Conquer

If i and j are indices of a solution⇒ case by case analysis:

1 Solution in left half 1 ≤ i ≤ j ≤ n/2⇒ Recursion (left half)

2 Solution in right half n/2 < i ≤ j ≤ n⇒ Recursion (right half)

3 Solution in the middle 1 ≤ i ≤ n/2 < j ≤ n⇒ Subsequent observation

(1) (2)(3)

1 n/2 n/2 + 1 n

107

Maximum Subarray – Observation
Assumption: solution in the middle 1 ≤ i ≤ n/2 < j ≤ n

Smax = max
1≤i≤n/2
n/2<j≤n

j∑
k=i

ak = max
1≤i≤n/2
n/2<j≤n

 n/2∑
k=i

ak +

j∑
k=n/2+1

ak


= max

1≤i≤n/2

n/2∑
k=i

ak + max
n/2<j≤n

j∑
k=n/2+1

ak

= max
1≤i≤n/2

Sn/2 − Si−1︸ ︷︷ ︸
suffix sum

+ max
n/2<j≤n

Sj − Sn/2︸ ︷︷ ︸
prefix sum

108

Maximum Subarray Divide and Conquer Algorithm

Input : A sequence of n numbers (a1, a2, . . . , an)

Output : Maximal
∑j′

k=i′ ak.
if n = 1 then

return max{a1, 0}
else

Divide a = (a1, . . . , an) in A1 = (a1, . . . , an/2) und A2 = (an/2+1, . . . , an)
Recursively compute best solution W1 in A1

Recursively compute best solution W2 in A2

Compute greatest suffix sum S in A1

Compute greatest prefix sum P in A2

Let W3 ← S + P
return max{W1,W2,W3}

109

Analysis

Theorem
The divide and conquer algorithm for the maximum subarray sum
problem conducts a number of Θ(n log n) additions and
comparisons.

110

Analysis

Input : A sequence of n numbers (a1, a2, . . . , an)

Output : Maximal
∑j′

k=i′ ak.
if n = 1 then

return max{a1, 0}
else

Divide a = (a1, . . . , an) in A1 = (a1, . . . , an/2) und A2 = (an/2+1, . . . , an)
Recursively compute best solution W1 in A1

Recursively compute best solution W2 in A2

Compute greatest suffix sum S in A1

Compute greatest prefix sum P in A2

Let W3 ← S + P
return max{W1,W2,W3}

Θ(1)

Θ(1)

Θ(1)
Θ(1)

Θ(n)
Θ(n)

T (n/2)
T (n/2)

111

Analysis

Recursion equation

T (n) =

{
c if n = 1

2T (n2) + a · n if n > 1

112

Analysis
Mit n = 2k:

T (k) =

{
c if k = 0

2T (k − 1) + a · 2k if k > 0

Solution:

T (k) = 2k · c+
k−1∑
i=0

2i · a · 2k−i = c · 2k + a · k · 2k = Θ(k · 2k)

also
T (n) = Θ(n log n)

�
113

Maximum Subarray Sum Problem – Inductively
Assumption: maximal value Mi−1 of the subarray sum is known for
(a1, . . . , ai−1) (1 < i ≤ n).

Mi−1 Ri−1

1 i− 1 i n

scan

ai: generates at most a better interval at the right bound (prefix sum).

Ri−1⇒ Ri = max{Ri−1 + ai, 0}
114

Inductive Maximum Subarray Algorithm

Input : A sequence of n numbers (a1, a2, . . . , an).
Output : max{0,maxi,j

∑j
k=i ak}.

M ← 0
R← 0
for i = 1 . . . n do

R← R + ai
if R < 0 then

R← 0

if R > M then
M ← R

return M ;

115

Analysis

Theorem
The inductive algorithm for the Maximum Subarray problem
conducts a number of Θ(n) additions and comparisons.

116

Complexity of the problem?

Can we improve over Θ(n)?

Every correct algorithm for the Maximum Subarray Sum problem
must consider each element in the algorithm.

Assumption: the algorithm does not consider ai.

1 The algorithm provides a solution including ai. Repeat the
algorithm with ai so small that the solution must not have
contained the point in the first place.

2 The algorithm provides a solution not including ai. Repeat the
algorithm with ai so large that the solution must have contained
the point in the first place.

117

Complexity of the maximum Subarray Sum Problem

Theorem
The Maximum Subarray Sum Problem has Complexity Θ(n).

Beweis: Inductive algorithm with asymptotic execution time O(n).
Every algorithm has execution time Ω(n).
Thus the complexity of the problem is Ω(n) ∩ O(n) = Θ(n). �

118

4. Searching

Linear Search, Binary Search, Interpolation Search, Lower Bounds
[Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems
2.1-3,2.2-3,2.3-5]

119

The Search Problem

Provided

A set of data sets
examples
telephone book, dictionary, symbol table

Each dataset has a key k.
Keys are comparable: unique answer to the question k1 ≤ k2 for
keys k1, k2.

Task: find data set by key k.

120

The Selection Problem

Provided

Set of data sets with comparable keys k.

Wanted: data set with smallest, largest, middle key value. Generally:
find a data set with i-smallest key.

121

Search in Array

Provided

Array A with n elements (A[1], . . . , A[n]).
Key b

Wanted: index k, 1 ≤ k ≤ n with A[k] = b or ”not found”.

10

4

20

2

22

1

24

6

28

9

32

3

35

5

38

8

41

10

42

7

122

Linear Search

Traverse the array from A[1] to A[n].

Best case: 1 comparison.
Worst case: n comparisons.
Assumption: each permutation of the n keys with same
probability. Expected number of comparisons:

1

n

n∑
i=1

i =
n+ 1

2
.

123

Search in a Sorted Array

Provided

Sorted array A with n elements (A[1], . . . , A[n]) with
A[1] ≤ A[2] ≤ · · · ≤ A[n].
Key b

Wanted: index k, 1 ≤ k ≤ n with A[k] = b or ”not found”.

10

1

20

2

22

3

24

4

28

5

32

6

35

7

38

8

41

9

42

10

124

Divide and Conquer!
Search b = 23.

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b < 28

10
1

20
2

22
3

24
4

28
5

32
6

35
7

38
8

41
9

42
10

b > 20

22
3

24
4

28
5

10
1

20
2

32
6

35
7

38
8

41
9

42
10

b > 22

24
4

10
1

20
2

22
3

28
5

32
6

35
7

38
8

41
9

42
10

b < 24

24
4

10
1

22
3

20
2

28
5

32
6

35
7

38
8

41
9

42
10

erfolglos

125

Binary Search Algorithm BSearch(A,b,l,r)

Input : Sorted array A of n keys. Key b. Bounds 1 ≤ l ≤ r ≤ n or l > r beliebig.
Output : Index of the found element. 0, if not found.
m← b(l + r)/2c
if l > r then // Unsuccessful search

return 0
else if b = A[m] then// found

return m
else if b < A[m] then// element to the left

return BSearch(A, b, l,m− 1)
else // b > A[m]: element to the right

return BSearch(A, b,m+ 1, r)

126

Analysis (worst case)
Recurrence (n = 2k)

T (n) =

{
d falls n = 1,
T (n/2) + c falls n > 1.

Compute:

T (n) = T
(n

2

)
+ c = T

(n
4

)
+ 2c

= T
(n

2i

)
+ i · c

= T
(n
n

)
+ log2 n · c.

⇒ Assumption: T (n) = d+ c log2 n
127

Analysis (worst case)

T (n) =

{
d if n = 1,
T (n/2) + c if n > 1.

Guess : T (n) = d+ c · log2 n

Proof by induction:

Base clause: T (1) = d.
Hypothesis: T (n/2) = d+ c · log2 n/2

Step: (n/2→ n)

T (n) = T (n/2) + c = d+ c · (log2 n− 1) + c = d+ c log2 n.

128

Result

Theorem
The binary sorted search algorithm requires Θ(log n) fundamental
operations.

129

Iterative Binary Search Algorithm

Input : Sorted array A of n keys. Key b.
Output : Index of the found element. 0, if unsuccessful.
l← 1; r ← n
while l ≤ r do

m← b(l + r)/2c
if A[m] = b then

return m
else if A[m] < b then

l← m+ 1
else

r ← m− 1

return 0;

130

Correctness

Algorithm terminates only if A is empty or b is found.

Invariant: If b is in A then b is in domain A[l, ..., r]

Proof by induction

Base clause b ∈ A[1, .., n] (oder nicht)
Hypothesis: invariant holds after i steps.
Step:
b < A[m]⇒ b ∈ A[l, ..,m− 1]
b > A[m]⇒ b ∈ A[m+ 1, .., r]

131

Can this be improved?

Assumption: values of the array are uniformly distributed.

Example
Search for ”Becker” at the very beginning of a telephone book while
search for ”Wawrinka" rather close to the end.
Binary search always starts in the middle.

Binary search always takes m =
⌊
l + r−l

2

⌋
.

132

Interpolation search

Expected relative position of b in the search interval [l, r]

ρ =
b− A[l]

A[r]− A[l]
∈ [0, 1].

New ’middle’: l + ρ · (r − l)
Expected number of comparisons O(log log n) (without proof).

? Would you always prefer interpolation search?

! No: worst case number of comparisons Ω(n).

133

Exponential search

Assumption: key b is located somewhere at the beginning of the
Array A. n very large.

Exponential procedure:

1 Determine search domain l = r, r = 1.
2 Double r until r > n or A[r] > b.
3 Set r ← min(r, n).
4 Conduct a binary search with l← r/2, r.

134

Analysis of the Exponential Search

Let m be the wanted index.

Number steps for the doubling of r: maximally log2m.
Binary search then also O(log2m).

Worst case number of steps overall O(log2 n).

? When does this procedure make sense?

! If m << n. For example if positive pairwise different keys and
b << N (N : largest key value).

135

Lower Bounds

Binary and exponential Search (worst case): Θ(log n) comparisons.

Does for any search algorithm in a sorted array (worst case) hold
that number comparisons = Ω(log n)?

136

Decision tree

3

1

2

5

4 6

b < A[3]

b < A[5]

b > A[3]

b > A[1] b > A[5]

For any input b = A[i] the
algorithm must succeed⇒
decision tree comprises at
least n nodes.

Number comparisons in
worst case = height of the
tree = maximum number
nodes from root to leaf.

137

Decision Tree

Binary tree with height h has at most
20 + 21 + · · ·+ 2h−1 = 2h − 1 < 2h nodes.

At least n nodes in a decision tree with height h.

n < 2h ⇒ h > log2 n.

Number decisions = Ω(log n).

Theorem
Any search algorithm on sorted data with length n requires in the
worst case Ω(log n) comparisons.

138

Lower bound for Search in Unsorted Array

Theorem
Any search algorithm with unsorted data of length n requires in the
worst case Ω(n) comparisons.

139

Attempt

? Correct?
”Proof”: to find b in A, b must be compared with each of the n
elements A[i] (1 ≤ i ≤ n).
! Wrong argument! It is still possible to compare elements within A.

140

Better Argument

Consider i comparisons without b and e comparisons with b.
Comparisons geenrate g groups. Initially g = n.
To connect two groups at least one comparison is needed:
n− g ≤ i.
At least one element per group must be compared with b.
Number comparisons i+ e ≥ n− g + g = n.

�
141

5. Selection

The Selection Problem, Randomised Selection, Linear Worst-Case
Selection [Ottman/Widmayer, Kap. 3.1, Cormen et al, Kap. 9]

142

Min and Max

? To separately find minimum an maximum in (A[1], . . . , A[n]), 2n
comparisons are required. (How) can an algorithm with less than 2n
comparisons for both values at a time can be found?

! Possible with 3
2N comparisons: compare 2 elemetns each and

then the smaller one with min and the greater one with max.

143

The Problem of Selection

Input

unsorted array A = (A1, . . . , An) with pairwise different values
Number 1 ≤ k ≤ n.

Output A[i] with |{j : A[j] < A[i]}| = k − 1

Special cases
k = 1: Minimum: Algorithm with n comparison operations trivial.
k = n: Maximum: Algorithm with n comparison operations trivial.
k = bn/2c: Median.

144

Approaches

Repeatedly find and remove the minimum O(k · n).
Median: O(n2)

Sorting (covered soon): O(n log n)

Use a pivot O(n) !

145

Use a pivot

1 Choose a pivot p
2 Partition A in two parts, thereby determining the rank of p.
3 Recursion on the relevant part. If k = r then found.

p > ≤ ≤ > > ≤ ≤ > ≤p >≤ ≤ > >≤ ≤ >≤p p≤

r1 n

146

Algorithmus Partition(A[l..r], p)

Input : Array A, that contains the sentinel p in the interval [l, r] at least once.
Output : Array A partitioned in [l..r] around p. Returns position of p.
while l < r do

while A[l] < p do
l← l + 1

while A[r] > p do
r ← r − 1

swap(A[l], A[r])
if A[l] = A[r] then

l← l + 1

return l-1

147

Correctness: Invariant

Invariant I: Ai ≤ p ∀i ∈ [0, l), Ai > p ∀i ∈ (r, n], ∃k ∈ [l, r] : Ak = p.
while l < r do

while A[l] < p do
l← l + 1

while A[r] > p do
r ← r − 1

swap(A[l], A[r])
if A[l] = A[r] then

l← l + 1

return l-1

I

I und A[l] ≥ p

I und A[r] ≤ p
I und A[l] ≤ p ≤ A[r]

I

148

Correctness: progress

while l < r do
while A[l] < p do

l← l + 1

while A[r] > p do
r ← r − 1

swap(A[l], A[r])
if A[l] = A[r] then

l← l + 1

return l-1

progress if A[l] < p

progress if A[r] > p

progress if A[l] > p oder A[r] < p

progress if A[l] = A[r] = p

149

Choice of the pivot.
The minimum is a bad pivot: worst case Θ(n2)

p1 p2 p3 p4 p5

A good pivot has a linear number of elements on both sides.

p

≥ ε · n ≥ ε · n

150

Analysis
Partitioning with factor q (0 < q < 1): two groups with q · n and
(1− q) · n elements (without loss of generality g ≥ 1− q).

T (n) ≤ T (q · n) + c · n

= c · n+ q · c · n+ T (q2 · n) = ... = c · n
logq(n)−1∑

i=0

qi + T (1)

≤ c · n
∞∑
i=0

qi︸ ︷︷ ︸
geom. Reihe

= c · n · 1

1− q
= O(n)

151

How can we achieve this?
Randomness to our rescue (Tony Hoare, 1961). In each step
choose a random pivot.

1
4

1
4

1
2

schlecht schlechtgute Pivots

Probability for a good pivot in one trial: 1
2 =: ρ.

Probability for a good pivot after k trials: (1− ρ)k−1 · ρ.

Expected value of the geometric distribution: 1/ρ = 2
152

[Expected value of the Geometric Distribution]
Random variable X ∈ N+ with P(X = k) = (1− p)k−1 · p.

Expected value

E(X) =
∞∑
k=1

k · (1− p)k−1 · p =
∞∑
k=1

k · qk−1 · (1− q)

=
∞∑
k=1

k · qk−1 − k · qk =
∞∑
k=0

(k + 1) · qk − k · qk

=
∞∑
k=0

qk =
1

1− q
=

1

p
.

153

Algorithm Quickselect (A[l..r], i)
Input : Array A with length n. Indices 1 ≤ l ≤ i ≤ r ≤ n, such that for all

x ∈ A[l..r] it holds |{j|A[j] ≤ x}| ≥ l and |{j|A[j] ≤ x}| ≤ r.
Output : Partitioniertes Array A, so dass |{j|A[j] ≤ A[i]}| = i
if l=r then return;
repeat

choose a random pivot x ∈ A[l..r]
p← l
for j = l to r do

if A[j] ≤ x then p← p+ 1

until l+r
4
≤ p ≤ 3(l+r)

4
m← Partition(A[l..r], x)
if i < m then

quickselect(A[l..m], i)
else

quickselect(A[m..r], i)
154

Median of medians

Goal: find an algorithm that even in worst case requires only linearly
many steps.

Algorithm Select (k-smallest)

Consider groups of five elements.
Compute the median of each group (straighforward)
Apply Select recursively on the group medians.
Partition the array around the found median of medians. Result: i
If i = k then result. Otherwise: select recursively on the proper
side.

155

Median of medians

1 groups of five

2 medians

3 recursion for pivot

4 base case

5 pivot (level 1)

6 partition (level 1)

7 median = pivot level 0

8 2. recursion starts

. . .

.

156

How good is this?

m
≤ m

≥ m

Number points left / right of the median of medians (without median
group and the rest group) ≥ 3 · (d12d

n
5ee − 2) ≥ 3n

10 − 6

Second call with maximally d7n10 + 6e elements.

157

Analysis

Recursion inequality:

T (n) ≤ T
(⌈n

5

⌉)
+ T

(⌈
7n

10
+ 6

⌉)
+ d · n.

with some constant d.

Claim:
T (n) = O(n).

158

Proof
Base clause: choose c large enough such that

T (n) ≤ c · n für alle n ≤ n0.

Induction hypothesis:

T (i) ≤ c · i für alle i < n.

Induction step:

T (n) ≤ T
(⌈n

5

⌉)
+ T

(⌈
7n

10
+ 6

⌉)
+ d · n

= c ·
⌈n

5

⌉
+ c ·

⌈
7n

10
+ 6

⌉
+ d · n.

159

Proof
Induction step:

T (n) ≤ c ·
⌈n

5

⌉
+ c ·

⌈
7n

10
+ 6

⌉
+ d · n

≤ c · n
5

+ c+ c · 7n
10

+ 6c+ c+ d · n =
9

10
· c · n+ 8c+ d · n.

Choose c ≥ 80 · d and n0 = 91.

T (n) ≤ 72

80
· c · n+ 8c+

1

80
· c · n = c ·

(
73

80
n+ 8

)
︸ ︷︷ ︸
≤n für n > n0

≤ c · n.

160

Result

Theorem
The k-the element of a sequence of n elements can be found in at
most O(n) steps.

161

Overview

1. Repeatedly find minimum O(n2)

2. Sorting and choosing A[i] O(n log n)

3. Quickselect with random pivot O(n) expected

4. Median of Medians (Blum) O(n) worst case

1
4

1
4

1
2

schlecht schlechtgute Pivots

162

6. C++ advanced (I)

Repetition: vectors, pointers and iterators, range for, keyword auto, a
class for vectors, subscript-operator, move-construction, iterators

163

We look back...
#include <iostream>
#include <vector>

int main(){
// Vector of length 10
std::vector<int> v(10,0);
// Input
for (int i = 0; i < v.length(); ++i)

std::cin >> v[i];
// Output
for (std::vector::iterator it = v.begin(); it != v.end(); ++it)

std::cout << ∗it << " ";
}

We want to understand this in depth!

At least this is too pedestrian

164

Useful tools (1): auto (C++11)

The keyword auto:

The type of a variable is inferred from the initializer.

Examples

int x = 10;
auto y = x; // int
auto z = 3; // int
std::vector<double> v(5);
auto i = v[3]; // double

165

Etwas besser...

#include <iostream>
#include <vector>

int main(){
std::vector<int> v(10,0); // Vector of length 10

for (int i = 0; i < v.length(); ++i)
std::cin >> v[i];

for (auto it = x.begin(); it != x.end(); ++it){
std::cout << ∗it << " ";

}
}

166

Useful tools (2): range for (C++11)
for (range-declaration : range-expression)

statement;

range-declaration: named variable of element type specified via the sequence
in range-expression
range-expression: Expression that represents a sequence of elements via
iterator pair begin(), end() or in the form of an intializer list.

Examples

std::vector<double> v(5);
for (double x: v) std::cout << x; // 00000
for (int x: {1,2,5}) std::cout << x; // 125
for (double& x: v) x=5;

167

That is indeed cool!

#include <iostream>
#include <vector>

int main(){
std::vector<int> v(10,0); // Vector of length 10

for (auto& x: v)
std::cin >> x;

for (const auto i: x)
std::cout << i << " ";

}

168

For our detailed understanding

We build a vector class with the same capabilities ourselves!

On the way we learn about

RAII (Resource Acquisition is Initialization) and move construction
Index operators and other utilities
Templates
Exception Handling
Functors and lambda expressions

169

A class for vectors
class vector{

int size;
double∗ elem;

public:
// constructors
vector(): size{0}, elem{nullptr} {};

vector(int s):size{s}, elem{new double[s]} {}
// destructor
~vector(){

delete[] elem;
}
// something is missing here

}

170

Element access
class vector{

...
// getter. pre: 0 <= i < size;
double get(int i) const{

return elem[i];
}
// setter. pre: 0 <= i < size;
void set(int i, double d){ // setter

elem[i] = d;
}
// length property
int length() const {

return size;
}

}

class vector{
public :

vector ();
vector(int s);
~vector ();
double get(int i) const;
void set(int i , double d);
int length() const;

}

171

What’s the problem here?
int main(){

vector v(32);
for (int i = 0; i<v.length(); ++i)

v.set(i,i);
vector w = v;
for (int i = 0; i<w.length(); ++i)

w.set(i,i∗i);
return 0;

}

*** Error in ‘vector1’: double free or corruption
(!prev): 0x0000000000d23c20 ***
======= Backtrace: =========
/lib/x86_64-linux-gnu/libc.so.6(+0x777e5)[0x7fe5a5ac97e5]
...

class vector{
public :

vector ();
vector(int s);
~vector ();
double get(int i);
void set(int i , double d);
int length() const;

}

172

Rule of Three!

class vector{
...

public:
// Copy constructor
vector(const vector &v):

size{v.size}, elem{new double[v.size]} {
std::copy(v.elem, v.elem+v.size, elem);

}
}

class vector{
public :

vector ();
vector(int s);
~vector ();
vector(const vector &v);
double get(int i);
void set(int i , double d);
int length() const;

}

173

Rule of Three!
class vector{
...

// Assignment operator
vector& operator=(const vector&v){

if (v.elem == elem) return ∗this;
if (elem != nullptr) delete[] elem;
size = v.size;
elem = new double[size];
std::copy(v.elem, v.elem+v.size, elem);
return ∗this;

}
}

Now it is correct, but cumbersome.

class vector{
public :

vector ();
vector(int s);
~vector ();
vector(const vector &v);
vector& operator=(const vector&v);
double get(int i);
void set(int i , double d);
int length() const;

}

174

More elegant this way:
class vector{
...

// Assignment operator
vector& operator= (const vector&v){

vector cpy(v);
swap(cpy);
return ∗this;

}
private:

// helper function
void swap(vector& v){

std::swap(size, v.size);
std::swap(elem, v.elem);

}
}

class vector{
public :

vector ();
vector(int s);
~vector ();
vector(const vector &v);
vector& operator=(const vector&v);
double get(int i);
void set(int i , double d);
int length() const;

}

175

Syntactic sugar.
Getters and setters are poor. We want an index operator.

Overloading! So?
class vector{
...

double operator[] (int pos) const{
return elem[pos];

}

void operator[] (int pos, double value){
elem[pos] = double;

}
}

Nein!

176

Reference types!

class vector{
...

// for const objects
double operator[] (int pos) const{

return elem[pos];
}
// for non−const objects
double& operator[] (int pos){

return elem[pos]; // return by reference!
}

}

class vector{
public :

vector ();
vector(int s);
~vector ();
vector(const vector &v);
vector& operator=(const vector&v);
double operator[] (int pos) const;
double& operator[] (int pos);
int length() const;

}

177

So far so good.
int main(){

vector v(32); // Constructor
for (int i = 0; i<v.length(); ++i)

v[i] = i; // Index−Operator (Referenz!)

vector w = v; // Copy Constructor
for (int i = 0; i<w.length(); ++i)

w[i] = i∗i;

const auto u = w;
for (int i = 0; i<u.length(); ++i)

std::cout << v[i] << ":" << u[i] << " "; // 0:0 1:1 2:4 ...
return 0;

}

class vector{
public :

vector ();
vector(int s);
~vector ();
vector(const vector &v);
vector& operator=(const vector&v);
double operator[] (int pos) const;
double& operator[] (int pos);
int length() const;

}

178

Number copies
How often is v being copied?
vector operator+ (const vector& l, double r){

vector result (l); // Kopie von l nach result
for (int i = 0; i < l.length(); ++i) result[i] = l[i] + r;
return result; // Dekonstruktion von result nach Zuweisung

}

int main(){
vector v(16); // allocation of elems[16]
v = v + 1; // copy when assigned!
return 0; // deconstruction of v

}

v is copied twice
179

Move construction and move assignment
class vector{
...

// move constructor
vector (vector&& v){

swap(v);
};
// move assignment
vector& operator=(vector&& v){

swap(v);
return ∗this;

};
}

class vector{
public :

vector ();
vector(int s);
~vector ();
vector(const vector &v);
vector& operator=(const vector&v);
vector (vector&& v);
vector& operator=(vector&& v);
double operator[] (int pos) const;
double& operator[] (int pos);
int length() const;

}

180

Explanation

When the source object of an assignment will not continue existing
after an assignment the compiler can use the move assignment
instead of the assignment operator.3 A potentially expensive copy
operations is avoided this way.

Number of copies in the previous example goes down to 1.

3Analogously so for the copy-constructor and the move constructor
181

Range for

We wanted this:

vector v = ...;
for (auto x: v)

std::cout << x << " ";

In order to support this, an iterator must be provided via begin and
end .

182

Iterator for the vector

class vector{
...

// Iterator
double∗ begin(){

return elem;
}
double∗ end(){

return elem+size;
}

}

class vector{
public :

vector ();
vector(int s);
~vector ();
vector(const vector &v);
vector& operator=(const vector&v);
vector (vector&& v);
vector& operator=(vector&& v);
double operator[] (int pos) const;
double& operator[] (int pos);
int length() const;
double∗ begin();
double∗ end();

}

183

Const Iterator for the vector

class vector{
...

// Const−Iterator
const double∗ begin() const{

return elem;
}
const double∗ end() const{

return elem+size;
}

}

class vector{
public :

vector ();
vector(int s);
~vector ();
vector(const vector &v);
vector& operator=(const vector&v);
vector (vector&& v);
vector& operator=(vector&& v);
double operator[] (int pos) const;
double& operator[] (int pos);
int length() const;
double∗ begin();
double∗ end();
const double∗ begin() const;
const double∗ end() const;

}

184

Intermediate result
vector Natural(int from, int to){

vector v(to−from+1);
for (auto& x: v) x = from++;
return v;

}

int main(){
vector v = Natural(5,12);
for (auto x: v)

std::cout << x << " "; // 5 6 7 8 9 10 11 12
std::cout << "\n";
std::cout << "sum="

<< std::accumulate(v.begin(), v.end(),0); // sum = 68
return 0;

}
185

Useful tools (3): using (C++11)
using replaces in C++11 the old typedef.

using identifier = type−id;

Beispiel

using element_t = double;
class vector{

std::size_t size;
element_t∗ elem;

...
}

186

7. Sorting I

Simple Sorting

187

7.1 Simple Sorting

Selection Sort, Insertion Sort, Bubblesort [Ottman/Widmayer, Kap. 2.1, Cormen et
al, Kap. 2.1, 2.2, Exercise 2.2-2, Problem 2-2

188

Problem

Input: An array A = (A[1], ..., A[n]) with length n.

Output: a permutation A′ of A, that is sorted: A′[i] ≤ A′[j] for all
1 ≤ i ≤ j ≤ n.

189

Algorithm: IsSorted(A)

Input : Array A = (A[1], ..., A[n]) with length n.
Output : Boolean decision “sorted” or “not sorted”
for i← 1 to n− 1 do

if A[i] > A[i+ 1] then
return “not sorted”;

return “sorted”;

190

Observation

IsSorted(A):“not sorted”, if A[i] > A[i+ 1] for an i.

⇒ idea:
for j ← 1 to n− 1 do

if A[j] > A[j + 1] then
swap(A[j], A[j + 1]);

191

Give it a try

5 6 2 8 4 1 (j = 1)

5 6 2 8 4 1 (j = 2)

5 2 6 8 4 1 (j = 3)

5 2 6 8 4 1 (j = 4)

5 2 6 4 8 1 (j = 5)

5 2 6 4 1 8

Not sorted! .
But the greatest
element moves to the
right
⇒ new idea!

192

Try it out

5 6 2 8 4 1 (j = 1, i = 1)
5 6 2 8 4 1 (j = 2)
5 2 6 8 4 1 (j = 3)
5 2 6 8 4 1 (j = 4)
5 2 6 4 8 1 (j = 5)
5 2 6 4 1 8 (j = 1, i = 2)
2 5 6 4 1 8 (j = 2)
2 5 6 4 1 8 (j = 3)
2 5 4 6 1 8 (j = 4)
2 5 4 1 6 8 (j = 1, i = 3)
2 5 4 1 6 8 (j = 2)
2 4 5 1 6 8 (j = 3)
2 4 1 5 6 8 (j = 1, i = 4)
2 4 1 5 6 8 (j = 2)
2 1 4 5 6 8 (i = 1, j = 5)
1 2 4 5 6 8

Apply the procedure
iteratively.
For A[1, . . . , n],
then A[1, . . . , n− 1],
then A[1, . . . , n− 2],
etc.

193

Algorithm: Bubblesort

Input : Array A = (A[1], . . . , A[n]), n ≥ 0.
Output : Sorted Array A
for i← 1 to n− 1 do

for j ← 1 to n− i do
if A[j] > A[j + 1] then

swap(A[j], A[j + 1]);

194

Analysis

Number key comparisons
∑n−1

i=1 (n− i) = n(n−1)
2 = Θ(n2).

Number swaps in the worst case: Θ(n2)

? What is the worst case?
! If A is sorted in decreasing order.

? Algorithm can be adapted such that it terminates when the array is sorted.
Key comparisons and swaps of the modified algorithm in the best case?

! Key comparisons = n− 1. Swaps = 0.

195

Selection Sort

5 6 2 8 4 1 (i = 1)

1 6 2 8 4 5 (i = 2)

1 2 6 8 4 5 (i = 3)

1 2 4 8 6 5 (i = 4)

1 2 4 5 6 8 (i = 5)

1 2 4 5 6 8 (i = 6)

1 2 4 5 6 8

Iterative procedure
as for Bubblesort.
Selection of the
smallest (or largest)
element by
immediate search.

196

Algorithm: Selection Sort

Input : Array A = (A[1], . . . , A[n]), n ≥ 0.
Output : Sorted Array A
for i← 1 to n− 1 do

p← i
for j ← i+ 1 to n do

if A[j] < A[p] then
p← j;

swap(A[i], A[p])

197

Analysis

Number comparisons in worst case: Θ(n2).

Number swaps in the worst case: n− 1 = Θ(n)

Best case number comparisons: Θ(n2).

198

Insertion Sort

5 6 2 8 4 1 (i = 1)

5 6 2 8 4 1 (i = 2)

5 6 2 8 4 1 (i = 3)

2 5 6 8 4 1 (i = 4)

2 5 6 8 4 1 (i = 5)

2 4 5 6 8 1 (i = 6)

1 2 4 5 6 8

Iterative procedure:
i = 1...n

Determine insertion
position für element
i.
Insert element i array
block movement
potentially required

199

Insertion Sort

? What is the disadvantage of this algorithm compared to sorting
by selection?

! Many element movements in the worst case.

? What is the advantage of this algorithm compared to selection
sort?
! The search domain (insertion interval) is already sorted.

Consequently: binary search possible.

200

Algorithm: Insertion Sort

Input : Array A = (A[1], . . . , A[n]), n ≥ 0.
Output : Sorted Array A
for i← 2 to n do

x← A[i]
p← BinarySearch(A[1...i− 1], x); // Smallest p ∈ [1, i] with A[p] ≥ x
for j ← i− 1 downto p do

A[j + 1]← A[j]

A[p]← x

201

Analysis

Number comparisons in the worst case:∑n−1
k=1 a · log k = a log((n− 1)!) ∈ O(n log n).

Number comparisons in the best case Θ(n log n).4

Number comparisons in the worst case
∑n

k=2(k − 1) ∈ Θ(n2)

4With slight modification of the function BinarySearch fot eh minimum / maximum: Θ(n)
202

Different point of view

Sortierknoten:

≷8

4

8

4

203

Different point of view
5

6 ≷

2 ≷ ≷

8 ≷ ≷ ≷

4 ≷ ≷ ≷ ≷

1 ≷ ≷ ≷ ≷ ≷

1 2 4 5 6 8

5

6

2
5

6

8
2

5

4
2

4

8

1
2

1

2

5

5

4

2

6

8

5

4

6

5

4

6

5

8

6

5

8

6

6

8

Like selection sort
[und like Bubblesort]

204

Different point of view
5

6 ≷

2 ≷ ≷

8 ≷ ≷ ≷

4 ≷ ≷ ≷ ≷

1 ≷ ≷ ≷ ≷ ≷

1 2 4 5 6 8

5

6

5

6

2 5

2 5

6

8 8 8

2 5 6

8

4 4 5 6

2 4 5 6

8

1 2 4 5 6

1 2 4 5 6

8

Like insertion sort

205

Conclusion

In a certain sense, Selection Sort, Bubble Sort and Insertion Sort
provide the same kind of sort strategy. Will be made more precise. 5

5In the part about parallel sorting networks. For the sequential code of course the observations as described above still
hold.

206

Shellsort

Insertion sort on subsequences of the form (Ak·i) (i ∈ N) with
decreasing distances k. Last considered distance must be k = 1.

Good sequences: for example sequences with distances
k ∈ {2i3j|0 ≤ i, j}.

207

Shellsort

9 8 7 6 5 4 3 2 1 0

1 8 7 6 5 4 3 2 9 0 insertion sort, k = 4

1 0 7 6 5 4 3 2 9 8

1 0 3 6 5 4 7 2 9 8

1 0 3 2 5 4 7 6 9 8

1 0 3 2 5 4 7 6 9 8 insertion sort, k = 2

1 0 3 2 5 4 7 6 9 8

0 1 2 3 4 5 6 7 8 9 insertion sort, k = 1

208

8. Sorting II

Heapsort, Quicksort, Mergesort

209

8.1 Heapsort

[Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6]

210

Heapsort

Inspiration from selectsort: fast insertion

Inspiration from insertion sort: fast determination of position

? Can we have the best of two worlds?
! Yes, but it requires some more thinking...

211

[Max-]Heap6

Binary tree with the following prop-
erties

1 complete up to the lowest
level

2 Gaps (if any) of the tree in
the last level to the right

3 Heap-Condition:
Max-(Min-)Heap: key of a
child smaller (greater) thant
that of the parent node

Wurzel

22

20

16

3 2

12

8 11

18

15

14

17

parent

child

leaves

6Heap(data structure), not: as in “heap and stack” (memory allocation)
212

Heap and Array

Tree→ Array:

children(i) = {2i, 2i+ 1}
parent(i) = bi/2c

22

1

20

2

18

3

16

4

12

5

15

6

17

7

3

8

2

9

8

10

11

11

14

12

Vater

Kinder

22

20

16

3 2

12

8 11

18

15

14

17

[1]

[2] [3]

[4] [5] [6] [7]

[8] [9] [10] [11] [12]

Depends on the starting index7

7For array that start at 0: {2i, 2i+ 1} → {2i+ 1, 2i+ 2}, bi/2c → b(i− 1)/2c
213

Recursive heap structure

A heap consists of two heaps:

22

20

16

3 2

12

8 11

18

15

14

17

214

Insert

Insert new element at the first free
position. Potentially violates the heap
property.
Reestablish heap property: climb
successively
Worst case number of operations:
O(log n)

22

20

16

3 2

12

8 11

18

15

14

17

22

20

16

3 2

12

8 11

21

18

14 15

17

215

Remove the maximum

Replace the maximum by the lower
right element
Reestablish heap property: sink
successively (in the direction of the
greater child)
Worst case number of operations:
O(log n)

21

20

16

3 2

12

8 11

18

15

14

17

20

16

14

3 2

12

8 11

18

15 17

216

Algorithm Sink(A, i,m)

Input : Array A with heap structure for the children of i. Last element m.
Output : Array A with heap structure for i with last element m.
while 2i ≤ m do

j ← 2i; // j left child
if j < m and A[j] < A[j + 1] then

j ← j + 1; // j right child with greater key

if A[i] < A[j] then
swap(A[i], A[j])
i← j; // keep sinking

else
i← m; // sinking finished

217

Sort heap

A[1, ..., n] is a Heap.
While n > 1

swap(A[1], A[n])
Sink(A, 1, n− 1);
n← n− 1

7 6 4 5 1 2

swap ⇒ 2 6 4 5 1 7

sink ⇒ 6 5 4 2 1 7

swap ⇒ 1 5 4 2 6 7

sink ⇒ 5 4 2 1 6 7

swap ⇒ 1 4 2 5 6 7

sink ⇒ 4 1 2 5 6 7

swap ⇒ 2 1 4 5 6 7

sink ⇒ 2 1 4 5 6 7

swap ⇒ 1 2 4 5 6 7

218

Heap creation

Observation: Every leaf of a heap is trivially a correct heap.

Consequence: Induction from below!

219

Algorithm HeapSort(A, n)

Input : Array A with length n.
Output : A sorted.
for i← n/2 downto 1 do

Sink(A, i, n);

// Now A is a heap.
for i← n downto 2 do

swap(A[1], A[i])
Sink(A, 1, i− 1)

// Now A is sorted.

220

Analysis: sorting a heap

Sink traverses at most log n nodes. For each node 2 key
comparisons. ⇒ sorting a heap costs is the worst case 2 log n
comparisons.

Number of memory movements of sorting a heap also O(n log n).

221

Analysis: creating a heap
Calls to sink: n/2. Thus number of comparisons and movements:
v(n) ∈ O(n log n).

But mean length of sinking paths is much smaller:

v(n) =

blog nc∑
h=0

⌈ n

2h+1

⌉
· c · h ∈ O(n

blog nc∑
h=0

h

2h
)

s(x) :=
∑∞

k=0 kx
k = x

(1−x)2 (0 < x < 1). With s(12) = 2:

v(n) ∈ O(n).

222

8.2 Mergesort

[Ottman/Widmayer, Kap. 2.4, Cormen et al, Kap. 2.3],

223

Intermediate result

Heapsort: O(n log n) Comparisons and movements.

? Disadvantages of heapsort?

! Missing locality: heapsort jumps around in the sorted array
(negative cache effect).

! Two comparisons before each required memory movement.

224

Mergesort

Divide and Conquer!

Assumption: two halves of the array A are already sorted.
Minimum of A can be evaluated with two comparisons.
Iteratively: sort the presorted array A in O(n).

225

Merge

1 4 7 9 16 2 3 10 11 12

1 2 3 4 7 9 10 11 12 16

226

Algorithm Merge(A, l,m, r)

Input : Array A with length n, indexes 1 ≤ l ≤ m ≤ r ≤ n. A[l, . . . ,m],
A[m+ 1, . . . , r] sorted

Output : A[l, . . . , r] sortiert
1 B ← new Array(r − l + 1)
2 i← l; j ← m+ 1; k ← 1
3 while i ≤ m and j ≤ r do
4 if A[i] ≤ A[j] then B[k]← A[i]; i← i+ 1
5 else B[k]← A[j]; j ← j + 1
6 k ← k + 1;

7 while i ≤ m do B[k]← A[i]; i← i+ 1; k ← k + 1
8 while j ≤ r do B[k]← A[j]; j ← j + 1; k ← k + 1
9 for k ← l to r do A[k]← B[k − l + 1]

227

Correctness
Hypothesis: after k iterations of the loop in line 3 B[1, . . . , k] is
sorted and B[k] ≤ A[i], if i ≤ m and B[k] ≤ A[j] falls j ≤ r.

Proof by induction:
Base clause: the empty array B[1, . . . , 0] is trivially sorted.
Induction step (k → k + 1):

wlog A[i] ≤ A[j], i ≤ m, j ≤ r.

B[1, . . . , k] is sorted by hypothesis and B[k] ≤ A[i].

After B[k + 1]← A[i] B[1, . . . , k + 1] is sorted.

B[k + 1] = A[i] ≤ A[i+ 1] (if i+ 1 ≤ m) and B[k + 1] ≤ A[j] if j ≤ r.

k ← k + 1, i← i+ 1: Statement holds again.

228

Analysis (Merge)

Lemma
If: array A with length n, indexes 1 ≤ l < r ≤ n. m = b(l + r)/2c
and A[l, . . . ,m], A[m+ 1, . . . , r] sorted.
Then: in the call of Merge(A, l,m, r) a number of Θ(r − l) key
movements and comparison are executed.

Proof: straightforward(Inspect the algorithm and count the
operations.)

229

Mergesort

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Split

5 2 6 1 8 4 3 9
Merge

2 5 1 6 4 8 3 9
Merge

1 2 5 6 3 4 8 9
Merge

1 2 3 4 5 6 8 9

230

Algorithm recursive 2-way Mergesort(A, l, r)

Input : Array A with length n. 1 ≤ l ≤ r ≤ n
Output : Array A[l, . . . , r] sorted.
if l < r then

m← b(l + r)/2c // middle position
Mergesort(A, l,m) // sort lower half
Mergesort(A,m+ 1, r) // sort higher half
Merge(A, l,m, r) // Merge subsequences

231

Analysis

Recursion equation for the number of comparisons and key
movements:

C(n) = C(
⌈n

2

⌉
) + C(

⌊n
2

⌋
) + Θ(n) ∈ Θ(n log n)

232

Algorithm StraightMergesort(A)

Avoid recursion: merge sequences of length 1, 2, 4, ... directly
Input : Array A with length n
Output : Array A sorted
length ← 1
while length < n do // Iteriere über die Längen n

right ← 0
while right + length < n do // Iteriere über die Teilfolgen

left ← right + 1
middle ← left + length − 1
right ← min(middle + length, n)
Merge(A, left ,middle, right)

length ← length · 2

233

Analysis

Like the recursive variant, the straight 2-way mergesort always
executed a numbe rof Θ(n log n) key comparisons and key
movements.

234

Natural 2-way mergesort

Obserbation: the variants above do not make use of any presorting
and always execute Θ(n log n) memory movements.

? How can partially presorted arrays be sorted better?

! Recursive merging of previously sorted parts (runs) of A.

235

Natural 2-way mergesort

5 6 2 4 8 3 9 7 1

2 4 5 6 8 3 7 9 1

2 3 4 5 6 7 8 9 1

1 2 3 4 5 6 7 8 9
236

Algorithm NaturalMergesort(A)

Input : Array A with length n > 0
Output : Array A sorted
repeat

r ← 0
while r < n do

l ← r + 1
m ← l ; while m < n and A[m + 1] ≥ A[m] do m ← m + 1
if m < n then

r ← m + 1; while r < n and A[r + 1] ≥ A[r] do r ← r + 1
Merge(A, l ,m, r);

else
r ← n

until l = 1

237

Analysis

In the best case, natural merge sort requires only n− 1
comparisons.

? Is it also asymptotically better than StraightMergesort on
average?
! No. Given the assumption of pairwise distinct keys, on average there are n/2

positions i with ki > ki+1, i.e. n/2 runs. Only one iteration is saved on average.

Natural mergesort executes in the worst case and on average a
number of Θ(n log n) comparisons and memory movements.

238

8.3 Quicksort

[Ottman/Widmayer, Kap. 2.2, Cormen et al, Kap. 7]

239

Quicksort

? What is the disadvantage of Mergesort?

! Requires Θ(n) storage for merging.

? How could we reduce the merge costs?

! Make sure that the left part contains only smaller elements than
the right part.

? How?
! Pivot and Partition!

240

Quicksort (arbitrary pivot)

2 4 5 6 8 3 7 9 1

2 1 3 6 8 5 7 9 4

1 2 3 4 5 8 7 9 6

1 2 3 4 5 6 7 9 8

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

241

Algorithm Quicksort(A[l, . . . , r]

Input : Array A with length n. 1 ≤ l ≤ r ≤ n.
Output : Array A, sorted between l and r.
if l < r then

Choose pivot p ∈ A[l, . . . , r]
k ← Partition(A[l, . . . , r], p)
Quicksort(A[l, . . . , k − 1])
Quicksort(A[k + 1, . . . , r])

242

Reminder: algorithm Partition(A[l, . . . , r], p)

Input : Array A, that contains the sentinel p in [l, r] at least once.
Output : Array A partitioned around p. Returns the position of p.
while l < r do

while A[l] < p do
l← l + 1

while A[r] > p do
r ← r − 1

swap(A[l], A[r])
if A[l] = A[r] then // Only for keys that are not pairwise different

l← l + 1

return l-1

243

Analysis: number comparisons

Best case. Pivot = median; number comparisons:

T (n) = 2T (n/2) + c · n, T (1) = 0 ⇒ T (n) ∈ O(n log n)

Worst case. Pivot = min or max; number comparisons:

T (n) = T (n− 1) + c · n, T (1) = 0 ⇒ T (n) ∈ Θ(n2)

244

Analysis: number swaps

Result of a call to partition (pivot 3):

2 1 3 6 8 5 7 9 4

? How many swaps have taken place?

! 2. The maximum number of swaps is given by the number of keys
in the smaller part.

245

Analysis: number swaps

Intellectual game

Each key from the smaller part pay a coin when swapped.
When a key has paid a coin then the domain containing the key is
less or equal than half the previous size.
Every key needs to pay at most log n coins. But there are only n
keys.

Consequence: there are O(n log n) key swaps in the worst case.

246

Randomized Quicksort

Despite the worst case running time of Θ(n2), quicksort is used
practically very often.

Reason: quadratic running time unlikely if the choice of the pivot and
the presorting is not very disadvantageous.

Avoidance: randomly choose pivot. Draw uniformly from [l, r].

247

Analysis (randomized quicksort)

Expected number of compared keys with input length n:

T (n) = (n− 1) +
1

n

n∑
k=1

(T (k − 1) + T (n− k)) , T (0) = T (1) = 0

Claim T (n) ≤ 4n log n.

Proof by induction:
Base clause straightforward for n = 0 (with 0 log 0 := 0) and for
n = 1.
Hypothesis: T (n) ≤ 4n log n für ein n.
Induction step: (n− 1→ n)

248

Analysis (randomized quicksort)

T (n) = n− 1 +
2

n

n−1∑
k=0

T (k)
H
≤ n− 1 +

2

n

n−1∑
k=0

4k log k

= n− 1 +

n/2∑
k=1

4k log k︸︷︷︸
≤logn−1

+
n−1∑

k=n/2+1

4k log k︸︷︷︸
≤logn

≤ n− 1 +
8

n

(log n− 1)

n/2∑
k=1

k + log n
n−1∑

k=n/2+1

k


= n− 1 +

8

n

(
(log n) · n(n− 1)

2
− n

4

(n
2

+ 1
))

= 4n log n− 4 log n− 3 ≤ 4n log n

249

Analysis (randomized quicksort)

Theorem
On average randomized quicksort requires O(n · log n) comparisons.

250

Practical considerations

Worst case recursion depth n− 18. The also memory consumption
of O(n).

Can be avoided: recursion only on the smaller part. Then
guaranteed O(log n) worst case recursion depth and memory
consumption.

8stack overflow possible!
251

Quicksort with logarithmic memory consumption
Input : Array A with length n. 1 ≤ l ≤ r ≤ n.
Output : Array A, sorted between l and r.
while l < r do

Choose pivot p ∈ A[l, . . . , r]
k ← Partition(A[l, . . . , r], p)
if k − l < r − k then

Quicksort(A[l, . . . , k − 1])
l← k + 1

else
Quicksort(A[k + 1, . . . , r])
r ← k − 1

The call of Quicksort(A[l, . . . , r]) in the original algorithm has moved to iteration (tail recursion!): the if-statement became a
while-statement.

252

Practical considerations.

Practically the pivot is often the median of three elements. For
example: Median3(A[l], A[r], A[bl + r/2c]).
There is a variant of quicksort that requires only constant storage.
Idea: store the old pivot at the position of the new pivot.

253

9. C++ advanced (II): Templates

254

Motivation

Goal: generic vector class and functionality.

Examples

vector<double> vd(10);
vector<int> vi(10);
vector<char> vi(20);

auto nd = vd ∗ vd; // norm (vector of double)
auto ni = vi ∗ vi; // norm (vector of int)

255

Types as Template Parameters

1 In the concrete implementation of a class replace the type that
should become generic (in our example: double) by a
representative element, e.g. T.

2 Put in front of the class the construct template<typename T>9

Replace T by the representative name).

The construct template<typename T> can be understood as “for all
types T”.

9equally:template<class T>
256

Types as Template Parameters
template <typename ElementType>
class vector{

size_t size;
ElementType∗ elem;

public:
...
vector(size_t s):

size{s},
elem{new ElementType[s]}{}

...
ElementType& operator[](size_t pos){

return elem[pos];
}
...

}
257

Template Instances

vector<typeName> generates a type instance vector with
ElementType=typeName.
Notation: Instantiation
Examples

vector<double> x; // vector of double
vector<int> y; // vector of int
vector<vector<double>> x; // vector of vector of double

258

Type-checking

Templates are basically replacement rules at instantiation time and
applied compilation. It is checked as little as necessary and as much
as possible.

259

Example
template <typename T>
class vector{
...

// pre: vector contains at least one element, elements comparable
// post: return minimum of contained elements
T min() const{

auto min = elem[0];
for (auto x=elem+1; x<elem+size; ++x){

if (∗x<min) min = ∗x;
}
return min;

}
...
}

vector<int> a(10); // ok
auto m = a.min(); // ok
vector<vector<int>> b(10); // ok;
auto n = b.min(); no match for operator< !

260

Generic Programming

Generic components should be devel-
oped rather as a generalization of one or
more examples than from first principles.

using size_t=std :: size_t ;
template <typename T>
class vector{
public :

vector ();
vector(size_t s);
~vector ();
vector(const vector &v);
vector& operator=(const vector&v);
vector (vector&& v);
vector& operator=(vector&& v);
T operator [] (size_t pos) const;
T& operator[] (size_t pos);
int length() const;
T∗ begin();
T∗ end();
const T∗ begin() const;
const T∗ end() const;

}

261

Function Templates

1 In a concrete implementation of a function replace the type that
should become generic by a replacement, .e.g T,

2 Put in front of the function the construct
template<typename T>10(Replace T by the replacement
name)

10equally:template<class T>
262

Function Templates

template <typename T>
void swap(T& x, T&y){

T temp = x;
x = y;
y = temp;

}

Types of the parameter determine the version of the function that is
(compiled) and used:
int x=5;
int y=6;
swap(x,y); // calls swap with T=int

263

Limits of Magic

template <typename T>
void swap(T& x, T&y){

T temp = x;
x = y;
y = temp;

}

An inadmissible version of the function is not generated:
int x=5;
double y=6;
swap(x,y); // error: no matching function for ...

264

Useful!

// Output of an arbitrary container
template <typename T>
void output(const T& t){

for (auto x: t)
std::cout << x << " ";

std::cout << "\n";
}

int main(){
std::vector<int> v={1,2,3};
output(v); // 1 2 3

}

265

Powerful!
template <typename T> // square number
T sq(T x){

return x∗x;
}
template <typename Container, typename F>
void apply(Container& c, F f){ // x <− f(x) forall x in c

for(auto& x: c)
x = f(x);

}
int main(){

std::vector<int> v={1,2,3};
apply(v,sq<int>);
output(v); // 1 4 9

}

266

Template Parameterization with Values
template <typename T, int size>
class CircularBuffer{

T buf[size] ;
int in; int out;

0

1

2 3

4

5

6

78

9

out

in

public:
CircularBuffer():in{0},out{0}{};
bool empty(){

return in == out;
}
bool full(){

return (in + 1) % size == out;
}
void put(T x); // declaration
T get(); // declaration

};
267

Template Parameterization with Values
template <typename T, int size>
void CircularBuffer<T,size>::put(T x){

assert(!full());
buf[in] = x;
in = (in + 1) % size;

} 0

1

2 3

4

5

6

78

9

out

in

template <typename T, int size>
T CircularBuffer<T,size>::get(){

assert(!empty());
T x = buf[out];
out = (out + 1) % size;
return x;

}

Potential for optimization if size = 2k.

268

10. Sorting III

Lower bounds for the comparison based sorting, radix- and
bucket-sort

269

10.1 Lower bounds for comparison based sorting

[Ottman/Widmayer, Kap. 2.8, Cormen et al, Kap. 8.1]

270

Lower bound for sorting

Up to here: worst case sorting takes Ω(n log n) steps.

Is there a better way? No:

Theorem
Sorting procedures that are based on comparison require in the
worst case and on average at least Ω(n log n) key comparisons.

271

Comparison based sorting

An algorithm must identify the correct one of n! permutations of an
array (Ai)i=1,...,n .
At the beginning the algorithm know nothing about the array
structure.
We consider the knowledge gain of the algorithm in the form of a
decision tree:

Nodes contain the remaining possibilities.
Edges contain the decisions.

272

Decision tree

a < b

b < c

abc a < c

acb cab

b < c

a < c

bac bca

cba

Yes No

Yes No Yes No

Yes No Yes No

abc acb cab bac bca cba

abc acb cab bac bca cba

acb cab bac bca

273

Decision tree

The height of a binary tree with L leaves is at least log2 L. ⇒ The
heigh of the decision tree h ≥ log n! ∈ Ω(n log n).11

Thus the length of the longest path in the decision tree ∈ Ω(n log n).

Remaining to show: mean length M(n) of a path M(n) ∈ Ω(n log n).

11logn! ∈ Θ(n logn):
logn! =

∑n
k=1 log k ≤ n logn.

logn! =
∑n

k=1 log k ≥
∑n

k=n/2 log k ≥ n
2
· log n

2
.

274

Average lower bound

Tbl

Tbr

← br →
← bl →

Decision tree Tn with n leaves, average height
of a leaf m(Tn)

Assumption m(Tn) ≥ log n not for all n.

Choose smalles b with m(Tb) < log n⇒ b ≥ 2

bl + br = b, wlog bl > 0 und br > 0⇒
bl < b, br < b⇒ m(Tbl) ≥ log bl und
m(Tbr) ≥ log br

275

Average lower bound

Average height of a leaf:

m(Tb) =
bl
b

(m(Tbl) + 1) +
br
b

(m(Tbr) + 1)

≥ 1

b
(bl(log bl + 1) + br(log br + 1)) =

1

b
(bl log 2bl + br log 2br)

≥ 1

b
(b log b) = log b.

Contradiction. �
The last inequality holds because f(x) = x log x is convex and for a convex
function it holds that f((x+ y)/2) ≤ 1/2f(x) + 1/2f(y) (x = 2bl, y = 2br).12

Enter x = 2bl, y = 2br, and bl + br = b.

12generally f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for 0 ≤ λ ≤ 1.
276

10.2 Radixsort and Bucketsort

Radixsort, Bucketsort [Ottman/Widmayer, Kap. 2.5, Cormen et al, Kap. 8.3]

277

Radix Sort

Sorting based on comparison: comparable keys (< or >, often =).
No further assumptions.

Different idea: use more information about the keys.

278

Annahmen

Assumption: keys representable as words from an alphabet
containing m elements.

Examples

m = 10 decimal numbers 183 = 18310
m = 2 dual numbers 1012
m = 16 hexadecimal numbers A016
m = 26 words “INFORMATIK”

m is called the radix of the representation.

279

Assumptions

keys = m-adic numbers with same length.
Procedure z for the extraction of digit k in O(1) steps.

Example
z10(0, 85) = 5
z10(1, 85) = 8
z10(2, 85) = 0

280

Radix-Exchange-Sort

Keys with radix 2.

Observation: if k ≥ 0,

z2(i, x) = z2(i, y) for all i > k

and
z2(k, x) < z2(k, y),

then x < y.

281

Radix-Exchange-Sort

Idea:

Start with a maximal k.
Binary partition the data sets with z2(k, ·) = 0 vs. z2(k, ·) = 1 like
with quicksort.
k ← k − 1.

282

Radix-Exchange-Sort

0111 0110 1000 0011 0001

0111 0110 0001 0011 1000

0011 0001 0110 0111 1000

0001 0011 0110 0111 1000

0001 0011 0110 0111 1000

283

Algorithm RadixExchangeSort(A, l, r, b)
Input : Array A with length n, left and right bounds 1 ≤ l ≤ r ≤ n, bit

position b
Output : Array A, sorted in the domain [l, r] by bits [0, . . . , b] .
if l > r and b ≥ 0 then

i← l − 1
j ← r + 1
repeat

repeat i← i+ 1 until z2(b, A[i]) = 1 and i ≥ j
repeat j ← j + 1 until z2(b, A[j]) = 0 and i ≥ j
if i < j then swap(A[i], A[j])

until i ≥ j
RadixExchangeSort(A, l, i− 1, b− 1)
RadixExchangeSort(A, i, r, b− 1)

284

Analysis

RadixExchangeSort provide recursion with maximal recursion depth
= maximal number of digits p.

Worst case run time O(p · n).

285

Bucket Sort
3 8 18 122 121 131 23 21 19 29

0 1 2 3 4 5 6 7 8 9

121
131
21

122 3
23

8
18

19
29

121 131 21 122 3 23 8 18 19 29
286

Bucket Sort

121 131 21 122 3 23 8 18 19 29

0 1 2 3 4 5 6 7 8 9

3
8

18
19

121
21

122
23
29

131

3 8 18 19 121 21 122 23 29
287

Bucket Sort
3 8 18 19 121 21 122 23 29

0 1 2 3 4 5 6 7 8 9

3
8

18
19
21
23
29

121
122
131

3 8 18 19 21 23 29 121 122 131
288

implementation details

Bucket size varies greatly. Two possibilities

Linked list for each digit.
One array of length n. compute offsets for each digit in the first
iteration.

289

11. Fundamental Data Types

Abstract data types stack, queue, implementation variants for linked
lists, amortized analysis [Ottman/Widmayer, Kap. 1.5.1-1.5.2,
Cormen et al, Kap. 10.1.-10.2,17.1-17.3]

290

Abstract Data Types

We recall

A stack is an abstract data type (ADR) with operations

push(x, S): Puts element x on the stack S.
pop(S): Removes and returns top most element of S or null
top(S): Returns top most element of S or null.
isEmpty(S): Returns true if stack is empty, false otherwise.
emptyStack(): Returns an empty stack.

291

Implementation Push

top xn xn−1 x1 null

x

push(x, S):

1 Create new list element with x and pointer to the value of top.
2 Assign the node with x to top.

292

Implementation Pop

top xn xn−1 x1 null

r

pop(S):

1 If top=null, then return null
2 otherwise memorize pointer p of top in r.
3 Set top to p.next and return r

293

Analysis

Each of the operations push, pop, top and isEmpty on a stack can
be executed in O(1) steps.

294

Queue (fifo)

A queue is an ADT with the following operations

enqueue(x,Q): adds x to the tail (=end) of the queue.
dequeue(Q): removes x from the head of the queue and returns x
(null otherwise)
head(Q): returns the object from the head of the queue (null
otherwise)
isEmpty(Q): return true if the queue is empty, otherwise false
emptyQueue(): returns empty queue.

295

Implementation Queue
x1 x2 xn−1 xn

head tail

null

x null

enqueue(x, S):

1 Create a new list element with x and pointer to null.
2 If tail 6= null, then set tail.next to the node with x.
3 Set tail to the node with x.
4 If head = null, then set head to tail.

296

Invariants
x1 x2 xn−1 xn

head tail

null

With this implementation it holds that

either head = tail = null,
or head = tail 6= null and head.next = null
or head 6= null and tail 6= null and head 6= tail and
head.next 6= null.

297

Implementation Queue
x1 x2 xn−1 xn

head tail

null

r

dequeue(S):

1 Store pointer to head in r. If r = null, then return r .
2 Set the pointer of head to head.next.
3 Is now head = null then set tail to null.
4 Return the value of r.

298

Analysis

Each of the operations enqueue, dequeue, head and isEmpty on
the queue can be executed in O(1) steps.

299

Implementation Variants of Linked Lists

List with dummy elements (sentinels).

x1 x2 xn−1 xn

head tail

Advantage: less special cases

Variant: like this with pointer of an element stored singly indirect.

300

Implementation Variants of Linked Lists

Doubly linked list

null x1 x2 xn−1 xn null

head tail

301

Overview

enqueue insert delete search concat
(A) Θ(1) Θ(1) Θ(n) Θ(n) Θ(n)
(B) Θ(1) Θ(1) Θ(n) Θ(n) Θ(1)
(C) Θ(1) Θ(1) Θ(1) Θ(n) Θ(1)
(D) Θ(1) Θ(1) Θ(1) Θ(n) Θ(1)

(A) = singly linked
(B) = Singly linked with dummy
(C) = Singly linked with indirect element addressing
(D) = doubly linked

302

priority queue

Priority Queue

Operations

insert(x,p,Q): Enter object x with priority p.
extractMax(Q): Remove and return object x with highest priority.

303

Implementation Priority Queue

With a Max Heap

Thus

insert in O(log n) and
extractMax in O(log n).

304

Multistack

Multistack adds to the stack operations below

multipop(s,S): remove the min(size(S), k) most recently inserted
objects and return them.

Implementation as with the stack. Runtime of multipop is O(k).

305

Academic Question

If we execute on a stack with n elements a number of n times
multipop(k,S) then this costs O(n2)?

Certainly correct because each multipop may take O(n) steps.

How to make a better estimation?

306

Idea (accounting)

Introduction of a cost model:

Each call of push costs 1 CHF and additional 1 CHF will be put to
account.
Each call to pop costs 1 CHF and will be paid from the account.

Account will never have a negative balance. Thus: maximal costs =
number of push operations times two.

307

More Formal
Let ti denote the real costs of the operation i. Potential function
Φi ≥ 0 for the “account balance” after i operations. Φi ≥ Φ0 ∀i.
Amortized costs of the ith operation:

ai := ti + Φi − Φi−1.

It holds

n∑
i=1

ai =
n∑
i=1

(ti + Φi − Φi−1) =

(
n∑
i=1

ti

)
+ Φn − Φ0 ≥

n∑
i=1

ti.

Goal: find potential function that evens out expensive operations.
308

Example stack

Potential function Φi = number element on the stack.

push(x, S): real costs ti = 1. Φi − Φi−1 = 1. Amortized costs
ai = 2.
pop(S): real costs ti = 1. Φi − Φi−1 = −1. Amortized costs
ai = 0.
multipop(k, S): real costs ti = k. Φi − Φi−1 = −k. amortized
costs ai = 0.

All operations have constant amortized cost! Therefore, on average
Multipop requires a constant amount of time.

309

Example Binary Counter

Binary counter with k bits. In the worst case for each count
operation maximally k bitflips. Thus O(n · k) bitflips for counting from
1 to n. Better estimation?

Real costs ti = number bit flips from 0 to 1 plus number of bit-flips
from 1 to 0.

...0 1111111︸ ︷︷ ︸
l Einsen

+1 = ...1 0000000︸ ︷︷ ︸
l Zeroes

.

⇒ ti = l + 1

310

Example Binary Counter

...0 1111111︸ ︷︷ ︸
l Einsen

+1 = ...1 0000000︸ ︷︷ ︸
l Nullen

potential function Φi: number of 1-bits of xi.

⇒ Φi − Φi−1 = 1− l,
⇒ ai = ti + Φi − Φi−1 = l + 1 + (1− l) = 2.

Amortized constant cost for each count operation.

311

12. Dictionaries

Dictionary, Self-ordering List, Implementation of Dictionaries with
Array / List /Skip lists. [Ottman/Widmayer, Kap. 3.3,1.7, Cormen et
al, Kap. Problem 17-5]

312

Dictionary

ADT to manage keys from a set K with operations

insert(k,D): Insert k ∈ K to the dictionary D. Already exists⇒
error messsage.
delete(k,D): Delete k from the dictionary D. Not existing⇒
error message.
search(k,D): Returns true if k ∈ D, otherwise false

313

Idea

Implement dictionary as sorted array

Worst case number of fundamental operations

Search O(log n)
Insert O(n)
Delete O(n)

314

Other idea

Implement dictionary as a linked list

Worst case number of fundamental operations

Search O(n)
Insert O(1)13

Delete O(n)

13Provided that we do not have to check existence.
315

Self Ordered Lists

Problematic with the adoption of a linked list: linear search time

Idea: Try to order the list elements such that accesses over time are
possible in a faster way

For example

Transpose: For each access to a key, the key is moved one
position closer to the front.
Move-to-Front (MTF): For each access to a key, the key is moved
to the front of the list.

316

Transpose

Transpose:

k1 k2 k3 k4 k5 · · · kn−1 knkn kn−1kn−1 kn

Worst case: Alternating sequence of n accesses to kn−1 and kn.
Runtime: Θ(n2)

317

Move-to-Front
Move-to-Front:

k1 k2 k3 k4 k5 · · · kn−1 knkn−1 k1 k2 k3 k4 kn−2 knkn kn−1 k1 k2 k3 kn−3 kn−2

Alternating sequence of n accesses to kn−1 and kn. Runtime: Θ(n)

Also here we can provide a sequence of accesses with quadratic
runtime, e.g. access to the last element. But there is no obvious
strategy to counteract much better than MTF..

318

Analysis

Compare MTF with the best-possible competitor (algorithm) A. How
much better can A be?

Assumption: MTF and A may only move the accessed element.
MTF and A start with the same list. Let Mk and Ak designate the
lists after the kth step. M0 = A0.

319

Analysis
Costs:

Access to x: position p of x in the list.
No further costs, if x is moved before p
Further costs q for each element that x is moved back starting
from p.

x

p q

320

Amortized Analysis

Let an arbitrary sequence of search requests be given and let G(M)
k

and G(A)
k the costs in step k for Move-to-Front and A, respectively.

Want estimation of
∑

kG
(M)
k compared with

∑
kG

(A)
k .

⇒ Amortized analysis with potential function Φ.

321

Potential Function
Potential function Φ = Number of inversions of A vs. MTF.

Inversion = Pair x, y such that for the positions of a and y
p(A)(x) < p(A)(y) ∧ p(M)(x) > p(M)(x) or
p(A)(x) > p(A)(y) ∧ p(M)(x) < p(M)(x)

Ak 1 2 3 4 5 6 7 8 9 10

Mk 4 1 2 10 6 5 3 7 8 9

#inversion = #crossings

322

Estimating the Potential Function: MTF
Element i at position
pi := p(M)(i).

access costs C(M)
k = pi.

xi: Number elements that are
in M before pi and in A after i .

MTF removes xi inversions.

pi − xi − 1: Number elements
that in M are before pi and in
A are before i.

MTF generates pi − 1− xi
inversions.

Ak 1 2 3 4 5 6 7 8 9 10

Mk 4 1 2 10 6 5 3 7 8 91 24 7 8 9610 3

Ak 1 2 3 4 5 6 7 8 9 10

Mk+1 5 4 1 2 10 6 3 7 8 91 24 3610 7 8 9

323

Estimating the Potential Function: A

(Wlog) element i at
position i.

X
(A)
k : number

movements to the back
(otherwise 0).
access costs for i:
C

(A)
k = i

A increases the number
of inversions by X(A)

k .

Ak 1 2 3 4 5 6 7 8 9 10

Mk+1 5 4 1 2 10 6 3 7 8 9

1 2 3 4 6 7 8 9 10

Ak+1 1 2 3 4 6 7 5 8 9 10

Mk+1 5 4 1 2 106 3 7 8 9

1 2 3 4 6 7 8 9 10

324

Estimation

Φk+1 − Φk =≤ −xi + (pi − 1− xi) +X
(A)
k

Amortized costs of MTF in step k:

a
(M)
k = C

(M)
k + Φk+1 − Φk

≤ pi − xi + (pi − 1− xi) +X
(A)
k

= (pi − xi) + (pi − xi)− 1 +X
(A)
k

≤ C
(A)
k + C

(A)
k − 1 +X

(A)
k .

325

Estimation

Summing up costs∑
k

G
(M)
k =

∑
k

C
(M)
k ≤

∑
k

a
(M)
k ≤

∑
k

2 · C(A)
k − 1 +X

(A)
k

≤
∑
k

2 · C(A)
k +X

(A)
k ≤ 2 ·

∑
k

C
(A)
k +X

(A)
k

= 2 ·
∑
k

G
(A)
k

In the worst case MTF requires at most twice as many operations as
the optimal strategy.

326

Cool idea: skip lists

Perfect skip list

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

x1 ≤ x2 ≤ x3 ≤ · · · ≤ x9.
Example: search for a key x with x5 < x < x6.

327

Analysis perfect skip list (worst cases)

Search in O(log n). Insert in O(n).

328

Randomized Skip List

Idea: insert a key with random height H with P(H = i) = 1
2i+1 .

x1 x2 x3 x4 x5 x6 x7 x8 ∞
0
1
2
3

329

Analysis Randomized Skip List

Theorem
The expected number of fundamental operations for Search, Insert
and Delete of an element in a randomized skip list is O(log n).

The lengthy proof that will not be presented in this courseobserves the length of a
path from a searched node back to the starting point in the highest level.

330

13. C++ advanced (III): Functors and Lambda

331

13.1 Appendix to previous C++ chapters

332

Appendix about Move-Semantics

// nonsense implementation of a "vector" for demonstration purposes
class vec{
public:

vec () {
std::cout << "default constructor\n";}

vec (const vec&) {
std::cout << "copy constructor\n";}

vec& operator = (const vec&) {
std::cout << "copy assignment\n"; return ∗this;}

~vec() {}
};

333

How many Copy Operations?

vec operator + (const vec& a, const vec& b){
vec tmp = a;
// add b to tmp
return tmp;

}

int main (){
vec f;
f = f + f + f + f;

}

Output
default constructor
copy constructor
copy constructor
copy constructor
copy assignment

4 copies of the vector

334

Appendix about Move-Semantics
// nonsense implementation of a "vector" for demonstration purposes
class vec{
public:

vec () { std::cout << "default constructor\n";}
vec (const vec&) { std::cout << "copy constructor\n";}
vec& operator = (const vec&) {

std::cout << "copy assignment\n"; return ∗this;}
~vec() {}
// new: move constructor and assignment
vec (vec&&) {

std::cout << "move constructor\n";}
vec& operator = (vec&&) {

std::cout << "move assignment\n"; return ∗this;}
};

335

How many Copy Operations?

vec operator + (const vec& a, const vec& b){
vec tmp = a;
// add b to tmp
return tmp;

}

int main (){
vec f;
f = f + f + f + f;

}

Output
default constructor
copy constructor
copy constructor
copy constructor
move assignment

3 copies of the vector

336

How many Copy Operations?
vec operator + (vec a, const vec& b){

// add b to a
return a;

}

int main (){
vec f;
f = f + f + f + f;

}

Output
default constructor
copy constructor
move constructor
move constructor
move constructor
move assignment

1 copy of the vector

Explanation: move semantics are applied when an x-value (expired value) is
assigned. R-value return values of a function are examples of x-values.
http://en.cppreference.com/w/cpp/language/value_category

337

http://en.cppreference.com/w/cpp/language/value_category

How many Copy Operations?

void swap(vec& a, vec& b){
vec tmp = a;
a=b;
b=tmp;

}

int main (){
vec f;
vec g;
swap(f,g);

}

Output
default constructor
default constructor
copy constructor
copy assignment
copy assignment

3 copies of the vector

338

Forcing x-values
void swap(vec& a, vec& b){

vec tmp = std::move(a);
a=std::move(b);
b=std::move(tmp);

}
int main (){

vec f;
vec g;
swap(f,g);

}

Output
default constructor
default constructor
move constructor
move assignment
move assignment

0 copies of the vector

Explanation: With std::move an l-value expression can be transformed into an
x-value. Then move-semantics are applied. http://en.cppreference.com/w/cpp/utility/move

339

http://en.cppreference.com/w/cpp/utility/move

13.2 Functors and Lambda-Expressions

340

Functors: Motivation

A simple output filter
template <typename T, typename function>
void filter(const T& collection, function f){

for (const auto& x: collection)
if (f(x)) std::cout << x << " ";

std::cout << "\n";
}

341

Functors: Motivation

template <typename T, typename function>
void filter(const T& collection, function f);

template <typename T>
bool even(T x){

return x % 2 == 0;
}

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
filter(a,even<int>); // output: 2,4,6,16

342

Functor: object with overloaded operator ()
class LargerThan{

int value; // state
public:
LargerThan(int x):value{x}{};

bool operator() (int par){
return par > value;

}
};

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int value=8;
filter(a,LargerThan(value)); // 9,11,16,19

Functor is a callable ob-
ject. Can be under-
stood as a stateful func-
tion.

343

Functor: object with overloaded operator ()
template <typename T>
class LargerThan{

T value;
public:

LargerThan(T x):value{x}{};

bool operator() (T par){
return par > value;

}
};

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int value=8;
filter(a,LargerThan<int>(value)); // 9,11,16,19

also works with a tem-
plate, of course

344

The same with a Lambda-Expression

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int value=8;

filter(a, [value](int x) {return x>value;});

345

Sum of Elements – Old School

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int sum = 0;
for (auto x: a)

sum += x;
std::cout << sum << "\n"; // 83

346

Sum of Elements – with Functor
template <typename T>
struct Sum{

T & value = 0;
Sum (T& v): value{v} {}

void operator() (T par){
value += par;

}
};

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int s=0;
Sum<int> sum(s);
sum = std::for_each(a.begin(), a.end(), sum);
std::cout << s << "\n"; // 83

347

Sum of Elements – with Λ

std::vector<int> a {1,2,3,4,5,6,7,9,11,16,19};
int s=0;

std::for_each(a.begin(), a.end(), [&s] (int x) {s += x;});

std::cout << s << "\n";

348

Sorting, different
// pre: i >= 0
// post: returns sum of digits of i
int q(int i){

int res =0;
for(;i>0;i/=10)

res += i % 10;
return res;

}

std::vector<int> v {10,12,9,7,28,22,14};
std::sort (v.begin(), v.end(),

[] (int i, int j) { return q(i) < q(j);}
);

Now v =10, 12, 22, 14, 7, 9, 28 (sorted by sum of digits)
349

Lambda-Expressions in Detail

[value] (int x) ->bool {return x>value;}

capture parameters return
type

statement

350

Closure

[value] (int x) ->bool {return x>value;}

Lambda expressions evaluate to a temporary object – a closure
The closure retains the execution context of the function, the
captured objects.
Lambda expressions can be implemented as functors.

351

Simple Lambda Expression

[]()−>void {std::cout << "Hello World";}

call:

[]()−>void {std::cout << "Hello World";}();

352

Minimal Lambda Expression

[]{}

Return type can be inferred if ≤ 1 return statement.

[]() {std::cout << "Hello World";}

If no parameters and no return type, then () can be omitted.

[]{std::cout << "Hello World";}

[...] can never be omitted.

353

Examples

[](int x, int y) {std::cout << x ∗ y;} (4,5);

Output: 20

354

Examples

int k = 8;
[](int& v) {v += v;} (k);
std::cout << k;

Output: 16

355

Examples

int k = 8;
[](int v) {v += v;} (k);
std::cout << k;

Output: 8

356

Capture – Lambdas

For Lambda-expressions the capture list determines the context
accessible

Syntax:

[x]: Access a copy of x (read-only)
[&x]: Capture x by reference
[&x,y]: Capture x by reference and y by value
[&]: Default capture all objects by reference in the scope of the
lambda expression
[=]: Default capture all objects by value in the context of the
Lambda-Expression

357

Capture – Lambdas

int elements=0;
int sum=0;
std::for_each(v.begin(), v.end(),

[&] (int k) {sum += k; elements++;} // capture all by reference
)

358

Capture – Lambdas

template <typename T>
void sequence(vector<int> & v, T done){

int i=0;
while (!done()) v.push_back(i++);

}

vector<int> s;
sequence(s, [&] {return s.size() >= 5;})

now v = 0 1 2 3 4

The capture list refers to the context of the lambda expression.

359

Capture – Lambdas

When is the value captured?
int v = 42;
auto func = [=] {std::cout << v << "\n"};
v = 7;
func();

Output: 42

Values are assigned when the lambda-expression is created.

360

Capture – Lambdas
(Why) does this work?
class Limited{

int limit = 10;
public:
// count entries smaller than limit
int count(const std::vector<int>& a){

int c = 0;
std::for_each(a.begin(), a.end(),

[=,&c] (int x) {if (x < limit) c++;}
);
return c;

}
};

The this pointer is implicitly copied by value
361

Capture – Lambdas

struct mutant{
int i = 0;
void do(){ [=] {i=42;}();}

};

mutant m;
m.do();
std::cout << m.i;

Output: 42

The this pointer is implicitly copied by value

362

Lambda Expressions are Functors

[x, &y] () {y = x;}

can be implemented as
unnamed {x,y};

with
class unnamed {

int x; int& y;
unnamed (int x_, int& y_) : x (x_), y (y_) {}
void operator () () {y = x;}};

};

363

Lambda Expressions are Functors

[=] () {return x + y;}

can be implemented as
unnamed {x,y};

with
class unnamed {

int x; int y;
unnamed (int x_, int y_) : x (x_), y (y_) {}
int operator () () {return x + y;}

};

364

Polymorphic Function Wrapper std::function

#include <functional>

int k= 8;
std::function<int(int)> f;
f = [k](int i){ return i+k; };
std::cout << f(8); // 16

Kann verwendet werden, um Lambda-Expressions zu speichern.

Other Examples
std::function<int(int,int)>;
std::function<void(double)> ...

http://en.cppreference.com/w/cpp/utility/functional/function

365

http://en.cppreference.com/w/cpp/utility/functional/function

14. Hashing

Hash Tables, Birthday Paradoxon, Hash functions, Perfect and
Universal Hashing, Resolving Collisions with Chaining, Open
Addressing, Probing

[Ottman/Widmayer, Kap. 4.1-4.3.2, 4.3.4, Cormen et al, Kap.
11-11.4]

366

Motivation

Gloal: Table of all n students of this course

Requirement: fast access by name

367

Naive Ideas
Mapping Name s = s1s2 . . . sls to key

k(s) =

ls∑
i=1

si · bi

b large enough such taht different names map to different keys.

Store each data set at its index in a huge array.

Example with b = 100. Ascii-Values si.
Anna 7→ 71111065
Jacqueline 7→ 102110609021813999774

Unrealistic: requires too large arrays.
368

Better idea?

Allocation of an array of size m (m > n).

Mapping Name s to

km(s) =

(
ls∑
i=1

si · bi
)

mod m.

Different names can map to the same key (“Collision”). And then?

369

Estimation

Maybe collision do not really exist? We make an estimation ...

370

Abschätzung

Assumption: m urns, n balls (wlog n ≤ m).
n balls are put uniformly distributed into the urns

What is the collision probability?

Very similar question: with how many people (n) the probability that
two of them share the same birthday (m = 365) is larger than 50%?

371

Estimation
P(no collision) = m

m ·
m−1
m · · · · ·

m−n+1
m = m!

(m−n)!·mm .

Let a� m. With ex = 1 + x+ x2

2! + . . . approximate 1− a
m ≈ e−

a
m .

This yields:

1 ·
(

1− 1

m

)
·
(

1− 2

m

)
· ... ·

(
1− n− 1

m

)
≈ e−

1+···+n−1
m = e−

n(n−1)
2m .

Thus
P(Kollision) = 1− e−

n(n−1)
2m .

Puzzle answer: with 23 people the probability for a birthday collision is 50.7%. Derived from the slightly more accurate

Stirling formula. 372

With filling degree:

With filling degree α :=
n/m it holds that (simplified
further)

P(collision) ≈ 1− e−α2·m2 .

100 200 300

0.5

1

10%

5%

20%

m

P(Kollision)

The maximal filling degree should be chosen according to the ratio
n2/m.

373

Nomenclature

Hash funtion h: Mapping from the set of keys K to the index set
{0, 1, . . . ,m− 1} of an array (hash table).

h : K → {0, 1, . . . ,m− 1}.

Normally |K| � m. There are k1, k2 ∈ K with h(k1) = h(k2)
(collision).

A hash function should map the set of keys as uniformly as possible
to the hash table.

374

Examples of Good Hash Functions

h(k) = k mod m, m prime

h(k) = bm(k · r − bk · rc)c, r irrational, paritcularly good:
r =

√
5−1
2 .

375

Perfect Hashing

Is the set of used keys known up front? Then the hash function can
be chosen perfectly. The practical construction is non-trivial.

Example: table of key words of a compiler.

376

Universal Hashing

|K| > m⇒ Set of “similar keys” can be chose such that a large
number of collisions occur.
Impossible to select a “best” hash function for all cases.
Possible, however14: randomize!

Universal hash class H ⊆ {h : K → {0, 1, . . . ,m− 1}} is a family of
hash functions such that

∀k1 6= k2 ∈ K : |{h ∈ H|h(k1) = h(k2)}| ≤
1

m
|H|.

14Similar as for quicksort
377

Universal Hashing

Theorem
A function h randomly chosen from a universal class H of hash
functions randomly distributes an arbitrary sequence of keys from K
as uniformly as possible on the available slots.

378

Universal Hashing

Initial remark for the proof of the theorem:

Define with x, y ∈ K, h ∈ H, Y ⊆ K:

δ(x, y, h) =

{
1, if h(x) = h(y), x 6= y

0, otherwise,

δ(x, Y, h) =
∑
y∈Y

δ(x, y, h),

δ(x, y,H) =
∑
h∈H

δ(x, y, h).

H is universal if for all x, y ∈ K, x 6= y : δ(x, y,H) ≤ |H|/m.

379

Universal Hashing
Proof of the theorem

S ⊆ K: keys stored up to now. x is added now:

EH(δ(x, S, h)) =
∑
h∈H

δ(x, S, h)/|H|

=
1

|H|
∑
h∈H

∑
y∈S

δ(x, y, h) =
1

|H|
∑
y∈S

∑
h∈H

δ(x, y, h)

=
1

|H|
∑
y∈S

δ(x, y,H)

≤ 1

|H|
∑
y∈S

|H|/m =
|S|
m
.

�
380

Universal Hashing is Relevant!

Let p be prime and K = {0, . . . , p− 1}. With a ∈ K \ {0}, b ∈ K
define

hab : K → {0, . . . ,m− 1}, hab(x) = ((ax+ b) mod p) mod m.

Then the following theorem holds:

Theorem
The class H = {hab|a, b ∈ K, a 6= 0} is a universal class of hash
functions.

381

Resolving Collisions
Example m = 7, K = {0, . . . , 500}, h(k) = k mod m.
Keys 12 , 53 , 5 , 15 , 2 , 19 , 43

Chaining the Collisions

15

43

2 53 12

5

19

hash table

Colliding entries

0 1 2 3 4 5 6

382

Resolving Collisions
Example m = 7, K = {0, . . . , 500}, h(k) = k mod m.
Keys 12 , 53 , 5 , 15 , 2 , 19 , 43

Direct Chaining of the Colliding entries

15

43

2 53 12

5

19

hash table

Colliding entries

0 1 2 3 4 5 6

383

Algorithm for Hashing with Chaining

search(k) Search in list from position h(k) for k. Return true if
found, otherwise false.
insert(k) Check if k is in list at position h(k). If no, then append
k to the end of the list.
delete(k) Search the list at position h(k) for k. If successful,
remove the list element.

384

Analysis (directly chained list)
1 Unsuccesful search. The average list lenght is α = n

m . The list
has to be traversed completely.
⇒ Average number of entries considered

C ′n = α.

2 Successful search Consider the insertion history: key j sees an
average list length of (j − 1)/m.
⇒ Average number of considered entries

Cn =
1

n

n∑
j=1

(1 + (j − 1)/m)) = 1 +
1

n

n(n− 1)

2m
≈ 1 +

α

2
.

385

Advantages and Disadvantages

Advantages

Possible to overcommit: α > 1

Easy to remove keys.

Disadvantages

Memory consumption of the chains-

386

Open Addressing

Store the colliding entries directly in the hash table using a probing
function s(j, k) (0 ≤ j < m, k ∈ K)

Key table position along a probing sequence

S(k) := (h(k)− s(0, k) mod m, . . . , (h(k)− (m− 1, k)) mod m

387

Algorithms for open addressing

search(k) Traverse table entries according to S(k). If k is found,
return true. If the probing sequence is finished or an empty
position is reached, return false.
insert(k) Search for k in the table according to S(k). If k is not
present, insert k at the first free position in the probing sequence.
15

delete(k) Search k in the table according to S(k). If k is found,
mark the position of k with a deleted flag

15A position is also free when it is non-empty and contains a deleted flag.
388

Linear Probing

s(j, k) = j ⇒
S(k) = (h(k) mod m, (h(k)− 1) mod m, . . . , (h(k) + 1) mod m)

Example m = 7, K = {0, . . . , 500}, h(k) = k mod m.
Key 12 , 53 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

1253515 219

389

Analysis linear probing (without proof)

1 Unsuccessful search. Average number of considered entries

C ′n ≈
1

2

(
1 +

1

(1− α)2

)

2 Successful search. Average number of considered entries

Cn ≈
1

2

(
1 +

1

1− α

)
.

390

Discussion

Example α = 0.95

The unsuccessful search consideres 200 table entries on average!

? Disadvantage of the method?

! Primary clustering: simular hasht addresses have similar probing
sequences⇒ long contiguous areas of used entries.

391

Quadratic Probing

s(j, k) = dj/2e2 (−1)j

S(k) = (h(k) + 1, h(k)− 1, h(k) + 4, h(k)− 4, . . .) mod m

Example m = 7, K = {0, . . . , 500}, h(k) = k mod m.
Keys 12 , 53 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

1253 515 219

392

Analysis Quadratic Probing (without Proof)

1 Unsuccessful search. Average number of entries considered

C ′n ≈
1

1− α
− α + ln

(
1

1− α

)

2 Successful search. Average number of entries considered

Cn ≈ 1 + ln

(
1

1− α

)
− α

2
.

393

Discussion

Example α = 0.95

Unsuccessfuly search considers 22 entries on average

? Problems of this method?
! Secondary clustering: Synonyms k and k′ (with h(k) = h(k′))

travers the same probing sequence.

394

Double Hashing

Two hash functions h(k) and h′(k). s(j, k) = j · h′(k).
S(k) = (h(k)− h′(k), h(k)− 2h′(k), . . . , h(k)− (m− 1)h′(k)) mod m

Example:
m = 7, K = {0, . . . , 500}, h(k) = k mod 7, h′(k) = 1 + k mod 5.
Keys 12 , 53 , 5 , 15 , 2 , 19

0 1 2 3 4 5 6

1253515 219

395

Double Hashing

Probing sequence must permute all hash addresses. Thus
h′(k) 6= 0 and h′(k) may not divide m, for example guaranteed
with m prime.
h′ should be independent of h (avoiding secondary clustering)

Independence:

P ((h(k) = h(k′)) ∧ (h′(k) = h′(k′))) = P (h(k) = h(k′)) ·P (h′(k) = h′(k′)) .

Independence fulfilled by h(k) = k mod m and h′(k) = 1 + k mod (m− 2) (m
prime).

396

Analysis Double Hashing

Let h and h′ be independent, then:

1 Unsuccessful search. Average number of considered entries:

C ′n ≈
1

1− α

2 Successful search. Average number of considered entries:

Cn ≈ 1 +
α

2
+
α3

4
+
α4

15
− α5

18
+ · · · < 2.5

397

Overview

α = 0.50 α = 0.90 α = 0.95

Cn C ′n Cn C ′n Cn C ′n

Separate Chaining 1.250 1.110 1.450 1.307 1.475 1.337

Direct Chaining 1.250 0.500 1.450 0.900 1.475 0.950

Linear Probing 1.500 2.500 5.500 50.500 10.500 200.500

Quadratic Probing 1.440 2.190 2.850 11.400 3.520 22.050

Double Hashing 1.39 2.000 2.560 10.000 3.150 20.000

398

15. C++ advanced (IV): Exceptions

399

Some operations that can fail

Opening files for reading and writing
std::ifstream input("myfile.txt");

Parsing
int value = std::stoi("12−8");

Memory allocation
std::vector<double> data(ManyMillions);

Invalid data
int a = b/x; // what if x is zero?

400

Possibilities of Error Handling

None (inacceptable)
Global error variable (flags)
Functions returning Error Codes
Objects that keep error status
Exceptions

401

Global error variables

Common in older C-Code
Concurrency is a problem.
Error handling at good will. Requires extreme discipline,
documentation and litters the code with seemingly unrelated
checks.

402

Functions Returning Error Codes

Every call to a function yields a result.
Typical for large APIs (e.g. OS level). Often combined with global
error code.16

Caller can check the return value of a function in order to check
the correct execution.

16Global error code thread-safety provided via thread-local storage.
403

Functions Returning Error Codes

Example

#include <errno.h>
...

pf = fopen ("notexisting.txt", "r+");
if (pf == NULL) {

fprintf(stderr, "Error opening file: %s\n", strerror(errno));
}
else { // ...

fclose (pf);
}

404

Error state Stored in Object

Error state of an object stored internally in the object.

Example

int i;
std::cin >> i;
if (std::cin.good()){// success, continue

...
}

405

Exceptions

Exceptions break the normal control flow
Exceptions can be thrown (throw) and catched (catch)
Exceptions can become effective accross function boundaries.

406

Example: throw exception
class MyException{};

void f(int i){
if (i==0) throw MyException();
f(i−1);

}

int main()
{

f(4);
return 0;

}
terminate called after throwing an instance of ’MyException’
Aborted

407

Example: catch exception
class MyException{};

void f(int i){
if (i==0) throw MyException();
f(i−1);

}

int main(){
try{

f(4);
}
catch (MyException e){

std::cout << "exception caught\n";
}

}

exception caught

main()

f(4)

f(3)

f(2)

f(1)

f(0)

408

Resources get closed
class MyException{};
struct SomeResource{

~SomeResource(){std::cout << "closed resource\n";}
};
void f(int i){

if (i==0) throw MyException();
SomeResource x;
f(i−1);

}
int main(){

try{f(5);}
catch (MyException e){

std::cout << "exception caught\n";
}

}

closed resource
closed resource
closed resource
closed resource
closed resource
exception caught

409

When Exceptions?

Exceptions are used for error handling exclusively.

Use throw only in order to identify an error that violates the
post-condition of a function or that makes the continued execution
of the code impossible in an other way.
Use catch only when it is clear how to handle the error
(potentially re-throwing the exception)
Do not use throw in order to show a programming error or a
violation of invariants, use assert instead.
Do not use exceptions in order to change the control flow. Throw
is not a better return.

410

Why Exceptions?
This:

int ret = f();
if (ret == 0) {

// ...
} else {

// ...code that handles the error...
}

may look better than this on a first sight:
try {

f();
// ...

} catch (std::exception& e) {
// ...code that handles the error...

}
411

Why exceptions?

Truth is that toy examples do not necessarily hit the point.

Using return-codes for error handling either pollutes the code with
checks or the error handling is not done right in the first place.

412

That’s why

Example 1: Expression evaluation (expression parser from
Introduction to programming), cf.
http://codeboard.io/projects/46131

Input: 1 + (3 * 6 / (/ 7))
Error is deap in the recursion hierarchy. How to produce a
meaningful error message (and continue execution)? Would have to
pass error code over recursion steps.

413

http://codeboard.io/projects/46131

Second Example
Value type with guarantee: values in range provided.
template <typename T, T min, T max>
class Range{
public:

Range(){}
Range (const T& v) : value (v) {

if (value < min) throw Underflow ();
if (value > max) throw Overflow ();

}
operator const T& () const {return value;}

private:
T value;

};

Error handling in the con-
structor.

414

Types of Exceptions, Hierarchical

class RangeException {};
class Overflow : public RangeException {};
class Underflow : public RangeException {};
class DivisionByZero: public RangeException {};
class FormatError: public RangeException {};

415

Operators
template <typename T, T min, T max>
Range<T, min, max> operator/ (const Range<T, min, max>& a,

const Range<T, min, max>& b){
if (b == 0) throw DivisionByZero();
return T (a) ∗ T(b);

}

template <typename T, T min, T max>
std::istream& operator >> (std::istream& is, Range<T, min, max>& a){

T value;
if (!(is >> value)) throw FormatError();
a = value;
return is;

}

Error handling in the opera-
tor.

416

Error handling (central)

Range<int,−10,10> a,b,c;
try{

std::cin >> a;
std::cin >> b;
std::cin >> c;
a = a / b + 4 ∗ (b − c);
std::cout << a;

}
catch(FormatError& e){ std::cout << "Format error\n"; }
catch(Underflow& e){ std::cout << "Underflow\n"; }
catch(Overflow& e){ std::cout << "Overflow\n"; }
catch(DivisionByZero& e){ std::cout << "Divison By Zero\n"; }

417

16. Binary Search Trees

[Ottman/Widmayer, Kap. 5.1, Cormen et al, Kap. 12.1 - 12.3]

418

Dictionary implementation

Hashing: implementation of dictionaries with expected very fast
access times.

Disadvantages of hashing: linear access time in worst case. Some
operations not supported at all:

enumerate keys in increasing order
next smallest key to given key

419

Trees

Trees are

Generalized lists: nodes can have more than one successor
Special graphs: graphs consist of nodes and edges. A tree is a
fully connected, directed, acyclic graph.

420

Trees

Use
Decision trees: hierarchic representation of
decision rules
syntax trees: parsing and traversing of
expressions, e.g. in a compiler
Code tress: representation of a code, e.g.
morse alphabet, huffman code
Search trees: allow efficient searching for an
element by value

421

Examples

start

E

I

S

H V

U

F U

A

R

L A

W

P I

T

N

D

B X

K

C Y

M

G

Z Q

O

Ö CH

longshort

Morsealphabet

422

Examples

3/5 + 7.0

+

/

3 5

7.0

Expression tree
423

Nomenclature

Wurzel

W

I E

K

parent

child

inner node

leaves

Order of the tree: maximum number of child nodes, here: 3
Height of the tree: maximum path length root – leaf (here: 4)

424

Binary Trees
A binary tree is either

a leaf, i.e. an empty tree, or
an inner leaf with two trees Tl (left subtree) and Tr (right subtree)
as left and right successor.

In each node v we store

a key v.key and
two nodes v.left and v.right to the roots of the left and right
subtree.
a leaf is represented by the null-pointer

key

left right

425

Binary search tree
A binary search tree is a binary tree that fulfils the search tree
property:

Every node v stores a key
Keys in the left subtree v.left of v are smaller than v.key
Key in the right subtree v.right of v are larger than v.key

16

7

5

2

10

9 15

18

17 30

99

426

Searching

Input : Binary search tree with root r, key k
Output : Node v with v.key = k or null
v ← r
while v 6= null do

if k = v.key then
return v

else if k < v.key then
v ← v.left

else
v ← v.right

return null

8

4 13

10

9

19

Search (12)→ null

427

Height of a tree

The height h(T) of a tree T with root r is given by

h(r) =

{
0 if r = null
1 + max{h(r.left), h(r.right)} otherwise.

The worst case run time of the search is thus O(h(T))

428

Insertion of a key

Insertion of the key k
Search for k
If successful search: output
error
Of no success: insert the key at
the leaf reached

8

4

5

13

10

9

19

Insert (5)

429

Remove node

Three cases possible:
Node has no children
Node has one child
Node has two children

[Leaves do not count here]

8

3

5

4

13

10

9

19

430

Remove node

Node has no children
Simple case: replace node by leaf.

8

3

5

4

13

10

9

19

remove(4)−→

8

3

5

13

10

9

19

431

Remove node

Node has one child
Also simple: replace node by single child.

8

3

5

4

13

10

9

19

remove(3)−→

8

5

4

13

10

9

19

432

Remove node

Node has two children

The following observation helps: the
smallest key in the right subtree v.right
(the symmetric successor of v)

is smaller than all keys in v.right

is greater than all keys in v.left

and cannot have a left child.
Solution: replace v by its symmetric suc-
cessor.

8

3

5

4

13

10

9

19

433

By symmetry...

Node has two children

Also possible: replace v by its symmetric
predecessor.

8

3

5

4

13

10

9

19

434

Algorithm SymmetricSuccessor(v)

Input : Node v of a binary search tree.
Output : Symmetric successor of v
w ← v.right
x← w.left
while x 6= null do

w ← x
x← x.left

return w

435

Analysis

Deletion of an element v from a tree T requires O(h(T))
fundamental steps:

Finding v has costs O(h(T))

If v has maximal one child unequal to nullthen removal takes
O(1) steps
Finding the symmetric successor n of v takes O(h(T)) steps.
Removal and insertion of n takes O(1) steps.

436

Traversal possibilities

preorder: v, then Tleft(v), then
Tright(v).
8, 3, 5, 4, 13, 10, 9, 19
postorder: Tleft(v), then Tright(v), then
v.
4, 5, 3, 9, 10, 19, 13, 8
inorder: Tleft(v), then v, then Tright(v).
3, 4, 5, 8, 9, 10, 13, 19

8

3

5

4

13

10

9

19

437

Further supported operations

Min(T): Read-out minimal value in
O(h)

ExtractMin(T): Read-out and remove
minimal value in O(h)

List(T): Output the sorted list of
elements
Join(T1, T2): Merge two trees with
max(T1) < min(T2) in O(n).

8

3

5

4

13

10

9

19

438

Degenerated search trees

9

5

4 8

13

10 19

Insert 9,5,13,4,8,10,19
ideally balanced

4

5

8

9

10

13

19

Insert 4,5,8,9,10,13,19
linear list

19

13

10

9

8

5

4

Insert 19,13,10,9,8,5,4
linear list

439

17. AVL Trees

Balanced Trees [Ottman/Widmayer, Kap. 5.2-5.2.1, Cormen et al,
Kap. Problem 13-3]

440

Objective

Searching, insertion and removal of a key in a tree generated from n
keys inserted in random order takes expected number of steps
O(log2 n).

But worst case Θ(n) (degenerated tree).

Goal: avoidance of degeneration. Artificial balancing of the tree for
each update-operation of a tree.

Balancing: guarantee that a tree with n nodes always has a height of
O(log n).

Adelson-Venskii and Landis (1962): AVL-Trees

441

Balance of a node

The height balance of a node v is de-
fined as the height difference of its
sub-trees Tl(v) and Tr(v)

bal(v) := h(Tr(v))− h(Tl(v))

v

Tl(v)

Tr(v)

hl
hr

bal(v)

442

AVL Condition

AVL Condition: for eacn node v of a
tree bal(v) ∈ {−1, 0, 1}

v

Tl(v)

Tr(v)

h h+ 1

h+ 2

443

(Counter-)Examples

AVL tree with height
2 AVL tree with height

3 No AVL tree

444

Number of Leaves

1. observation: a binary search tree with n keys provides exactly
n+ 1 leaves. Simple induction argument.
2. observation: a lower bound of the number of leaves in a search
tree with given height implies an upper bound of the height of a
search tree with given number of keys.

445

Lower bound of the leaves

AVL tree with height 1 has
M(1) := 2 leaves.

AVL tree with height 2 has
at least M(2) := 3 leaves.

446

Lower bound of the leaves for h > 2

Height of one subtree ≥ h− 1.
Height of the other subtree ≥ h− 2.

Minimal number of leaves M(h) is

M(h) = M(h− 1) +M(h− 2)

v

Tl(v)

Tr(v)

h− 2 h− 1

h

Overal we have M(h) = Fh+2 with Fibonacci-numbers F0 := 0,
F1 := 1, Fn := Fn−1 + Fn−2 for n > 1.

447

[Fibonacci Numbers: closed form]

Closed form of the Fibonacci numbers: computation via generation
functions:

1 Power series approach

f(x) :=
∞∑
i=0

Fi · xi

448

[Fibonacci Numbers: closed form]

2 For Fibonacci Numbers it holds that F0 = 0, F1 = 1,
Fi = Fi−1 + Fi−2 ∀i > 1. Therefore:

f(x) = x+
∞∑
i=2

Fi · xi = x+
∞∑
i=2

Fi−1 · xi +
∞∑
i=2

Fi−2 · xi

= x+ x
∞∑
i=2

Fi−1 · xi−1 + x2
∞∑
i=2

Fi−2 · xi−2

= x+ x
∞∑
i=0

Fi · xi + x2
∞∑
i=0

Fi · xi

= x+ x · f(x) + x2 · f(x).
449

[Fibonacci Numbers: closed form]

3 Thus:

f(x) · (1− x− x2) = x.

⇔ f(x) =
x

1− x− x2

⇔ f(x) =
x

(1− φx) · (1− φ̂x)

with the roots φ and φ̂ of 1− x− x2.

φ =
1 +
√

5

2

φ̂ =
1−
√

5

2
.

450

[Fibonacci Numbers: closed form]

4 It holds that:
(1− φ̂x)− (1− φx) =

√
5 · x.

Damit:

f(x) =
1√
5

(1− φ̂x)− (1− φx)

(1− φx) · (1− φ̂x)

=
1√
5

(
1

1− φx
− 1

1− φ̂x

)

451

[Fibonacci Numbers: closed form]

5 Power series of ga(x) = 1
1−a·x (a ∈ R):

1

1− a · x
=

∞∑
i=0

ai · xi.

E.g. Taylor series of ga(x) at x = 0 or like this: Let
∑∞

i=0Gi · xi a power
series of g. By the identity ga(x)(1− a · x) = 1 it holds that

1 =
∞∑
i=0

Gi · xi − a ·
∞∑
i=0

Gi · xi+1 = G0 +
∞∑
i=1

(Gi − a ·Gi−1) · xi

Thus G0 = 1 and Gi = a ·Gi−1 ⇒ Gi = ai.
452

[Fibonacci Numbers: closed form]

6 Fill in the power series:

f(x) =
1√
5

(
1

1− φx
− 1

1− φ̂x

)
=

1√
5

(∞∑
i=0

φixi −
∞∑
i=0

φ̂ixi

)

=
∞∑
i=0

1√
5

(φi − φ̂i)xi

Comparison of the coefficients with f(x) =
∑∞

i=0 Fi · xi yields

Fi =
1√
5

(φi − φ̂i).

453

Fibonacci Numbers

It holds that Fi = 1√
5
(φi − φ̂i) with roots φ, φ̂ of the equation

x2 = x+ 1 (golden ratio), thus φ = 1+
√
5

2 , φ̂ = 1−
√
5

2 .

Proof (induction). Immediate for i = 0, i = 1. Let i > 2:

Fi = Fi−1 + Fi−2 =
1√
5

(φi−1 − φ̂i−1) +
1√
5

(φi−2 − φ̂i−2)

=
1√
5

(φi−1 + φi−2)− 1√
5

(φ̂i−1 + φ̂i−2) =
1√
5
φi−2(φ+ 1)− 1√

5
φ̂i−2(φ̂+ 1)

=
1√
5
φi−2(φ2)− 1√

5
φ̂i−2(φ̂2) =

1√
5

(φi − φ̂i).

454

Tree Height

Because φ̂ < 1, overal we have

M(h) ∈ Θ

(1 +
√

5

2

)h
 ⊆ Ω(1.618h)

and thus
h ≤ 1.44 log2 n+ c.

AVL tree is asymptotically not more than 44% higher than a
perfectly balanced tree.

455

Insertion

Balance

Keep the balance stored in each node
Re-balance the tree in each update-operation

New node n is inserted:

Insert the node as for a search tree.
Check the balance condition increasing from n to the root.

456

Balance at Insertion Point

=⇒

+1 0p p

n

case 1: bal(p) = +1

=⇒

−1 0p p

n

case 2: bal(p) = −1

Finished in both cases because the subtree height did not change

457

Balance at Insertion Point

=⇒

0 +1p p

n

case 3.1: bal(p) = 0 right

=⇒

0 −1p p

n

case 3.2: bal(p) = 0, left

Not finished in both case. Call of upin(p)

458

upin(p) - invariant

When upin(p) is called it holds that

the subtree from p is grown and
bal(p) ∈ {−1,+1}

459

upin(p)

Assumption: p is left son of pp17

=⇒

pp +1 pp 0

p p

case 1: bal(pp) = +1, done.

=⇒

pp 0 pp −1

p p

case 2: bal(pp) = 0, upin(pp)

In both cases the AVL-Condition holds for the subtree from pp

17If p is a right son: symmetric cases with exchange of +1 and −1
460

upin(p)
Assumption: p is left son of pp

pp −1

p

case 3: bal(pp) = −1,

This case is problematic: adding n to the subtree from pp has
violated the AVL-condition. Re-balance!

Two cases bal(p) = −1, bal(p) = +1
461

Rotationen

case 1.1 bal(p) = −1. 18

y

x

t1

t2

t3

pp −1

p −1

h

h− 1

h− 1

=⇒
rotation

right

x

y

t1 t2 t3

pp 0

p 0

h h− 1 h− 1

18p right son: bal(pp) = bal(p) = +1, left rotation
462

Rotationen
case 1.1 bal(p) = −1. 19

z

x

y

t1

t2
t3

t4

pp −1

p +1

h

h− 1

h− 1
h− 2

h− 2
h− 1

h− 1

=⇒
double
rotation
left-right

y

x z

t1 t2
t3

t4

pp 0

h− 1 h− 1
h− 2

h− 2
h− 1 h− 1

19p right son: bal(pp) = +1, bal(p) = −1, double rotation right left
463

Analysis

Tree height: O(log n).
Insertion like in binary search tree.
Balancing via recursion from node to the root. Maximal path
lenght O(log n).

Insertion in an AVL-tree provides run time costs of O(log n).

464

Deletion
Case 1: Children of node n are both leaves Let p be parent node of
n. ⇒ Other subtree has height h′ = 0, 1 or 2.

h′ = 1: Adapt bal(p).
h′ = 0: Adapt bal(p). Call upout(p).
h′ = 2: Rebalanciere des Teilbaumes. Call upout(p).

p

n

h = 0, 1, 2

−→

p

h = 0, 1, 2

465

Deletion

Case 2: one child k of node n is an inner node

Replace n by k. upout(k)

p

n

k −→

p

k

466

Deletion

Case 3: both children of node n are inner nodes

Replace n by symmetric successor. upout(k)
Deletion of the symmetric successor is as in case 1 or 2.

467

upout(p)

Let pp be the parent node of p.

(a) p left child of pp

1 bal(pp) = −1 ⇒ bal(pp)← 0. upout(pp)
2 bal(pp) = 0 ⇒ bal(pp)← +1.
3 bal(pp) = +1⇒ next slides.

(b) p right child of pp: Symmetric cases exchanging +1 and −1.

468

upout(p)
Case (a).3: bal(pp) = +1. Let q be brother of p
(a).3.1: bal(q) = 0.20

ypp +1

xp 0 zq 0

1 2

3 4

h− 1 h− 1

h+ 1 h+ 1

=⇒
Left Rotate(y)

z −1

y +1

x 0

1 2

2

2

h− 1 h− 1

h+ 1

h+ 1

20(b).3.1: bal(pp) = −1, bal(q) = −1, Right rotation 469

upout(p)
Case (a).3: bal(pp) = +1. (a).3.2: bal(q) = +1.21

ypp +1

xp 0 zq +1

1 2

3

4

h− 1 h− 1

h

h+ 1

=⇒
Left Rotate(y)

z 0r

y 0

x 0

1 2 3 4

h− 1 h− 1 h h+ 1

plus upout(r).

21(b).3.2: bal(pp) = −1, bal(q) = +1, Right rotation+upout
470

upout(p)
Case (a).3: bal(pp) = +1. (a).3.3: bal(q) = −1.22

ypp +1

xp 0 zq −1

w

1 2

3 4

5
h− 1 h− 1

h

=⇒
Rotate right
(z) left (y)

w 0r

y 0

x

z

0

1 2 3 4 5

h− 1 h− 1 h

plus upout(r).
22(b).3.3: bal(pp) = −1, bal(q) = −1, left-right rotation + upout

471

Conclusion

AVL trees have worst-case asymptotic runtimes of O(log n) for
searching, insertion and deletion of keys.
Insertion and deletion is relatively involved and an overkill for
really small problems.

472

18. Quadtrees

Quadtrees, Image Segmentation, Functional Minimization,
Reduction Principle

473

Quadtree

A quad tree is a tree of order 4.

... and as such it is not particularly interesting except when it is used
for ...

474

Quadtree - Interpretation und Nutzen

Separation of a two-dimensional range into 4 equally seized parts.

475

Image Segmentation

⇒ +

(Possible applications: compression, denoising, edge detection)

476

A little bit of Notation

S ⊂ Z2 finite rectangular index set (‘Pixel’)
z ∈ RS image
P family of Partitions P ⊂ 2S von S
F = (Fr)r⊂S family of ‘regression models’ Fr ⊂ Rr

fP ∈ RS ‘approximation’ with fP |r ∈ Fr, r ∈ P
S family of segmentations (P , fP)

477

Different Example

z (P , fP) fP

P : quad-tree with additional partition into polygons (‘wedges’),
fP : constant functions

478

Minimization Problem

P Partition γ ≥ 0 regularization parameter
fP approxmation z image = ‘data’

Goal: Efficient mimization of the functional

Hγ,z : S→ R, (P , fP) 7→ γ · |P|+ ‖z − fP‖22.

Result (P̂ , f̂P̂) ∈ argmin(P,fP)Hγ,z can be interpreted as optimal
compromise between regularity and fidelity to data.

479

Why Quadtrees?

Hγ,z : S→ R, (P , fP) 7→ γ · |P|+ ‖z − fP‖22.

Number of all partitions extremely large (|P| > 2|S|)
Possible to approximately minimize H using
Markov-Chain-Monte-Carlo (MCMC) Methods, very time- and
compute-intensive.
⇒ Restriction of the search space. Hierarchical partitioning using
quadtrees particularly well suited for a divide-and-conquer
approach.23

23Like quicksort (only 2d)!
480

Reduction Principle

min
(P,fP)∈S

γ|P|+ ‖z − fP‖22

= min
P∈P

{
γ|P|+

∑
r∈P

min
fr∈Fr

∑
s∈r

(z(s)− fr(s))2
}

⇒ Separation of searching for the best possible partition and the
local projections.

481

Algorithmus: Minimize(z,r,γ)
Input : Image data z ∈ RS, rectangle r ⊂ S, regularization γ > 0
Output : min(P,fP)∈S γ|P|+ ‖z − fP‖2

2

if |r| = 0 then return 0

m← γ + minfr∈Fr

∑
s∈r (z(s)− fr(s))2

if |r| > 1 then
Split r into rll,rlr,rul,rur
m1 ← Minimize(z, rll)
m2 ← Minimize(z, rlr)
m3 ← Minimize(z, rul)
m4 ← Minimize(z, rur)
m′ ← m1 +m2 +m3 +m4

else
m′ ←∞

if m′ < m then m← m′

return m 482

Constant Functions

Minimize
min
fr∈Fr

∑
s∈r

(z(s)− fr(s))2

for all functions Fr = µr being constant on r

Solution: µr = 1
r

∑
s∈r z(s)

Fast computation of µr is easily possible using prefix sums

483

Multiple Scales

484

General Regression
Consider a family of n ∈ N functions ϕi : S → R, 1 ≤ i ≤ n.

Goal: minimize ∑
s∈r

(zs −
n∑
i=1

aiϕi(s))
2

in a ∈ Rn.

Normal equations:∑
s∈r

zsϕj(s) =
∑
s∈r

n∑
i=1

aiϕi(s)ϕj(s), 1 ≤ j ≤ n

⇔
∑
s∈r

zsϕj(s) =
n∑
i=1

ai
∑
s∈r

ϕi(s)ϕj(s), 1 ≤ j ≤ n

485

General Regression

Normal equations written in matrix form:

Y = M · a.

with a = (ai)1≤i≤n and

Y :=

(∑
s∈r

zsϕj(s)

)
1≤j≤n

, M :=

(∑
s∈r

ϕi(s)ϕj(s)

)
1≤i,j≤n

.

486

General Regression

Let â be a solution of the system of equations above. Computation
of the approximation error:

min
fr∈Fr

∑
s∈r

(zs − fr(s))2 =
∑
s∈r

(zs −
n∑
i=1

âiϕi(s))
2

=
∑
s∈r

z2s − 2
n∑
i=1

âiYi +
n∑
i=1

â2iMii.

487

Example: Affine Functions

n = 3

ϕ0(s) = 1,
ϕ1(s) = s1 (x-Koordinate von s),
ϕ2(2) = s2 (y-Koordinate von s)

Regression: exercise!

488

Affine Regression

489

Effiziente lokale Berechnung
Required: fast computation of the n(n+1)

2 + n ‘moments’∑
s

ϕi(s)ϕj(s) and
∑
s∈r

zsϕj(s), 1 ≤ i, j ≤ n,

and for the computation of the approximation error∑
s∈r

z2s .

Using prefix sums it is possible to compute the local regression over
rectangles in O(1)

490

Analysis

Under the assumption that the local approximation can be computed
in O(1) the minimization algorithm over dyadic partitions (quadtrees)
takes O(|S| log |S|) steps.

491

Affine Regression + Wedgelets

492

Denoising

noised γ = 0.003 γ = 0.01 γ = 0.03 γ = 0.1

γ = 0.3 γ = 1 γ = 3 γ = 10

493

Other ideas

no quadtree: hierarchical one-dimensional modell (requires dynamic
programming)

494

19. Dynamic Programming I

Fibonacci, Längste aufsteigende Teilfolge, längste gemeinsame
Teilfolge, Editierdistanz, Matrixkettenmultiplikation,
Matrixmultiplikation nach Strassen [Ottman/Widmayer, Kap. 1.2.3,
7.1, 7.4, Cormen et al, Kap. 15]

495

Fibonacci Numbers

(again)

Fn :=

{
1 if n < 2

Fn−1 + Fn−2 if n ≥ 3.

Analysis: why ist the recursive algorithm so slow?

496

Algorithm FibonacciRecursive(n)

Input : n ≥ 0
Output : n-th Fibonacci number

if n ≤ 2 then
f ← 1

else
f ← FibonacciRecursive(n− 1) + FibonacciRecursive(n− 2)

return f

497

Analysis

T (n): Number executed operations.

n = 1, 2: T (n) = Θ(1)

n ≥ 3: T (n) = T (n− 2) + T (n− 1) + c.

T (n) = T (n− 2) + T (n− 1) + c ≥ 2T (n− 2) + c ≥ 2n/2c′ = (
√

2)nc′

Algorithm is exponential in n.

498

Reason (visual)

F47

F46

F45

F44 F43

F44

F43 F42

F45

F44

F43 F42

F43

F42 F41

Nodes with same values are evaluated often.
499

Memoization

Memoization (sic) saving intermediate results.

Before a subproblem is solved, the existence of the corresponding
intermediate result is checked.
If an intermediate result exists then it is used.
Otherwise the algorithm is executed and the result is saved
accordingly.

500

Memoization with Fibonacci

F47

F46

F45

F44 F43

F44

F45

Rechteckige Knoten wurden bereits ausgewertet.

501

Algorithm FibonacciMemoization(n)

Input : n ≥ 0
Output : n-th Fibonacci number

if n ≤ 2 then
f ← 1

else if ∃memo[n] then
f ← memo[n]

else
f ← FibonacciMemoization(n− 1) + FibonacciMemoization(n− 2)
memo[n]← f

return f

502

Analysis

Computational complexity:

T (n) = T (n− 1) + c = ... = O(n).

Algorithm requires Θ(n) memory.24

24But the naive recursive algorithm also requires Θ(n) memory implicitly.
503

Looking closer ...

... the algorithm computes the values of F1, F2, F3,. . . in the
top-down approach of the recursion.

Can write the algorithm bottom-up. Then it is called dynamic
programming.

504

Algorithm FibonacciDynamicProgram(n)

Input : n ≥ 0
Output : n-th Fibonacci number

F [1]← 1
F [2]← 1
for i← 3, . . . , n do

F [i]← F [i− 1] + F [i− 2]

return F [n]

505

Dynamic Programming: Procedure

1 Use a DP-table with information to the subproblems.
Dimension of the entries? Semantics of the entries?

2 Computation of the base cases
Which entries do not depend on others?

3 Determine computation order.
In which order can the entries be computed such that dependencies are
fulfilled?

4 Read-out the solution
How can the solution be read out from the table?

Runtime (typical) = number entries of the table times required operations per entry.

506

Dynamic Programing: Procedure with the example

1
Dimension of the table? Semantics of the entries?
n× 1 table. nth entry contains nth Fibonacci number.

2
Which entries do not depend on other entries?
Values F1 and F2 can be computed easily and independently.

3
What is the execution order such that required entries are always available?
Fi with increasing i.

4
Wie kann sich Lösung aus der Tabelle konstruieren lassen?
Fn ist die n-te Fibonacci-Zahl.

507

Longest Ascending Sequence (LAS)

1 2 3 4 5 6 7

3 2 4 6 5 7 1

1 2 3 4 5 6 7

3 2 4 6 5 7 1

Connect as many as possible fitting ports without lines crossing.

508

Formally

Consider Sequence A = (a1, . . . , an).
Search for a longest increasing
subsequence of A.
Examples of increasing subsequences:
(3, 4, 5), (2, 4, 5, 7), (3, 4, 5, 7), (3, 7).

1 2 3 4 5 6 7

3 2 4 6 5 7 1
A

Generalization: allow any numbers, even with duplicates. But only
strictly increasing subsequences are permitted. Example:
(2, 3, 3, 3, 5, 1) with increasing subsequence (2, 3, 5).

509

First idea

Assumption: LAS Lk known for k Now want to compute Lk+1 for
k + 1 .

If ak+1 fits to Lk, then Lk+1 = Lk ⊕ ak+1

Counterexample A5 = (1, 2, 5, 3, 4). Let A3 = (1, 2, 5) with L3 = A.
Determine L4 from L3?

It does not work this way, we cannot infer Lk+1 from Lk.

510

Second idea.

Assumption: a LAS Lj is known for each j ≤ k. Now compute LAS
Lk+1 for k + 1.

Look at all fitting Lk+1 = Lj ⊕ ak+1 (j ≤ k) and choose a longest
sequence.

Counterexample: A5 = (1, 2, 5, 3, 4). Let A4 = (1, 2, 5, 3) with
L1 = (1), L2 = (1, 2), L3 = (1, 2, 5), L4 = (1, 2, 5). Determine L5

from L1, . . . , L4?

That does not work either: cannot infer Lk+1 from only an arbitrary
solution Lj. We need to consider all LAS. Too many.

511

Third approach
Assumption: the LAS Lj, that ends with smallest element is known
for each of the lengths 1 ≤ j ≤ k.

Consider all fitting Lj ⊕ ak+1 (j ≤ k) and update the table of the
LAS,that end with smallest possible element.

Example: A = (1, 1000, 1001, 2, 3, 4,, 999)

A LAT
(1) (1)
(1, 1000) (1), (1, 1000)
(1, 1000, 1001) (1), (1, 1000), (1, 1000, 1001)
(1, 1000, 1001, 2) (1), (1, 2), (1, 1000, 1001)
(1, 1000, 1001, 2, 3) (1), (1, 2), (1, 2, 3)

512

DP Table

Idea: save the last element of
an increasing sequence at slot
j.
Example: 3 2 5 1 6 4
Problem: Table does not
contain the subsequence, only
the last value.
Solution: second table with the
predecessors.

Index 1 2 3 4 5 6
Wert 3 2 5 1 6 4
Predecessor −∞ −∞ 2 −∞ 5 1

0 1 2 3 4 ...
-∞ ∞ ∞ ∞ ∞
-∞ 3 ∞ ∞ ∞
-∞ 2 ∞ ∞ ∞
-∞ 2 5 ∞ ∞
-∞ 1 5 ∞ ∞
-∞ 1 5 6 ∞
-∞ 1 4 6 ∞

513

Dynamic Programming Algorithm LAS

1

Table dimension? Semantics?
Two tables T [0, . . . , n] and V [1, . . . , n]. Start with T [0]← −∞,
T [i]←∞ ∀i > 1

2

Computation of an entry
Entries in T sorted in ascending order. For each new entry ak+1 binary
search for l, such that T [l] < ak < T [l + 1]. Set T [l + 1]← ak+1. Set
V [k] = T [l].

514

Dynamic Programming algorithm LAS

3
Computation order

Traverse the list anc compute T [k] and V [k] with ascending k

4

How can the solution be determined from the table?
Search the largest l with T [l] <∞. l is the last index of the LAS. Starting at l
search for the index i < l such that V [l] = A[i], i is the predecessor of l.
Repeat with l← i until T [l] = −∞

515

Analysis

Computation of the table:

Initialization: Θ(n) Operations
Computation of the kth entry: binary search on positions {1, . . . , k} plus
constant number of assignments.

n∑
k=1

(log k +O(1)) = O(n) +
n∑
k=1

log(k) = Θ(n log n).

Reconstruction: traverse A from right to left: O(n).

Overal runtime:
Θ(n log n).

516

Longest common subsequence

Subsequences of a string:

Subsequences(KUH): (), (K), (U), (H), (KU), (KH), (UH),
(KUH)

Problem:

Input: two strings A = (a1, . . . , am), B = (b1, . . . , bn) with lengths
m > 0 and n > 0.
Wanted: Longest common subsequecnes (LCS) of A and B.

Application: DNA sequence alignment.

517

Longest Common Subsequence

Examples:

LGT(IGEL,KATZE)=E, LGT(TIGER,ZIEGE)=IGE

Ideas to solve?

T I G E R
Z I E G E

518

Recursive Procedure
Assumption: solutions L(i, j) known for A[1, . . . , i] and B[1, . . . , j]
for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, but not for i = m and j = n.

T I G E R
Z I E G E

Consider characters am, bn. Three possibilities:

1 A is enlarged by one whitespace. L(m,n) = L(m,n− 1)

2 B is enlarged by one whitespace. L(m,n) = L(m− 1, n)

3 L(m,n) = L(m− 1, n− 1) + δmn with δmn = 1 if am = bn and
δmn = 0 otherwise

519

Recursion

L(m,n)← max {L(m− 1, n− 1) + δmn, L(m,n− 1), L(m− 1, n)}

for m,n > 0 and base cases L(·, 0) = 0, L(0, ·) = 0.

∅ Z I E G E
∅ 0 0 0 0 0 0
T 0 0 0 0 0 0
I 0 0 1 1 1 1
G 0 0 1 1 2 2
E 0 0 1 2 2 3
R 0 0 1 2 2 3

520

Dynamic Programming algorithm LCS

1

Dimension of the table? Semantics?
Table L[0, . . . ,m][0, . . . , n]. L[i, j]: length of a LCS of the strings (a1, . . . , ai)
and (b1, . . . , bj)

2

Computation of an entry

L[0, i]← 0 ∀0 ≤ i ≤ m, L[j, 0]← 0 ∀0 ≤ j ≤ n. Computation of L[i, j]
otherwise via L[i, j] = max(L[i− 1, j − 1] + δij, L[i, j − 1], L[i− 1, j]).

521

Dynamic Programming algorithm LCS

3
Computation order
Rows increasing and within columns increasing (or the other way round).

4

Reconstruct solution?
Start with j = m, i = n. If ai = bj then output ai otherwise, if
L[i, j] = L[i, j − 1] continue with j ← j − 1 otherwise if L[i, j] = L[i− 1, j]
continue with i← i− 1 . Terminate for i = 0 or j = 0.

522

Analysis LCS

Number table entries: (m+ 1) · (n+ 1).
Constant number of assignments and comparisons each. Number
steps: O(mn)

Determination of solition: decrease i or j. Maximally O(n+m)
steps.

Runtime overal:
O(mn).

523

Editing Distance
Editing distance of two sequences A = (a1, . . . , am),
B = (b1, . . . , bm).

Editing operations:

Insertion of a character
Deletion of a character
Replacement of a character

Question: how many editing operations at least required in order to
transform string A into string B.

TIGER ZIGER ZIEGER ZIEGE

Editing Distance = Levenshtein Distance
524

Procedure?

Two dimensional table E[0, . . . ,m][0, . . . , n] with editing distances
E[i, j] of strings Ai = (a1, . . . , ai) and Bj = (b1, . . . , bj).
Consider the last characters of Ai and Bj. Three possible cases:

1 Delete last character of Ai: 25 E[i− 1, j] + 1.
2 Append character to Ai:26 E[i, j − 1] + 1.
3 Replace Ai by Bj : E[i− 1, j − 1] + 1− δij .

E[i, j]← min
{
E[i−1, j]+1, E[i, j−1]+1, E[i−1, j−1]+1−δij

}
25or append character to Bj

26or delete last character of Bj
525

DP Table

E[i, j]← min
{
E[i− 1, j] + 1, E[i, j− 1] + 1, E[i− 1, j− 1] + 1− δij

}
∅ Z I E G E

∅ 0 1 2 3 4 5
T 1 1 2 3 4 5
I 2 2 1 2 3 4
G 3 3 2 2 2 3
E 4 4 3 2 3 2
R 5 5 4 3 3 3

Algorithm: exercise
526

Matrix-Chain-Multiplication

Task: Computation of the product A1 ·A2 · ... ·An of matrices A1, . . . ,
An.

Matrix multiplication is associative, d.h. the order of execution can be
chosen arbitrarily

Goal: efficient computation of the product.

Assumption: multiplicaiton of an (r× s)-matrix with an (s× u)-matrix
provides costs r · s · u.

527

Does it matter?

·

A1

1

k
k

1 ·

A2

1

k

A3

=

A1 · A2

·

A3

=

A1 · A2 · A3

k2 Operationen!

·

1

k

A1

k
1 ·

A2

1

k

A3

=

A1

·

A2 · A3

=

A1 · A2 · A3

k Operationen!

528

Recursion

Assume that the best possible computation of (A1 · A2 · · ·Ai) and
(Ai+1 · Ai+2 · · ·An) is known for each i.
Compute best i, done.

n× n-table M . entry M [p, q] provides costs of the best possible
bracketing (Ap · Ap+1 · · ·Aq).

M [p, q]← min
p≤i<p

(M [p, i] +M [i+ 1, q] + costs of the last multiplication)

529

Computation of the DP-table

Base cases M [p, p]← 0 for all 1 ≤ p ≤ n.
Computation of M [p, q] depends on M [i, j] with p ≤ i ≤ j ≤ q,
(i, j) 6= (p, q).
In particular M [p, q] depends at most from entries M [i, j] with
i− j < q − p.
Consequence: fill the table from the diagonal.

530

Analysis

DP-table has n2 entries. Computation of an entry requires
considering up to n− 1 other entries.

Overal runtime O(n3).

Readout the order from M : exercise!

531

Digression: matrix multiplication
Consider the mutliplicaiton of two n× n matrices.

Let

A = (aij)1≤i,j≤n, B = (bij)1≤i,j≤n, C = (cij)1≤i,j≤n,

C = A ·B

then

cij =
n∑
k=1

aikbkj.

Naive algorithm requires Θ(n3) elementary multiplications.
532

Divide and Conquer

C = ABA

B

e f

g h

a b

c d

ea+ fc eb+ fd

ga+ hc gb+ hd

533

Divide and Conquer

Assumption n = 2k.
Number of elementary multiplications:
M(n) = 8M(n/2), M(1) = 1.
yields M(n) = 8log2 n = nlog2 8 = n3. No
advantage

e f

g h

a b

c d

ea+ fc eb+ fd

ga+ hc gb+ hd

534

Strassen’s Matrix Multiplication
Nontrivial observation by Strassen (1969):
It suffices to compute the seven products
A = (e+ h) · (a+ d), B = (g + h) · a,
C = e · (b− d), D = h · (c− a), E = (e+ f) · d,
F = (g − e) · (a+ b), G = (f − h) · (c+ d). Denn:
ea+ fc = A+D − E +G, eb+ fd = C + E,
ga+ hc = B +D, gb+ hd = A−B + C + F .

This yields M ′(n) = 7M(n/2),M ′(1) = 1.
Thus M ′(n) = 7log2 n = nlog2 7 ≈ n2.807.

Fastest currently known algorithm:
O(n2.37)

e f

g h

a b

c d

ea+ fc eb+ fd

ga+ hc gb+ hd

535

20. Dynamic Programming II

Subset sum problem, knapsack problem, greedy algorithm, solutions
with dynamic programming, FPTAS, Optimal Search Tree
[Ottman/Widmayer, Kap. 7.2, 7.3, 5.7, Cormen et al, Kap. 15,35.5]

536

Task

Hannes and Niklas shall get a significant amount of presents with
different monetary value.

The parents want to distribute the presents in a fair way such that no
conflict arises.

Answer: people with children know that there is no solution to this
task.

537

More Realistic Task

Partition the set of the “item” above into two set such that both sets
have the same value.

A solution:

538

Subset Sum Problem

Consider n ∈ N numbers a1, . . . , an ∈ N.

Goal: decide if a selection I ⊆ {1, . . . , n} exists such that∑
i∈I

ai =
∑

i∈{1,...,n}\I

ai.

539

Naive Algorithm

Check for each bit vector b = (b1, . . . , bn) ∈ {0, 1}n, if

n∑
i=1

biai
?
=

n∑
i=1

(1− bi)ai

Worst case: n steps for each of the 2n bit vectors b. Number of
steps: O(n · 2n).

540

Algorithm with Partition

Partition the input into two equally sized parts a1, . . . , an/2 and
an/2+1, . . . , an.
Iterate over all subsets of the two parts and compute partial sum
Sk1 , . . . , S

k
2n/2

(k = 1, 2).
Sort the partial sums: Sk1 ≤ Sk2 ≤ · · · ≤ Sk

2n/2
.

Check if there are partial sums such that S1
i + S2

j = 1
2

∑n
i=1 ai =: h

Start with i = 1, j = 2n/2.
If S1

i + S2
j = h then finished

If S1
i + S2

j > h then j ← j − 1

If S1
i + S2

j < h then i← i+ 1

541

Example

Set {1, 6, 2, 3, 4} with value sum 16 has 32 subsets.

Partitioning into {1, 6} , {2, 3, 4} yields the following 12 subsets with
value sums:

{1, 6} {2, 3, 4}

{} {1} {6} {1, 6} {} {2} {3} {4} {2, 3} {2, 4} {3, 4} {2, 3, 4}

0 1 6 7 0 2 3 4 5 6 7 9

⇔ One possible solution: {1, 3, 4}

542

Analysis

Generate partial sums for each part: O(2n/2 · n).
Each sorting: O(2n/2 log(2n/2)) = O(n2n/2).
Merge: O(2n/2)

Overal running time

O
(
n · 2n/2

)
= O

(
n
(√

2
)n)

.

Substantial improvement over the naive method –
but still exponential!

543

Dynamic programming
Task: let z = 1

2

∑n
i=1 ai. Find a selection I ⊂ {1, . . . , n}, such that∑

i∈I ai = z.

DP-table: [0, . . . , n]× [0, . . . , z]-table T with boolean entries. T [k, s]
specifies if there is a selection Ik ⊂ {1, . . . , k} such that∑

i∈Ik ai = s.

Initialization: T [0, 0] = true. T [0, s] = false for s > 1.

Computation:

T [k, s]←

{
T [k − 1, s] if s < ak

T [k − 1, s] ∨ T [k − 1, s− ak] if s ≥ ak

for increasing k and then within k increasing s.
544

Example

{1, 6, 2, 5}
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 • · · · · · · · · · · · · · ·
1 • • · · · · · · · · · · · · ·
6 • • · · · · • • · · · · · · ·
2 • • • • · · • • • • · · · · ·
5 • • • • · • • • • • · • • • •

summe s

k

Determination of the solution: if T [k, s] = T [k − 1, s] then ak unused and continue with T [k − 1, s] , otherwise ak used

and continue with T [k − 1, s− ak] .

545

That is mysterious

The algorithm requires a number of O(n · z) fundamental operations.

What is going on now? Does the algorithm suddenly have
polynomial running time?

546

Explained

The algorithm does not necessarily provide a polynomial run time. z
is an number and not a quantity!

Input length of the algorithm ∼= number bits to reasonably represent
the data. With the number z this would be ζ = log z.

Consequently the algorithm requires O(n · 2ζ) fundamental
operations and has a run time exponential in ζ.

If, however, z is polynomial in n then the algorithm has polynomial
run time in n. This is called pseudo-polynomial.

547

NP
It is known that the subset-sum algorithm belongs to the class of
NP-complete problems (and is thus NP-hard).

P: Set of all problems that can be solved in polynomial time.

NP: Set of all problems that can be solved Nondeterministically in
Polynomial time.

Implications:

NP contains P.
Problems can be verified in polynomial time.
Under the not (yet?) proven assumption27 that NP 6= P, there is no
algorithm with polynomial run time for the problem considered
above.

27The most important unsolved question of theoretical computer science. 548

The knapsack problem
We pack our suitcase with ...

toothbrush

dumbell set

coffee machine

uh oh – too heavy.

Toothbrush

Air balloon

Pocket knife

identity card

dumbell set

Uh oh – too heavy.

toothbrush

coffe machine

pocket knife

identity card

Uh oh – too heavy.

Aim to take as much as possible with us. But some things are more
valuable than others!

549

Knapsack problem

Given:

set of n ∈ N items {1, . . . , n}.
Each item i has value vi ∈ N and weight wi ∈ N.
Maximum weight W ∈ N.
Input is denoted as E = (vi, wi)i=1,...,n.

Wanted:

a selection I ⊆ {1, . . . , n} that maximises
∑

i∈I vi under∑
i∈I wi ≤ W .

550

Greedy heuristics

Sort the items decreasingly by value per weight vi/wi: Permutation p
with vpi/wpi ≥ vpi+1

/wpi+1

Add items in this order (I ← I ∪ {pi}), if the maximum weight is not
exceeded.

That is fast: Θ(n log n) for sorting and Θ(n) for the selection. But is it
good?

551

Counterexample

v1 = 1 w1 = 1 v1/w1 = 1

v2 = W − 1 w2 = W v2/w2 = W−1
W

Greed algorithm chooses {v1} with value 1.
Best selection: {v2} with value W − 1 and weight W .

Greedy heuristics can be arbitrarily bad.

552

Dynamic Programming

Partition the maximum weight.

Three dimensional table m[i, w, v] (“doable”) of boolean values.

m[i, w, v] = true if and only if

A selection of the first i parts exists (0 ≤ i ≤ n)
with overal weight w (0 ≤ w ≤ W) and
a value of at least v (0 ≤ v ≤

∑n
i=1 vi) .

553

Computation of the DP table
Initially

m[i, w, 0]← true für alle i ≥ 0 und alle w ≥ 0.
m[0, w, v]← false für alle w ≥ 0 und alle v > 0.

Computation

m[i, w, v]←
{
m[i− 1, w, v] ∨m[i− 1, w − wi, v − vi] if w ≥ wi und v ≥ vi
m[i− 1, w, v] otherwise.

increasing in i and for each i increasing in w and for fixed i and w
increasing by v.

Solution: largest v, such that m[i, w, v] = true for some i and w.
554

Observation

The definition of the problem obviously implies that

for m[i, w, v] = true it holds:
m[i′, w, v] = true ∀i′ ≥ i ,
m[i, w′, v] = true ∀w′ ≥ w ,
m[i, w, v′] = true ∀v′ ≤ w.
fpr m[i, w, v] = false it holds:
m[i′, w, v] = false ∀i′ ≤ i ,
m[i, w′, v] = false ∀w′ ≤ w ,
m[i, w, v′] = false ∀v′ ≥ w.

This strongly suggests that we do not need a 3d table!

555

2d DP table

Table entry t[i, w] contains, instead of boolean values, the largest v,
that can be achieved28 with

items 1, . . . , i (0 ≤ i ≤ n)
at maximum weight w (0 ≤ w ≤ W).

28We could have followed a similar idea in order to reduce the size of the sparse table.
556

Computation

Initially

t[0, w]← 0 for all w ≥ 0.

We compute

t[i, w]←
{
t[i− 1, w] if w < wi
max{t[i− 1, w], t[i− 1, w − wi] + vi} otherwise.

increasing by i and for fixed i increasing by w.

Solution is located in t[n,w]

557

Example
E = {(2, 3), (4, 5), (1, 1)}

0 1 2 3 4 5 6 7

∅ 0 0 0 0 0 0 0 0

(2, 3) 0 0 3 3 3 3 3 3

(4, 5) 0 0 3 3 5 5 8 8

(1, 1) 0 1 3 4 5 6 8 9

w

i

Reading out the solution: if t[i, w] = t[i− 1, w] then item i unused and continue with t[i− 1, w] otherwise used and

continue with t[i− 1, s− wi] .
558

Analysis

The two algorithms for the knapsack problem provide a run time in
Θ(n ·W ·

∑n
i=1 vi) (3d-table) and Θ(n ·W) (2d-table) and are thus

both pseudo-polynomial, but they deliver the best possible result.

The greedy algorithm is very fast butmight deliver an arbitrarily bad
result.

Now we consider a solution between the two extremes.

559

Approximation

Let ε ∈ (0, 1) given. Let Iopt an optimal selection.

No try to find a valid selection I with∑
i∈I

vi ≥ (1− ε)
∑
i∈Iopt

vi.

Sum of weights may not violate the weight limit.

560

Different formulation of the algorithm

Before: weight limit w→ maximal value v

Reversal: value v→ minimal weight w

⇒ alternative table g[i, v] provides the minimum weight with

a selection of the first i items (0 ≤ i ≤ n) that
provide a value of exactly v (0 ≤ v ≤

∑n
i=1 vi).

561

Computation

Initially

g[0, 0]← 0

g[0, v]←∞ (Value v cannot be achieved with 0 items.).

Computation

g[i, v]←
{
g[i− 1, v] falls v < vi
min{g[i− 1, v], g[i− 1, v − vi] + wi} sonst.

incrementally in i and for fixed i increasing in v.

Solution can be found at largest index v with g[n, v] ≤ w.

562

Example
E = {(2, 3), (4, 5), (1, 1)}

0 1 2 3 4 5 6 7 8 9

∅ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

(2, 3) 0 ∞ ∞ 2 ∞ ∞ ∞ ∞ ∞ ∞

(4, 5) 0 ∞ ∞ 2 ∞ 4 ∞ ∞ 6 ∞

(1, 1) 0 1 ∞ 2 3 4 5 ∞ 6 7

v

i

Read out the solution: if g[i, v] = g[i− 1, v] then item i unused and continue with g[i− 1, v] otherwise used and continue

with g[i− 1, b− vi] .
563

The approximation trick

Pseduopolynomial run time gets polynmial if the number of occuring
values can be bounded by a polynom of the input length.

Let K > 0 be chosen appropriately. Replace values vi by “rounded
values” ṽi = bvi/Kc delivering a new input E ′ = (wi, ṽi)i=1...n.

Apply the algorithm on the input E ′ with the same weight limit W .

564

Idea

Example K = 5

Values

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . . , 98, 99, 100

→
0, 0, 0, 0, 1, 1, 1, 1, 1, 2, . . . , 19, 19, 20

Obviously less different values

565

Properties of the new algorithm

Selection of items in E ′ is also admissible in E. Weight remains
unchanged!
Run time of the algorithm is bounded by O(n2 · vmax/K)
(vmax := max{vi|1 ≤ i ≤ n})

566

How good is the approximation?

It holds that
vi −K ≤ K ·

⌊ vi
K

⌋
= K · ṽi ≤ vi

Let I ′opt be an optimal solution of E ′. Then∑
i∈Iopt

vi

− n ·K |Iopt|≤n
≤

∑
i∈Iopt

(vi −K) ≤
∑
i∈Iopt

(K · ṽi) = K
∑
i∈Iopt

ṽi

≤
I ′optoptimal

K
∑
i∈I ′opt

ṽi =
∑
i∈I ′opt

K · ṽi ≤
∑
i∈I ′opt

vi.

567

Choice of K

Requirement: ∑
i∈I ′

vi ≥ (1− ε)
∑
i∈Iopt

vi.

Inequality from above:

∑
i∈I ′opt

vi ≥

∑
i∈Iopt

vi

− n ·K
thus: K = ε

∑
i∈Iopt

vi

n .

568

Choice of K

Choose K = ε

∑
i∈Iopt

vi

n . The optimal sum is unknown. Therefore we
choose K ′ = εvmax

n .29

It holds that vmax ≤
∑

i∈Iopt
vi and thus K ′ ≤ K and the

approximation is even slightly better.

The run time of the algorithm is bounded by

O(n2 · vmax/K
′) = O(n2 · vmax/(ε · vmax/n)) = O(n3/ε).

29We can assume that items i with wi > W have been removed in the first place.
569

FPTAS

Such a family of algorithms is called an approximation scheme: the
choice of ε controls both running time and approximation quality.

The runtime O(n3/ε) is a polynom in n and in 1
ε . The scheme is

therefore also called a FPTAS - Fully Polynomial Time
Approximation Scheme

570

Optimal binary Search Trees
Given: search probabilities pi for each key ki (i = 1, . . . , n) and qi of
each interval di (i = 0, . . . , n) between search keys of a binary
search tree.

∑n
i=1 pi +

∑n
i=0 qi = 1.

Wanted: optimal search tree T with key depths depth(·), that
minimizes the expected search costs

C(T) =
n∑
i=1

pi · (depth(ki) + 1) +
n∑
i=0

qi · (depth(di) + 1)

= 1 +
n∑
i=1

pi · depth(ki) +
n∑
i=0

qi · depth(di)

571

Example

Expected Frequencies

i 0 1 2 3 4 5
pi 0.15 0.10 0.05 0.10 0.20
qi 0.05 0.10 0.05 0.05 0.05 0.10

572

Example

k2

k1

d0 d1

k4

k3

d2 d3

k5

d4 d5

Search tree with expected
costs 2.8

k2

k1

d0 d1

k5

k4

k3

d2 d3

d4

d5

Search tree with expected
costs 2.75

573

Structure of a optimal binary search tree

Subtree with keys ki, . . . , kj and intervals di−1, . . . , dj must be
optimal for the respective sub-problem.30

Consider all subtrees with roots kr and optimal subtrees for keys
ki, . . . , kr−1 and kr+1, . . . , kj

30The usual argument: if it was not optimal, it could be replaced by a better solution improving the overal solution.
574

Sub-trees for Searching

ki

di−1

ki+1..j

di dj· · ·

empty left subtree

kr

ki..r−1 kr+1..j

di−1 dr−1· · · dr dj· · ·

non-empty left and
right subtrees

kj

dj

ki..j−1

di−1 dj−1· · ·

empty right subtree

575

Expected Search Costs

Let depthT (k) be the depth of a node k in the sub-tree T . Let k be
the root of subtrees Tr and TLr

and TRr
be the left and right sub-tree

of Tr. Then

depthT (ki) = depthTLr
(ki) + 1, (i < r)

depthT (ki) = depthTRr
(ki) + 1, (i > r)

576

Expected Search Costs
Let e[i, j] be the costs of an optimal search tree with nodes
ki, . . . , kj.

Base case e[i, i− 1], expected costs di−1
Let w(i, j) =

∑j
l=i pl +

∑j
l=i−1 ql.

If kr is the root of an optimal search tree with keys ki, . . . , kj, then

e[i, j] = pr + (e[i, r − 1] + w(i, r − 1)) + (e[r + 1, j] + w(r + 1, j))

with w(i, j) = w(i, r − 1) + pr + w(r + 1, j):

e[i, j] = e[i, r − 1] + e[r + 1, j] + w(i, j).

577

Dynamic Programming

e[i, j] =

{
qi−1 if j = i− 1,

mini≤r≤j{e[i, r − 1] + e[r + 1, j] + w[i, j]} if i ≤ j

578

Computation
Tables e[1 . . . n+ 1, 0 . . . n], w[1 . . . n+ 1, 0 . . .m], r[1 . . . n, 1 . . . n]
Initially

e[i, i− 1]← qi−1, w[i, i− 1]← qi−1 for all 1 ≤ i ≤ n+ 1.

We compute

w[i, j] = w[i, j − 1] + pj + qj
e[i, j] = min

i≤r≤j
{e[i, r − 1] + e[r + 1, j] + w[i, j]}

r[i, j] = arg min
i≤r≤j
{e[i, r − 1] + e[r + 1, j] + w[i, j]}

for intervals [i, j] with increasing lengths l = 1, . . . , n, each for
i = 1, . . . , n− l + 1. Result in e[1, n], reconstruction via r. Runtime
Θ(n3). 579

Example

i 0 1 2 3 4 5
pi 0.15 0.10 0.05 0.10 0.20
qi 0.05 0.10 0.05 0.05 0.05 0.10

j

0 0.05

1 0.30 0.10

2 0.45 0.25 0.05

3 0.55 0.35 0.15 0.05

4 0.70 0.50 0.30 0.20 0.05

5 1.00 0.80 0.60 0.50 0.35 0.10

1 2 3 4 5 6 i

w

j

0 0.05

1 0.45 0.10

2 0.90 0.40 0.05

3 1.25 0.70 0.25 0.05

4 1.75 1.20 0.60 0.30 0.05

5 2.75 2.00 1.30 0.90 0.50 0.10

1 2 3 4 5 6 i

e
j

1 1

2 1 2

3 2 2 3

4 2 2 4 4

5 2 4 5 5 5

1 2 3 4 5 i

r

580

21. Greedy Algorithms

Activity Selection, Fractional Knapsack Problem, Huffman Coding
Cormen et al, Kap. 16.1, 16.3

581

Activity Selection
Coordination of activities that use a common resource exclusively.
Activities S = {a1, a2, . . . , an} with start- and finishing times
0 ≤ si ≤ fi <∞, increasingly sorted by finishing times.

a1 = (1, 4)
a2 = (3, 5)

a3 = (0, 6)
a4 = (5, 7)

a5 = (3, 9)
a6 = (5, 9)

a7 = (6, 9)
a8 = (8, 11)
a9 = (8, 12)

a10 = (2, 14)
a11 = (12, 16)

Activity Selection Problem: Find a maximal subset of compatible
(non-intersecting) activities.

582

Dynamic Programming Approach?

Let Sij = {ak : fi ≤ sk ∧ fk ≤ sj}. Let Aij be a maximal subset of
compatible activities from Sij. Moreover, let ak ∈ Aij and
Aik = Sik ∩ Aij, Aki = Skj ∩ Aij, thus Aij = Aik + {ak}+ Akj.

Aik ak Akj

fi sj

Straightforward: Aik and Akj must be maximal, otherwise
Aij = Aik + {ak}+ Akj would not be maximal.

583

Dynamic Programming Approach?

Let cij = |Aij|. Then the following recursion holds cij = cik + ckj + 1,
therefore

cij =

{
0 falls Sij = ∅,
maxak∈Sij

{cik + ckj + 1} falls Sij 6= ∅.

Could now try dynamic programming.

584

Greedy

Intuition: choose the activity that provides the earliest end time (a1).
That leaves maximal space for other activities.

Remaining problem: activities that start after a1 ends. (There are no
activites that can end before a1 starts.)

585

Greedy

Theorem
Given: Subproblem Sk, am an activity from Sk with earliest end time.
Then am is contained in a maximal subset of compatible activities
from Sk.

Let Ak be a maximal subset with compatible activities from SK and
aj be an activity from Ak with earliest end time. If aj = am⇒ done.
If aj 6= am. Then consider A′k = Ak − {aj} ∪ {am}. A′k conists of
compatible activities and is also maximal because |A′k| = |Ak|.

�

586

Algorithm RecursiveActivitySelect(s, f, k, n)
Input : Sequence of start and end points (si, fi), 1 ≤ i ≤ n, si < fi,

fi ≤ fi+1 for all i. 1 ≤ k ≤ n
Output : Set of all compatible activitivies.

m← k + 1
while m ≤ n and sm ≤ fk do

m← m+ 1

if m ≤ n then
return {am} ∪ RecursiveActivitySelect(s, f,m, n)

else
return ∅

587

Algorithm IterativeActivitySelect(s, f, n)

Input : Sequence of start and end points (si, fi), 1 ≤ i ≤ n, si < fi,
fi ≤ fi+1 for all i.

Output : Maximal set of compatible activities.

A← {a1}
k ← 1
for m← 2 to n do

if sm ≥ fk then
A← A ∪ {am}
k ← m

return A

Runtime of both algorithms: Θ(n)

588

The Fractional Knapsack Problem

set of n ∈ N items {1, . . . , n} Each item i has value vi ∈ N and
weight wi ∈ N. The maximum weight is given as W ∈ N. Input is
denoted as E = (vi, wi)i=1,...,n.

Wanted: Fractions 0 ≤ qi ≤ 1 (1 ≤ i ≤ n) that maximise the sum∑n
i=1 qi · vi under

∑n
i=1 qi · wi ≤ W .

589

Greedy heuristics

Sort the items decreasingly by value per weight vi/wi.

Assumption vi/wi ≥ vi+1/wi+1

Let j = max{0 ≤ k ≤ n :
∑k

i=1wi ≤ W}. Set

qi = 1 for all 1 ≤ i ≤ j.

qj+1 =
W−

∑j
i=1 wi

wj+1
.

qi = 0 for all i > j + 1.

That is fast: Θ(n log n) for sorting and Θ(n) for the computation of
the qi.

590

Correctness

Assumption: optimal solution (ri) (1 ≤ i ≤ n).

The knapsack is full:
∑

i ri · wi =
∑

i qi · wi = W .

Consider k: smallest i with ri 6= qi Definition of greedy: qk > rk. Let
x = qk − rk > 0.

Construct a new solution (r′i): r
′
i = ri∀i < k. r′k = qk. Remove

weight
∑n

i=k+1 δi = x · wk from items k + 1 to n. This works because∑n
i=k ri · wi =

∑n
i=k qi · wi.

591

Correctness

n∑
i=k

r′ivi = rkvk + xwk
vk
wk

+
n∑

i=k+1

(riwi − δi)
vi
wi

≥ rkvk + xwk
vk
wk

+
n∑

i=k+1

riwi
vi
wi
− δi

vk
wk

= rkvk + xwk
vk
wk
− xwk

vk
wk

+
n∑

i=k+1

riwi
vi
wi

=
n∑
i=k

rivi.

Thus (r′i) is also optimal. Iterative application of this idea generates
the solution (qi).

592

Huffman-Codes

Goal: memory-efficient saving of a sequence of characters using a
binary code with code words..

Example
File consisting of 100.000 characters from the alphabet {a, . . . , f}.

a b c d e f
Frequency (Thousands) 45 13 12 16 9 5
Code word with fix length 000 001 010 011 100 101
Code word variable length 0 101 100 111 1101 1100

File size (code with fix length): 300.000 bits.
File size (code with variable length): 224.000 bits.

593

Huffman-Codes

Consider prefix-codes: no code word can start with a different
codeword.
Prefix codes can, compared with other codes, achieve the optimal
data compression (without proof here).
Encoding: concatenation of the code words without stop character
(difference to morsing).
affe→ 0 · 1100 · 1100 · 1101→ 0110011001101

Decoding simple because prefixcode
0110011001101→ 0 · 1100 · 1100 · 1101→ affe

594

Code trees

100

86

58

a:45 b:13

28

c:12 d:16

14

14

e:9 f:5

0

0

0 0

0

0

1

11

1

1

Code words with fixed length

100

a:45 55

25

c:12 b:13

30

14

f:5 e:9

d:16

0

0

0 0

0

1

1

11

1

Code words with variable length

595

Properties of the Code Trees

An optimal coding of a file is alway represented by a complete
binary tree: every inner node has two children.
Let C be the set of all code words, f(c) the frequency of a
codeword c and dT (c) the depth of a code word in tree T . Define
the cost of a tree as

B(T) =
∑
c∈C

f(c) · dT (c).

(cost = number bits of the encoded file)

In the following a code tree is called optimal when it minimizes the
costs.

596

Algorithm Idea

Tree construction bottom
up

Start with the set C of
code words
Replace iteriatively the
two nodes with smallest
frequency by a new
parent node. a:45 b:13 c:12 d:16 e:9 f:5

1425

30

55

100

597

Algorithm Huffman(C)

Input : code words c ∈ C
Output : Root of an optimal code tree

n← |C|
Q← C
for i = 1 to n− 1 do

allocate a new node z
z.left← ExtractMin(Q) // extract word with minimal frequency.
z.right← ExtractMin(Q)
z.freq← z.left.freq + z.right.freq
Insert(Q, z)

return ExtractMin(Q)

598

Analyse

Use a heap: build Heap in O(n). Extract-Min in O(log n) for n
Elements. Yields a runtime of O(n log n).

599

The greedy approach is correct

Theorem
Let x, y be two symbols with smallest frequencies in C and let T ′(C ′)
be an optimal code tree to the alphabet C ′ = C −{x, y}+ {z} with a
new symbol z with f(z) = f(x) + f(y). Then the tree T (C) that is
constructed from T ′(C ′) by replacing the node z by an inner node
with children x and y is an optimal code tree for the alphabet C.

600

Proof
It holds that f(x) · dT (x) + f(y) · dT (y) =
(f(x) + f(y)) · (dT ′(z) + 1) = f(z) · dT ′(x) + f(x) + f(y). Thus
B(T ′) = B(T)− f(x)− f(y).

Assumption: T is not optimal. Then there is an optimal tree T ′′ with
B(T ′′) < B(T). We assume that x and y are brothers in T ′′. Let T ′′′

be the tree where the inner node with children x and y is replaced by
z. Then it holds that
B(T ′′′) = B(T ′′)− f(x)− f(y) < B(T)− f(x)− f(y) = B(T ′).
Contradiction to the optimality of T ′.

The assumption that x and y are brothers in T ′′ can be justified
because a swap of elements with smallest frequency to the lowest
level of the tree can at most decrease the value of B.

601

22. Graphs

Reflexive transitive closure, Graph Traversal (DFS, BFS), Connected
components, Topological Sorting Ottman/Widmayer, Kap. 9.1 -
9.4,Cormen et al, Kap. 22

602

Königsberg 1736

603

Graph

A

B

D

C

edge

node

604

Cycles

Is there a cycle through the town (the
graph) that uses each bridge (each edge)
exactly once?
Euler (1736): no.
Such a cycle is called Eulerian path.
Eulerian path⇔ each node provides an
even number of edges (each node is of an
even degree).
‘⇒” ist straightforward, “⇐” ist a bit more difficult

A

B

D

C

605

Notation

A directed graph consists of a set V = {v1, . . . , vn} of nodes
(Vertices) and a set E ⊆ V × V of Edges. The same edges may not
be contained more than once.

1 2

3 4 5

loop

606

Notation
An undirected graph consists of a set V = {v1, . . . , vn} of nodes a
and a set E ⊆ {{u, v}|u, v ∈ V } of edges. Edges may bot be
contained more than once.31

1

2

3 4

5

a complete undirected graph

31As opposed to the introductory example – otherwise call it multi-graph.
607

Notation

A graph G = (V,E) with E comprising all edges is called complete.

A graph where V can be partitioned into disjoint sets U and W such
that each e ∈ E provides a node in U and a node in W is called
bipartite.

A weighted graph G = (V,E, c) is a graph G = (V,E) with an edge
weight function c : E → R. c(e) is called weight of the edge e.

608

Notation
For directed graphs G = (V,E)

w ∈ V is called adjacent to v ∈ V , if (v, w) ∈ E
Predecessors of v ∈ V : N−(v) := {u ∈ V |(u, v) ∈ E}.
Successors: N+(v) := {u ∈ V |(v, u) ∈ E}
In-Degree: deg−(v) = |N−(v)|,
Out-Degree: deg+(v) = |N+(v)|

v

deg−(v) = 3, deg+(v) = 2

w

deg−(w) = 1, deg+(w) = 1

609

Notation
For undirected graphs G = (V,E):

w ∈ V is called adjacent to v ∈ V , if {v, w} ∈ E
Neighbourhood of v ∈ V : N(v) = {w ∈ V |{v, w} ∈ E}
Degree of v: deg(v) = |N(v)| with a special case for the loops:
increase the degree by 2.

v

deg(v) = 5

w

deg(w) = 2

610

Relationship between node degrees and number of
edges

For each graph G = (V,E) it holds

1
∑

v∈V deg−(v) =
∑

v∈V deg+(v) = |E|, for G directed
2
∑

v∈V deg(v) = 2|E|, for G undirected.

611

Paths

Path: a sequence of nodes 〈v1, . . . , vk+1〉 such that for each
i ∈ {1 . . . k} there is an edge from vi to vi+1 .
Length of a path: number of contained edges k.
Weight of a path (in weighted graphs):

∑k
i=1 c((vi, vi+1)) (bzw.∑k

i=1 c({vi, vi+1}))
Simple path: path without repeating vertices
Connected: undirected graph where for each pair v, w ∈ V there
is a connecting path.

612

Cycles

Cycle: path 〈v1, . . . , vk+1〉 with v1 = vk+1

Simple cycle: Cycle with pairwise different v1, . . . , vk, that does
not use an edge more than once.
Acyclic: graph without any cycles.

Conclusion: undirected graphs cannot contain cycles with length 2
(loops have length 1)

613

Representation using a Matrix
Graph G = (V,E) with nodes v1 . . . , vn stored as adjacency matrix
AG = (aij)1≤i,j≤n with entries from {0, 1}. aij = 1 if and only if edge
from vi to vj.

1 2

4

3

5


0 1 1 1 0
0 0 0 0 0
0 1 0 1 1
0 0 0 0 0
0 0 1 0 1


Memory consumption Θ(|V |2). AG is symmetric, if G undirected.

614

Representation with a List
Many graphs G = (V,E) with nodes
v1, . . . , vn provide much less than n2

edges. Representation with adjacency
list: Array A[1], . . . , A[n], Ai comprises a
linked list of nodes in N+(vi).

1 2

4

3

5

1 2 3 4 5

2

3

4

2

4

5

3

5

Memory Consumption Θ(|V |+ |E|).
615

Runtimes of simple Operations

Operation Matrix List

Find neighbours of v ∈ V Θ(n) Θ(deg+ v)

find v ∈ V without neighbour O(n2) O(n)

(u, v) ∈ E ? O(1) O(deg+ v)

Insert edge O(1) O(1)

Delete edge O(1) O(deg+ v)

616

Adjacency Matrix Product
1 2

4

3

5

B := A2
G =


0 1 1 1 0
0 0 0 0 0
0 1 0 1 1
0 0 0 0 0
0 0 1 0 1


2

=


0 1 0 1 1
0 0 0 0 0
0 0 1 0 1
0 0 0 0 0
0 1 1 1 2



617

Interpretation

Theorem

Let G = (V,E) be a graph and k ∈ N. Then the element a(k)i,j of the

matrix (a
(k)
i,j)1≤i,j≤n = Ak

G provides the number of paths with length k
from vi to vj .

618

Proof

By Induction.
Base case: straightforward for k = 1. ai,j = a

(1)
i,j .

Hypothesis: claim is true for all k ≤ l
Step (l→ l + 1):

a
(l+1)
i,j =

n∑
k=1

a
(l)
i,k · ak,j

ak,j = 1 iff egde k to j, 0 otherwise. The sum above counts the
number of nodes having a direct connection to vj where a path of
length l exists from vi i.e. all paths with length l + 1.

619

Shortest Path

Question: is there a path from i to j? How long is the shortest path?

Answer: exponentiate AG until for some k < n it holds that a(k)i,j > 0.

k provides the path length of the shortest path. If a(k)i,j = 0 for all
1 ≤ k < n, then there is no path from i to j.

620

Number triangles
Question: How many triangular path does an undirected graph
contain?

Answer: Remove all cycles (diagonal entries). Compute A3
G. a(3)ii

determines the number of paths of length 3 that contain i. There are
6 different permutations of a triangular path. Thus for the number of
triangles:

∑n
i=1 a

(3)
ii /6.

1

2

3 4

5


0 0 1 1 1
0 0 1 1 1
1 1 0 1 1
1 1 1 0 0
1 1 1 0 0


3

=


4 4 8 8 8
4 4 8 8 8
8 8 8 8 8
8 8 8 4 4
8 8 8 4 4

 ⇒ 24/6 = 4
Dreiecke.

621

Graphs and Relations

Graph G = (V,E) with adjacencies AG =̂ Relation E ⊆ V × V over
V

reflexive⇔ ai,i = 1 for all i = 1, . . . , n.
symmetric⇔ ai,j = aj,i for all i, j = 1, . . . , n (undirected)
transitive ⇔ (u, v) ∈ E, (v, w) ∈ E ⇒ (u,w) ∈ E.

Equivalence relation ⇔ collection of complete, undirected graphs
where each element has a loop.

Reflexive transitive closure of G ⇔ Reachability relation E∗:
(v, w) ∈ E∗ iff ∃ path from node v to w.

622

Computation of the Reflexive Transitive Closure

Goal: computation of B = (bij)1≤i,j≤n with bij = 1⇔ (vi, vj) ∈ E∗

Observation: aij = 1 already implies (vi, vj) ∈ E∗.
First idea:

Start with B ← A and set bii = 1 for each i (Reflexivity.).
Iterate over i, j, k and set bij = 1, if bik = 1 and bkj = 1. Then all
paths with lenght 1 and 2 taken into account.
Repeated iteration⇒ all paths with length 1 . . . 4 taken into
account.
dlog2 ne iterations required.

623

Improvement: Algorithm of Warshall (1962)

Inductive procedure: all paths known over nodes from {vi : i < k}.
Add node vk.

624

Algorithm ReflexiveTransitiveClosure(AG)

Input : Adjacency matrix AG = (aij)
n
i,j=1

Output : Reflexive transitive closure B = (bij)
n
i,j=1 of G

B ← AG
for k ← 1 to n do

akk ← 1 // Reflexivity
for i← 1 to n do

for j ← 1 to n do
bij ← max{bij, bik · bkj} // All paths via vk

return B

Runtime Θ(n3).

625

Correctness of the Algorithm (Induction)

Invariant (k): all paths via nodes with maximal index < k considered.

Base case (k = 1): All directed paths (all edges) in AG

considered.
Hypothesis: invariant (k) fulfilled.
Step (k → k + 1): For each path from vi to vj via nodes with
maximal index k: by the hypothesis bik = 1 and bkj = 1. Therefore
in the k-th iteration: bij ← 1.

626

Graph Traversal: Depth First Search

Follow the path into its depth until nothing is left to visit.

a b c

d e f

g h i

aa bb cc

ffdd eeee

gg hh i

Order a, b, c, f, d, e, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h i

d f

e

627

Algorithm Depth First visit DFS-Visit(G, v)

Input : graph G = (V,E), Knoten v.

Mark v visited
foreach (v, w) ∈ E do

if ¬(w visited) then
DFS-Visit(w)

Depth First Search starting from node v. Running time (without
recursion): Θ(deg+ v)

628

Algorithm Depth First visit DFS-Visit(G)

Input : graph G = (V,E)

foreach v ∈ V do
if ¬(v visited) then

DFS-Visit(G,v)

Depth First Search for all nodes of a graph. Running time:
Θ(|V |+

∑
v∈V (deg+(v) + 1)) = Θ(|V |+ |E|).

Problem with recursion?
With large graphs a stack overflow can happen.

629

Iterative DFS-Visit(G, v)
Input : graph G = (V,E)

Stack S ← ∅; push(S, v)
while S 6= ∅ do

w ← pop(S)
if ¬(w visited) then

mark w visited
foreach (w, c) ∈ E do // (in reverse order, potentially)

if ¬(c visited) then
push(S, x)

Stack size up to |E|, for each node an extra of Θ(deg+(w) + 1)
operations. Overal: O(|V |+ |E|)
Including all calls from the above main program: Θ(|V |+ |E|) 630

Graph Traversal: Breadth First Search

Follow the path in breadth and only then descend into depth.

a b c

d e f

g h i

aaaa bb

dd eee

cc

f

gg hh i

Order a, b, d, e, c, f, g, h, i

Adjazenzliste
a b c d e f g h i

b c f e b h i

d f

e

631

Iterative BFS-Visit(G, v)

Input : graph G = (V,E)

Queue Q← ∅
Mark v as active
enqueue(Q, v)
while Q 6= ∅ do

w ← dequeue(Q)
mark w visited
foreach (w, c) ∈ E do

if ¬(c visited ∨ c active) then
Mark c as active
enqueue(Q, c)

Algorithm requires extra
space of O(|V |).(Why
does that simple
approach not work with
DFS?)
Running time including
main program:
Θ(|V |+ |E|).

632

Connected Components

Connected components of an undirected graph G: equivalence
classes of the reflexive, transitive closure of G. Connected
component = subgraph G′ = (V ′, E ′), E ′ = {{v, w} ∈ E|v, w ∈ V ′}
with
{{v, w} ∈ E|v ∈ V ′ ∨w ∈ V ′} = E = {{v, w} ∈ E|v ∈ V ′ ∧w ∈ V ′}

1 2

3 4 5

6 7

Graph with connected compo-
nents {1, 2, 3, 4}, {5, 7}, {6}.

633

Computation of the Connected Components

Computation of a partitioning of V into pairwise disjoint subsets
V1, . . . , Vk
such that each Vi contains the nodes of a connected component.
Algorithm: depth-first search or breadth-first search. Upon each
new start of DFSSearch(G, v) or BFSSearch(G, v) a new empty
connected component is created and all nodes being traversed
are added.

634

Topological Sorting

Topological Sorting of an acyclic directed graph G = (V,E):
Bijective mapping

ord : V → {1, . . . , |V |} | ord(v) < ord(w) ∀ (v, w) ∈ E.

Can identify i with vi. Topological sorting =̂ 〈v1, . . . , v|V |〉.

635

(Counter-)Examples

1

2

3 4

5

Cyclic graph: cannot be sorted topologically.

Unterhose Hose

Socken Schuhe

Unterhemd Pullover

Mantel

Uhr

A possible toplogical sorting of the graph:
Unterhemd,Pullover,Unterhose,Uhr,Hose,Mantel,Socken,Schuhe

636

Observation

Theorem
A directed graph G = (V,E) permits a topological sorting if and only
if it is acyclic.

Proof “⇒”: If G contains a cycle it cannot permit a topological
sorting, because in a cycle 〈vi1, . . . , vim〉 it would hold that
vi1 < · · · < vim < vi1.

637

Inductive Proof Opposite Direction

Base case (n = 1): Graph with a single node without loop can be
sorted topologically, setord(v1) = 1.
Hypothesis: Graph with n nodes can be sorted topologically
Step (n→ n+ 1):

1 G contains a node vq with in-degree deg−(vq) = 0. Otherwise iteratively
follow edges backwards – after at most n+ 1 iterations a node would be
revisited. Contradiction to the cycle-freeness.

2 Graph without node vq and without its edges can be topologically sorted
by the hypothesis. Now use this sorting and set ord(vi)← ord(vi) + 1 for
all i 6= q and set ord(vq)← 1.

638

Preliminary Sketch of an Algorithm

Graph G = (V,E). d← 1

1 Traverse backwards starting from any node until a node vq with
in-degree 0 is found.

2 If no node with in-degree 0 found after n stepsm, then the graph
has a cycle.

3 Set ord(vq)← d.
4 Remove vq and his edges from G.
5 If V 6= ∅ , then d← d+ 1, go to step 1.

Worst case runtime: Ω(|V |2).

639

Improvement

Idea?

Compute the in-degree of all nodes in advance and traverse the
nodes with in-degree 0 while correcting the in-degrees of following
nodes.

640

Algorithm Topological-Sort(G)
Input : graph G = (V,E).
Output : Topological sorting ord

Stack S ← ∅
foreach v ∈ V do A[v]← 0
foreach (v, w) ∈ E do A[w]← A[w] + 1 // Compute in-degrees
foreach v ∈ V with A[v] = 0 do push(S, v) // Memorize nodes with in-degree 0
i← 1
while S 6= ∅ do

v ← pop(S); ord[v]← i; i← i+ 1 // Choose node with in-degree 0
foreach (v, w) ∈ E do // Decrease in-degree of successors

A[w]← A[w]− 1
if A[w] = 0 then push(S,w)

if i = |V |+ 1 then return ord else return “Cycle Detected”

641

Algorithm Correctness
Theorem
Let G = (V,E) be a directed acyclic graph. Algorithm
TopologicalSort(G) computes a topological sorting ord for G with
runtime Θ(|V |+ |E|).

Proof: follows from previous theorem:

1 Decreasing the in-degree corresponds with node removal.

2 In the algorithm it holds for each node v with A[v] = 0 that either the node
has in-degree 0 or that previously all predecessors have been assigned a
value ord[u]← i and thus ord[v] > ord[u] for all predecessors u of v. Nodes
are put to the stack only once.

3 Runtime: inspection of the algorithm (with some arguments like with graph
traversal) 642

Algorithm Correctness

Theorem
Let G = (V,E) be a directed graph containing a cycle. Algorithm
TopologicalSort(G) terminates within Θ(|V |+ |E|) steps and detects
a cycle.

Proof: let 〈vi1 , . . . , vik〉 be a cycle in G. In each step of the algorithm remains
A[vij] ≥ 1 for all j = 1, . . . , k. Thus k nodes are never pushed on the stack und
therefore at the end it holds that i ≤ V + 1− k.

The runtime of the second part of the algorithm can become shorter. But the
computation of the in-degree costs already Θ(|V |+ |E|).

643

23. Shortest Paths

Motivation, Dijkstra’s algorithm on distance graphs, Bellman-Ford
Algorithm, Floyd-Warshall Algorithm

[Ottman/Widmayer, Kap. 9.5 Cormen et al, Kap. 24.1-24.3,
25.2-25.3]

644

River Crossing (Missionaries and Cannibals)
Problem: Three cannibals and three missionaries are standing at a
river bank. The available boat can carry two people. At no time may
at any place (banks or boat) be more cannibals than missionaries.
How can the missionaries and cannibals cross the river as fast as
possible? 32

K K K

M M M
B

32There are slight variations of this problem. It is equivalent to the jealous husbands problem.
645

Problem as Graph

Enumerate permitted configurations as nodes and connect them
with an edge, when a crossing is allowed. The problem then
becomes a shortest path problem.

Example

links rechts
Missionare 3 0
Kannibalen 3 0
Boot x

links rechts
Missionare 2 1
Kannibalen 2 1
Boot x

Überfahrt möglich

6 Personen am linken Ufer 4 Personen am linken Ufer

646

The whole problem as a graph

3 0
3 0
x

3 0
2 1
x

3 0
1 2
x

3 0
0 3
x

2 1
2 1
x

1 2
1 2
x

0 3
1 2
x

0 3
2 1
x

0 3
3 0
x

6 5 4 3 4 2 1 2 3

3 0
2 1

x

3 0
1 2

x

3 0
0 3

x

2 1
2 1

x

1 2
1 2

x

0 3
1 2

x

0 3
2 1

x

0 3
3 0

x

0 3
0 3

x

5 4 3 4 2 1 2 3 0

647

Example Mystic Square

Want to find the fastest solution for

2 4 6
7 5 3
1 8

1 2 3
4 5 6
7 8

648

Problem as Graph
1 2 3
4 5 6
7 8

1 2 3
4 5 6
7 8

1 2 3
4 5 6

7 8

1 2 3
4 5
7 8 6

1 2 3
4 5
7 8 6

1 2 3
4 8 5
7 6

1 2 3
4 5

7 8 6

2 4 6
7 5 3
1 8

649

Route Finding
Provided cities A - Z and Distances between cities.

A

B

C

D

E

F

G

H

I Z

3

1

6

4

1

3

5

7

1

4 5

1

4

1

7 4

3
8

5

10

5

What is the shortest path from A to Z?
650

Simplest Case
Constant edge weight 1 (wlog)

Solution: Breadth First Search

S

t

651

Graphs with positive weights
Given: G = (V,E, c), c : E → R

+, s, t ∈ V .
Wanted: Length of a shortest path (weight) from s to t.
Path: 〈s = v0, v1, . . . , vk = t〉, (vi, vi+1) ∈ E (0 ≤ i < k)
Weight:

∑k−1
i=0 c((vi, vi+1)).

S

t2 1

3

2

1

Path with weight 9

652

Observation

s

u

v

w

4

7

2

t
0

4

7

2

upper bounds

Smallest upper bound
global minimum!

653

Basic Idea

Set V of nodes is partitioned into
the set M of nodes for which a
shortest path from s is already known,
the set R =

⋃
v∈M N+(v) \M of

nodes where a shortest path is not yet
known but that are accessible directly
from M ,
the set U = V \ (M ∪R) of nodes that
have not yet been considered.

s

2

2

5

3

5

2

1

2

654

Existence of Shortest Path
Assumption: There is a path from s to t in G.
Claim: There is a shortest path from s to t in G.

Proof: There can be infinitely many paths from s to t (cycles are
possible). However, since c is positive, a shortest path must be
acyclic. Thus the maximal length of a shortest path is bounded by
some n ∈ N and there are only finitely many candidates for a
shortest path.

Remark: There can be exponentially many paths. Example

s

t
655

Induction

Induction over |M |: choose nodes from
R with smallest upper bound. Add r to M
and update R and U accordingly.

Correctness: if within the “wavefront” a
node with minimal weight has been found
then no path with greater weight over dif-
ferent nodes can provide any improve-
ment.

s

2

2

5

3

5

2

1

2

656

Algorithm Dijkstra(G, s)

Input : Positively weighted Graph G = (V,E, c), starting point s ∈ V ,
Output : Minimal weights d of the shortest paths.

M = {s}; R = N+(s), U = V \R
d(s)← 0; d(u)←∞ ∀u 6= s
while R 6= ∅ do

r ← arg minr∈R minm∈N−(r)∩M d(m) + c(m, r)
d(r)← minm∈N−(r)∩M d(m) + c(m, r)
M ←M ∪ {r}
R← R− {r} ∪N+(r) \M

return d

657

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞

ss

a

b

2

3

a c
8

M = {s, a}
R = {b, c}
U = {d, e}

658

Implementation: Naive Variant

Find minimum: traverse all edges (u, v) for u ∈M, v ∈ R .
Overal costs: O(|V | · |E|)

659

Implementation: Better Variant

Update of all outgoing edges when inserting new w in M :
foreach (w, v) ∈ E do

if d(w) + c(w, v) < d(v) then
d(v)← d(w) + c(w, v)

Costs of updates: O(|E|), Find minima: O(|V |2), overal costs
O(|V |2)

660

Implementation: Data Structure for R?
Required operations:

ExtractMin (over R)
DecreaseKey (Update in R)
foreach (m, v) ∈ E do

if d(m) + c(m, v) < d(v) then
d(v)← d(m) + c(m, v)
if v ∈ R then

DecreaseKey(R, v) // Update of a d(v) in the heap of R
else

R← R ∪ {v} // Update of d(v) in the heap of R

Heap Data Structure. Problem: unclear how to find v in R for
DecreaseKey.

661

DecreaseKey

DecreaseKey: climbing in MinHeap in O(log |V |)
Position in the heap: possibility (a): Store position at the nodes
Position in the heap: possibility (b): Hashtable of the nodes

662

Runtime

|V |× ExtractMin: O(|V | log |V |)
|E|× Insert or DecreaseKey: O(|E| log |V |)
1× Init: O(|V |)
Overal: O(|E| log |V |).

Can be improved when a data structure optimized for ExtractMin and
DecreaseKey ist used (Fibonacci Heap), then runtime
O(|E|+ |V | log |V |).

663

Reconstruct shortest Path

Memorize best predecessor during the update step in the
algorithm above. Store it with the node or in a separate data
structure.
Reconstruct best path by traversing backwards via best
predecessor

664

Example

s

a

b

c

d

e

2

3

2

6

1

3

1

1

0

∞

∞

∞

∞

∞

ss

a

b

2

3

a c
8

b d
4

M = {s, a, b}
R = {c, d}
U = {e}

665

General Weighted Graphs

Relaxing works the same way:
Relax(u, v) (u, v ∈ V , (u, v) ∈ E)
if ds(v) > ds(u) + c(u, v) then

ds(v)← ds(u) + c(u, v)
return true

return false
s

u

v

ds(u)

ds(v)

Problem: cycles with negative weights can shorten the path, a
shortest path is not guaranteed to exist.

666

Observations

Observation 1: Sub-paths of shortest paths are shortest paths.
Let p = 〈v0, . . . , vk〉 be a shortest path from v0 to vk. Then each of
the sub-paths pij = 〈vi, . . . , vj〉 (0 ≤ i < j ≤ k) is a shortest path
from vi to vj.
Proof: if not, then one of the sub-paths could be shortened which
immediately leads to a contradiction.
Observation: If there is a shortest path then it is simple, thus does
not provide a node more than once.
Immediate Consequence of observation 1.

667

Dynamic Programming Approach (Bellman)

Induction over number of edges ds[i, v]: Shortest path from s to v via
maximally i edges.

ds[i, v] = min{ds[i− 1, v], min
(u,v)∈E

(ds[i− 1, u] + c(u, v))

ds[0, s] = 0, ds[0, v] =∞ ∀v 6= s.

668

Dynamic Programming Approach (Bellman)

s · · · v · · · w
0 0 ∞ ∞ ∞ ∞
1 0 ∞ 7 ∞ −2
...

n− 1 0 · · · · · · · · · · · ·

s

u

v

w

4

7

−2

Algorithm: Iterate over last row until the relaxation steps do not
provide any further changes, maximally n− 1 iterations. If still
changes, then there is no shortest path.

669

Algorithm Bellman-Ford(G, s)
Input : Graph G = (V,E, c), starting point s ∈ V
Output : If return value true, minimal weights d for all shortest paths from s,

otherwise no shortest path.

d(v)←∞ ∀v ∈ V ; d(s)← 0
for i← 1 to |V | do

f ← false
foreach (u, v) ∈ E do

f ← f ∨ Relax(u, v)

if f = false then return true

return false;

Runtime O(|E| · |V |).
670

All shortest Paths

Compute the weight of a shortest path for each pair of nodes.

|V |× Application of Dijkstra’s Shortest Path algorithm
O(|V | · |E| · log |V |) (with Fibonacci Heap:
O(|V |2 log |V |+ |V | · |E|))
|V |× Application of Bellman-Ford: O(|E| · |V |2)
There are better ways!

671

Induction via node number33

Consider weights of all shortest paths Sk with intermediate nodes in
V k := {v1, . . . , vk}, provided that weights for all shortest paths Sk−1

with intermediate nodes in V k−1 are given.

vk no intermediate node of a shortest path of vi vj in V k:
Weight of a shortest path vi vj in Sk−1 is then also weight of
shortest path in Sk.
vk intermediate node of a shortest path vi vj in V k: Sub-paths
vi vk and vk vj contain intermediate nodes only from Sk−1.

33like for the algorithm of the reflexive transitive closure of Warshall
672

DP Induction

dk(u, v) = Minimal weight of a path u v with intermediate nodes in
V k

Induktion

dk(u, v) = min{dk−1(u, v), dk−1(u, k) + dk−1(k, v)}(k ≥ 1)

d0(u, v) = c(u, v)

673

DP Algorithm Floyd-Warshall(G)

Input : Acyclic Graph G = (V,E, c)
Output : Minimal weights of all paths d
d0 ← c
for k ← 1 to |V | do

for i← 1 to |V | do
for j ← 1 to |V | do

dk(vi, vj) = min{dk−1(vi, vj), d
k−1(vi, vk) + dk−1(vk, vj)}

Runtime: Θ(|V |3)
Remark: Algorithm can be executed with a single matrix d (in place).

674

Reweighting

Idea: Reweighting the graph in order to apply Dijkstra’s algorithm.

The following does not work. The graphs are not equivalent in terms
of shortest paths.

s

t

u

v

1

1

1

1

−1 c→c+2
=⇒ s’

t’

u’

v’

3

3

3

3

1

675

Reweighting

Other Idea: “Potential” (Height) on the nodes

G = (V,E, c) a weighted graph.
Mapping h : V → R

New weights

c̃(u, v) = c(u, v) + h(u)− h(v), (u, v ∈ V)

676

Reweighting

Observation: A path p is shortest path in in G = (V,E, c) iff it is
shortest path in in G̃ = (V,E, c̃)

c̃(p) =
k∑
i=1

c̃(vi−1, vi) =
k∑
i=1

c(vi−1, vi) + h(vi−1)− h(vi)

= h(v0)− h(vk) +
k∑
i=1

c(vi−1, vi) = c(p) + h(v0)− h(vk)

Thus c̃(p) minimal in all v0 vk ⇐⇒ c(p) minimal in all v0 vk.

Weights of cycles are invariant: c̃(v0, . . . , vk = v0) = c(v0, . . . , vk = v0)

677

Johnson’s Algorithm

Add a new node s 6∈ V :

G′ = (V ′, E ′, c′)

V ′ = V ∪ {s}
E ′ = E ∪ {(s, v) : v ∈ V }

c′(u, v) = c(u, v), u 6= s

c′(s, v) = 0(v ∈ V)

678

Johnson’s Algorithm

If no negative cycles, choose as height function the weight of the
shortest paths from s,

h(v) = d(s, v).

For a minimal weight d of a path the following triangular inequality holds:

d(s, v) ≤ d(s, u) + c(u, v).

Substitution yields h(v) ≤ h(u) + c(u, v). Therefore

c̃(u, v) = c(u, v) + h(u)− h(v) ≥ 0.

679

Algorithm Johnson(G)
Input : Weighted Graph G = (V,E, c)
Output : Minimal weights of all paths D.

New node s. Compute G′ = (V ′, E ′, c′)
if BellmanFord(G′, s) = false then return “graph has negative cycles”
foreach v ∈ V ′ do

h(v)← d(s, v) // d aus BellmanFord Algorithmus

foreach (u, v) ∈ E ′ do
c̃(u, v)← c(u, v) + h(u)− h(v)

foreach u ∈ V do
d̃(u, ·)← Dijkstra(G̃′, u)
foreach v ∈ V do

D(u, v)← d̃(u, v) + h(v)− h(u)

680

Analysis

Runtimes

Computation of G′: O(|V |)
Bellman Ford G′: O(|V | · |E|)
|V |× Dijkstra O(|V | · |E| · log |V |)
(with Fibonacci Heap: O(|V |2 log |V |+ |V | · |E|))

Overal O(|V | · |E| · log |V |)
(O(|V |2 log |V |+ |V | · |E|))

681

24. Minimum Spanning Trees

Motivation, Greedy, Algorithm Kruskal, General Rules, ADT
Union-Find, Algorithm Jarnik, Prim, Dijkstra, Fibonacci Heaps

[Ottman/Widmayer, Kap. 9.6, 6.2, 6.1, Cormen et al, Kap. 23, 19]

682

Problem
Given: Undirected, weighted, connected graph G = (V,E, c).

Wanted: Minimum Spanning Tree T = (V,E ′), E ′ ⊂ E, such that∑
e∈E′ c(e) minimal.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

Application: cheapest / shortest cable network
683

Greedy Procedure

Recall:

Greedy algorithms compute the solution stepwise choosing locally
optimal solutions.
Most problems cannot be solved with a greedy algorithm.
The Minimum Spanning Tree problem constitutes one of the
exceptions.

684

Greedy Idea

Construct T by adding the cheapest edge that does not generate a
cycle.

s

t

u

v

w

x

1

1

2

4
3

2

2
6

(Solution is not unique.)

685

Algorithm MST-Kruskal(G)

Input : Weighted Graph G = (V,E, c)
Output : Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to |E| do

if (V,A ∪ {ek}) acyclic then
A← E ′ ∪ {ek}

return (V,A, c)

686

Correctness

At each point in the algorithm (V,A) is a forest, a set of trees.

MST-Kruskal considers each edge ek exactly once and either
chooses or rejects ek
Notation (snapshot of the state in the running algorithm)

A: Set of selected edges
R: Set of rejected edges
U : Set of yet undecided edges

687

Cut
A cut of G is a partition S, V − S of V . (S ⊆ V).

An edge crosses a cut when one of its endpoints is in S and the
other is in V \ S.

S

V \ S

688

Rules

1 Selection rule: choose a cut that is not crossed by a selected
edge. Of all undecided edges that cross the cut, select the one
with minimal weight.

2 Rejection rule: choose a circle without rejected edges. Of all
undecided edges of the circle, reject those with minimal weight.

689

Rules

Kruskal applies both rules:

1 A selected ek connects two connection components, otherwise
it would generate a circle. ek is minimal, i.e. a cut can be
chosen such that ek crosses and ek has minimal weight.

2 A rejected ek is contained in a circle. Within the circle ek has
minimal weight.

690

Correctness

Theorem
Every algorithm that applies the rules above in a step-wise manner
until U = ∅ is correct.

Consequence: MST-Kruskal is correct.

691

Selection invariant

Invariant: At each step there is a minimal spanning tree that contains
all selected and none of the rejected edges.

If both rules satisfy the invariant, then the algorithm is correct.
Induction:

At beginning: U = E, R = A = ∅. Invariant obviously holds.
Invariant is preserved.
At the end: U = ∅, R ∪ A = E ⇒ (V,A) is a spanning tree.

Proof of the theorem: show that both rules preserve the invariant.

692

Selection rule preserves the invariant

At each step there is a minimal spanning tree T that contains all selected and none of the rejected edges.

Choose a cut that is not crossed by a selected edge. Of all undecided edges that cross the cut, select the egde e with
minimal weight.

Case 1: e ∈ T (done)
Case 2: e 6∈ T . Then T ∪ {e} contains a circle that contains e
Circle must have a second edge e′ that also crosses the cut.34

Because e′ 6∈ R , e′ ∈ U . Thus c(e) ≤ c(e′) and T ′ = T \ {e′}∪{e}
is also a minimal spanning tree (and c(e) = c(e′)).

34Such a circle contains at least one node in S and one node in V \ S and therefore at lease to edges between S and
V \ S.

693

Rejection rule preserves the invariant

At each step there is a minimal spanning tree T that contains all selected and none of the rejected edges.

Choose a circle without rejected edges. Of all undecided edges of the circle, reject an edge e with minimal weight.

Case 1: e 6∈ T (done)
Case 2: e ∈ T . Remove e from T , This yields a cut. This cut must
be crossed by another edge e′ of the circle. Because c(e′) ≤ c(e) ,
T ′ = T \ {e} ∪ {e′} is also minimal (and c(e) = c(e′)).

694

Implementation Issues

Consider a set of sets i ≡ Ai ⊂ V . To identify cuts and circles:
membership of the both ends of an edge to sets?

695

Implementation Issues

General problem: partition (set of subsets) .e.g.
{{1, 2, 3, 9}, {7, 6, 4}, {5, 8}, {10}}
Required: ADT (Union-Find-Structure) with the following operations

Make-Set(i): create a new set represented by i.
Find(e): name of the set i that contains e .
Union(i, j): union of the sets i and j.

696

Union-Find Algorithm MST-Kruskal(G)
Input : Weighted Graph G = (V,E, c)
Output : Minimum spanning tree with edges A.

Sort edges by weight c(e1) ≤ ... ≤ c(em)
A← ∅
for k = 1 to |V | do

MakeSet(k)

for k = 1 to |E| do
(u, v)← ek
if Find(u) 6= Find(v) then

Union(Find(u),Find(v))
A← A ∪ ek

return (V,A, c)

697

Implementation Union-Find

Idea: tree for each subset in the partition,e.g.
{{1, 2, 3, 9}, {7, 6, 4}, {5, 8}, {10}}

1

2 3

9

6

7 4

5

8

10

roots = names of the sets,
trees = elements of the sets

698

Implementation Union-Find

1

2 3

9

6

7 4

5

8

10

Representation as array:

Index 1 2 3 4 5 6 7 8 9 10
Parent 1 1 1 6 5 6 5 5 3 10

699

Implementation Union-Find

Index 1 2 3 4 5 6 7 8 9 10
Parent 1 1 1 6 5 6 5 5 3 10

Operations:

Make-Set(i): p[i]← i; return i

Find(i): while (p[i] 6= i) do i← p[i]
; return i

Union(i, j): p[j]← i; return i

700

Optimisation of the runtime for Find

Tree may degenerate. Example: Union(1, 2), Union(2, 3),
Union(3, 4), ...
Idea: always append smaller tree to larger tree. Additionally
required: size information g

Operations:

Make-Set(i): p[i]← i; g[i]← 1; return i

Union(i, j):
if g[j] > g[i] then swap(i, j)
p[j]← i
g[i]← g[i] + g[j]
return i

701

Observation

Theorem
The method above (union by size) preserves the following property
of the trees: a tree of height h has at least 2h nodes.

Immediate consequence: runtime Find = O(log n).

702

Proof

Induction: by assumption, sub-trees have at
least 2hi nodes. WLOG: h2 ≤ h1

h2 < h1:

h(T1 ⊕ T2) = h1 ⇒ g(T1 ⊕ T2) ≥ 2h

h2 = h1:

g(T1) ≥ g(T2) ≥ 2h2

⇒g(T1 ⊕ T2) = g(T1) + g(T2) ≥ 2 · 2h2 = 2h(T1⊕T2)

T1

T2

h1

h2

703

Further improvement

Link all nodes to the root when Find is called.

Find(i):
j ← i
while (p[i] 6= i) do i← p[i]
while (j 6= i) do

t← j
j ← p[j]
p[t]← i

return i

Amortised cost: amortised nearly constant (inverse of the
Ackermann-function).

704

MST algorithm of Jarnik, Prim, Dijkstra

Idea: start with some v ∈ V and grow the spanning tree from here
by the acceptance rule.

S ← {v0}
for i← 1 to |V | do

Choose cheapest (u, v) mit u ∈ S, v 6∈ S
A← A ∪ {(u, v)}
S ← S ∪ {v}

S

V \ S

705

Running time

Trivially O(|V | · |E|).
Improvements (like with Dijkstra’s ShortestPath)

Memorize cheapest edge to S: for each v ∈ V \ S. deg+(v) many
updates for each new v ∈ S. Costs: |V | many minima and
updates: O(|V |2 +

∑
v∈V deg+(v)) = O(|V |2 + |E|)

With Minheap: costs |V | many minima = O(|V | log |V |), |E|
Updates: O(|E| log |V |), Initialization O(|V |): O(|E| · log |V |.)
With a Fibonacci-Heap: O(|E|+ |V | · log |V |).

706

Fibonacci Heaps

Data structure for elements with key with operations

MakeHeap(): Return new heap without elements
Insert(H, x): Add x to H
Minimum(H): return a pointer to element m with minimal key
ExtractMin(H): return and remove (from H) pointer to the element
m

Union(H1, H2): return a heap merged from H1 and H2

DecreaseKey(H, x, k): decrease the key of x in H to k
Delete (H, x): remove element x from H

707

Advantage over binary heap?

Binary Heap Fibonacci Heap
(worst-Case) (amortized)

MakeHeap Θ(1) Θ(1)
Insert Θ(log n) Θ(1)
Minimum Θ(1) Θ(1)
ExtractMin Θ(log n) Θ(log n)
Union Θ(n) Θ(1)
DecreaseKey Θ(log n) Θ(1)
Delete Θ(log n) Θ(log n)

708

Structure

Set of trees that respect the Min-Heap property. Nodes that can be
marked.

23 7 3

18

39

52 38

41

17

30

24

26

35

46

min

709

Implementation

Doubly linked lists of nodes with a marked-flag and number of
children. Pointer to minimal Element and number nodes.

23 7 3

18

39

52 38

41

17

30

24

26

35

46

min
n = 14

0 0 3 2 2

1

0

0 1

0

0 1

0

0

710

Simple Operations
MakeHeap (trivial)
Minimum (trivial)
Insert(H, e)

1 Insert new element into root-list
2 If key is smaller than minimum, reset min-pointer.

Union (H1, H2)
1 Concatenate root-lists of H1 and H2

2 Reset min-pointer.

Delete(H, e)
1 DecreaseKey(H, e,−∞)
2 ExtractMin(H)

711

ExtractMin

1 Remove minimal node m from the root list
2 Insert children of m into the root list
3 Merge heap-ordered trees with the same degrees until all trees

have a different degree:
Array of degrees a[0, . . . , n] of elements, empty at beginning.
For each element e of the root list:

a Let g be the degree of e
b If a[g] = nil: a[g]← e.
c If e′ := a[g] 6= nil: Merge e with e′ resutling in e′′ and set a[g]← nil. Set
e′′ unmarked. Re-iterate with e← e′′ having degree g + 1.

712

DecreaseKey (H, e, k)

1 Remove e from its parent node p (if existing) and decrease the
degree of p by one.

2 Insert(H, e)
3 Avoid too thin trees:

a If p = nil then done.
b If p is unmarked: mark p and done.
c If p marked: unmark p and cut p from its parent pp. Insert (H, p). Iterate

with p← pp.

713

Estimation of the degree

Theorem
Let p be a node of a F-Heap H. If child nodes of p are sorted by time
of insertion (Union), then it holds that the ith child node has a
degree of at least i− 2.

Proof: p may have had more children and lost by cutting. When the ith child pi
was linked, p and pi must at least have had degree i− 1. pi may have lost at least
one child (marking!), thus at least degree i− 2 remains.

714

Estimation of the degree

Theorem
Every node p with degree k of a F-Heap is the root of a subtree with
at least Fk+1 nodes. (F : Fibonacci-Folge)

Proof: Let Sk be the minimal number of successors of a node of degree k in a
F-Heap plus 1 (the node itself). Clearly S0 = 1, S1 = 2. With the previous theorem
Sk ≥ 2 +

∑k−2
i=0 Si, k ≥ 2 (p and nodes p1 each 1). For Fibonacci numbers it holds

that (induction) Fk ≥ 2 +
∑k

i=2 Fi, k ≥ 2 and thus (also induction) Sk ≥ Fk+2.

Fibonacci numbers grow exponentially fast (O(ϕk)) Consequence: maximal
degree of an arbitrary node in a Fibonacci-Heap with n nodes is O(log n).

715

Amortized worst-case analysis Fibonacci Heap

t(H): number of trees in the root list of H, m(H): number of marked
nodes in H not within the root-list, Potential function
Φ(H) = t(H) + 2 ·m(H). At the beginnning Φ(H) = 0. Potential
always non-negative.

Amortized costs:

Insert(H, x): t′(H) = t(H) + 1, m′(H) = m(H), Increase of the
potential: 1, Amortized costs Θ(1) + 1 = Θ(1)

Minimum(H): Amortized costs = real costs = Θ(1)

Union(H1, H2): Amortized costs = real costs = Θ(1)

716

Amortized costs of ExtractMin

Number trees in the root list t(H).
Real costs of ExtractMin operation O(log n+ t(H)).
When merged still O(log n) nodes.
Number of markings can only get smaller when trees are merged
Thus maximal amortized costs of ExtractMin

O(log n+ t(H)) +O(log n)−O(t(H)) = O(log n).

717

Amortized costs of DecreaseKey

Assumption: DecreaseKey leads to c cuts of a node from its
parent node, real costs O(c)

c nodes are added to the root list
Delete (c− 1) mark flags, addition of at most one mark flag
Amortized costs of DecreaseKey:

O(c) + (t(H) + c) + 2 · (m(H)− c+ 2))− (t(H) + 2m(H)) = O(1)

718

25. Flow in Networks

Flow Network, Maximal Flow, Cut, Rest Network, Max-flow Min-cut
Theorem, Ford-Fulkerson Method, Edmonds-Karp Algorithm,
Maximal Bipartite Matching [Ottman/Widmayer, Kap. 9.7, 9.8.1],
[Cormen et al, Kap. 26.1-26.3]

719

Motivation

Modelling flow of fluents, components on conveyors, current in
electrical networks or information flow in communication networks.

720

Flow Network

Flow network G = (V,E, c): directed
graph with capacities
Antiparallel edges forbidden:
(u, v) ∈ E ⇒ (v, u) 6∈ E.
Model a missing edge (u, v) by
c(u, v) = 0.
Source s and sink t: special nodes.
Every node v is on a path between s
and t : s v t

s

v1

v2

v3

v4

t

16

13

12

14

20

4

9
4 7

721

Flow

A Flow f : V × V → R fulfills the
following conditions:

Bounded Capacity:
For all u, v ∈ V :
0 ≤ f(u, v) ≤ c(u, v).
Conservation of flow:
For all u ∈ V \ {s, t}:∑
v∈V

f(v, u)−
∑
v∈V

f(u, v) = 0.

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6

Value of the flow:
w(f) =

∑
v∈V f(s, v)−

∑
v∈V f(v, s).

Here w(f) = 18.

722

How large can a flow possibly be?

Limiting factors: cuts

cut separating s from t: Partition of V into S and T with s ∈ S,
t ∈ T .
Capacity of a cut: c(S, T) =

∑
v∈S,v′∈T c(v, v

′)

Minimal cut: cut with minimal capacity.
Flow over the cut: f(S, T) =

∑
v∈S,v′∈T f(v, v′)−

∑
v∈S,v′∈T f(v′, v)

723

How large can a flow possibly be?
For each flow and each cut it holds that f(S, T) = w(f):

f(S, T) =
∑

v∈S,v′∈T
f(v, v′)−

∑
v∈S,v′∈T

f(v′, v)

=
∑

v∈S,v′∈V
f(v, v′)−

∑
v∈S,v′∈S

f(v, v′)−
∑

v∈S,v′∈V
f(v′, v) +

∑
v∈S,v′∈S

f(v′, v)

=
∑
v′∈V

f(s, v′)−
∑
v′∈V

f(v′, s)

Second equality: amendment, last equality: conservation of flow.

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6

724

Maximal Flow ?
In particular, for each cut (S, T) of V .

f(S, T) ≤
∑

v∈S,v′∈T

c(v, v′) = c(S, T)

Will discover that equality holds for minS,T c(S, T).

s

v1

v2

v3

v4

t

16

13

12

14

20

4

9
4 7

c = 23
725

Maximal Flow ?

Naive Procedure

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6 s

v1

v2

v3

v4

t

16/8

13/11

12/12

14/11

20/15

4/4

9/4
4/4 7/7

s

v1

v2

v3

v4

t

16/8

13/13

12/12

14/11

20/17

4/4

9/2
4/4 7/7 s

v1

v2

v3

v4

t

16/10

13/13

12/12

14/11

20/19

4/4

9/0
4/2 7/7

Conclusion: greedy increase of flow does not solve the problem.

726

The Method of Ford-Fulkerson

Start with f(u, v) = 0 for all u, v ∈ V
Determine rest network* Gf and expansion path in Gf

Increase flow via expansion path*
Repeat until no expansion path available.

*Will now be explained

727

Increase of flow, negative!

Let some flow f in the network be given.

Finding:

Increase of the flow along some edge possible, when flow can be
increased along the edge,i.e. if f(u, v) < c(u, v).
Rest capacity cf(u, v) = c(u, v)− f(u, v).
Increase of flow against the direction of the edge possible, if flow
can be reduced along the edge, i.e. if f(u, v) > 0.
Rest capacity cf(v, u) = f(u, v).

728

Rest Network

Rest network Gf provided by the edges with positive rest capacity:

s

v1

v2

v3

v4

t

16/8

13/10

12/12

14/10

20/14

4/4

9/4
4/4 7/6

s

v1

v2

v3

v4

t
8

8

3

10

12

4

10

6

14

4

5

4

4 1 6

Rest networks provide the same kind of properties as flow networks with the exception of permitting antiparallel edges

729

Observation

Theorem
Let G = (V,E, c) be a flow network with source s and sink t and f a
flow in G. Let Gf be the corresponding rest networks and let f ′ be a
flow in Gf . Then f ⊕ f ′ defines a flow in G with value w(f) + w(f ′).

(f ⊕ f ′)(u, v) =

{
f(u, v) + f ′(u, v)− f ′(v, u) (u, v) ∈ E
0 (u, v) 6∈ E.

730

Proof

Limit of capacity:

(f ⊕ f ′)(u, v) = f(u, v) + f ′(u, v)− f ′(v, u)

≥ f(u, v) + f ′(u, v)− f(u, v) = f ′(u, v) ≥ 0

(f ⊕ f ′)(u, v) = f(u, v) + f ′(u, v)− f ′(v, u)

≤ f(u, v) + f ′(u, v)

≤ f(u, v) + cf(u, v)

= f(u, v) + c(u, v)− f(u, v) = c(u, v).

731

Proof

Conservation of flow∑
u∈V

(f ⊕ f ′)(u, v) =
∑
u∈V

f(u, v) +
∑
u∈V

f ′(u, v)−
∑
u∈V

f ′(v, u)

(Flow conservation of f and f ′)
=
∑
u∈V

f(v, u) +
∑
u∈V

f ′(v, u)−
∑
u∈V

f ′(u, v)

=
∑
u∈V

(f ⊕ f ′)(v, u)

732

Beweis
Value of f ⊕ f ′ (in the sequel N+ := N+(s), N− := N−(s)):

w(f ⊕ f ′) =
∑
v∈N+

(f ⊕ f ′)(s, v)−
∑
v∈N−

(f ⊕ f ′)(v, s)

=
∑
v∈N+

f(s, v) + f ′(s, v)− f ′(v, s)−
∑
v∈N−

f(v, s) + f ′(v, s)− f ′(s, v)

=
∑
v∈N+

f(s, v)−
∑
v∈N−

f(v, s) +
∑

v∈N+∪N−
f ′(s, v) +

∑
v∈N+∪N−

f ′(v, s)

=
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s) +
∑
v∈V

f ′(s, v) +
∑
v∈V

f ′(v, s)

= w(f) + w(f ′).

�
733

Flow in Gf

expansion path p: path from s to t in the rest network Gf .

Rest capacity cf(p) = min{cf(u, v) : (u, v) edge in p}

Theorem
The mapping fp : V × V → R,

fp(u, v) =

{
cf(p) if (u, v) edge in p
0 otherwise

provides a flow in Gf with value w(fp) = cf(p) > 0.

[Proof: exercise]
734

Consequence

Strategy for an algorithm:

With an expansion path p in Gf the flow f ⊕ fp defines a new flow
with value w(f ⊕ fp) = w(f) + w(fp) > w(f)

735

Max-Flow Min-Cut Theorem

Theorem
Let f be a flow in a flow network G = (V,E, c) with source s and
sink t. The following statementsa are equivalent:

1 f is a maximal flow in G
2 The rest network Gf does not provide any expansion paths
3 It holds that w(f) = c(S, T) for a cut (S, T) of G.

736

Proof

(3)⇒ (1):
It holds that w(f) ≤ c(S, T) for all cuts S, T . From w(f) = c(S, T)
it follows that w(f) is maximal.
(1)⇒ (2):
f maximal Flow in G. Assumption: Gf has some expansion path
w(f ⊕ fp) = w(f) + w(fp) > w(f). Contradiction.

737

Proof (2)⇒ (3)
Assumption: Gf has no expansion path. Define
S = {v ∈ V : there is a path s v in Gf}. (S, T) := (S, V \ S) is a cut:
s ∈ S, t 6∈ S. Let u ∈ S and v ∈ T .

If (u, v) ∈ E, then f(u, v) = c(u, v), otherwise it would hold that (u, v) ∈ Ef .

If (v, u) ∈ E, then f(v, u) = 0, otherwise it would hold that
cf (u, v) = f(v, u) > 0 and (u, v) ∈ Ef
If (u, v) 6∈ E and (v, u) 6∈ E, then f(u, v) = f(v, u) = 0.

Thus

w(f) = f(S, T) =
∑
u∈S

∑
v∈T

f(u, v)−
∑
v∈T

∑
u∈s

f(v, u)

=
∑
u∈S

∑
v∈T

c(u, v)−
∑
v∈T

∑
u∈s

0 =
∑
u∈S

∑
v∈T

c(u, v) = c(S, T).

738

Algorithm Ford-Fulkerson(G, s, t)

Input : Flow network G = (V,E, c)
Output : Maximal flow f .

for (u, v) ∈ E do
f(u, v)← 0

while Exists path p : s t in rest network Gf do
cf (p)← min{cf (u, v) : (u, v) ∈ p}
foreach (u, v) ∈ p do

if (u, v) ∈ E then
f(u, v)← f(u, v) + cf (p)

else
f(v, u)← f(u, v)− cf (p)

739

Analysis

The Ford-Fulkerson algorithm does not
necessarily have to converge for irrational
capacities. For integers or rational numbers it
terminates.
For an integer flow, the algorithms requires
maximally w(fmax) iterations of the while loop.
Search a single increasing path (e.g. with
DFS or BFS O(|E|)) Therefore O(fmax|E|).

s

u

v

t

1000

1000

1

1000

1000

With an unlucky choice the al-
gorithm may require up to 2000
iterations here.

740

Edmonds-Karp Algorithm

Choose in the Ford-Fulkerson-Method for finding a path in Gf the
expansion path of shortest possible length (e.g. with BFS)

741

Edmonds-Karp Algorithm

Theorem
When the Edmonds-Karp algorithm is applied to some integer
valued flow network G = (V,E) with source s and sink t then the
number of flow increases applied by the algorithm is in O(|V | · |E|)

[Without proof]

742

Application: maximal bipartite matching
Given: bipartite undirected graph G = (V,E).

Matching M : M ⊆ E such that |{m ∈M : v ∈ m}| ≤ 1 for all v ∈ V .

Maximal Matching M : Matching M , such that |M | ≥ |M ′| for each
matching M ′.

743

Corresponding flow network
Construct a flow network that corresponds to the partition L,R of a
bipartite graph with source s and sink t, with directed edges from s
to L, from L to R and from R to t. Each edge has capacity 1.

L R

s t

L R

744

Integer number theorem

Theorem
If the capacities of a flow network are integers, then the maximal
flow generated by the Ford-Fulkerson method provides integer
numbers for each f(u, v), u, v ∈ V .

[without proof]

Consequence: Ford-Fulkerson generates for a flow network that
corresponds to a bipartite graph a maximal matching
M = {(u, v) : f(u, v) = 1}.

745

26. Geometric Algorithms

Properties of Line Segments, Intersection of Line Segments, Convex
Hull, Closest Point Pair [Ottman/Widmayer, Kap. 8.2,8.3,8.8.2,
Cormen et al, Kap. 33]

746

Properties of line segments.

Cross-Product of two vectors p1 =
(x1, y1), p2 = (x2, y2) in the plane

p1×p2 = det

[
x1 x2
y1 y2

]
= x1y2−x2y1

Signed area of the parallelogram

+

−

p2

p1

p1 + p2

p′2

p1 + p′2

y

x

747

Turning direction

p0

p1

p2

p0

p1

p2

nach links:
(p1−p0)× (p2−p0) > 0

nach rechts:
(p1−p0)× (p2−p0) < 0

748

Intersection of two line segments

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

Intersection: p1 and p2
opposite w.r.t p3p4 and
p3, p4 opposite w.r.t.
p1p2

No intersection: p1 and
p2 on the same side of
p3p4

Intersection: p1 on p3p4 No intersection: p3 and
p4 on the same side of
p1p2

749

Cutting many line segments

750

Sweepline Principle

751

Simplifying Assumptions

No vertical line segments
Each intersection is formed by at most two line segments.

752

Ordering line segments

s1

s2 s3

h1 h2 h3

Preorder (partial order without
anti-symmetry)

s2 2h1 s1
s1 2h2 s2
s2 2h2 s1
s3 2h2 s2

W.r.t. h3 the line segments are
uncomparable.

753

Moving the sweepline

Sweep-Line Status : Relationship of all objects intersected by
sweep-line
Event List : Series of event positions, sorted by x-coordinate.
Sweep-line travels from left to right and stops at each event
position.

754

Sweep-Line Status

Preorder T of the intersected line segments Required operations:

Insert(T, s) Insert line segment s in T
Delete(T, s) Remove s from T

Above(T, s) Return line segment immediately above of s in T
Below(T, s) Return line segment immediately below of s in T

Possible Implementation: Blanced tree (AVL-Tree, Red-Black Tree
etc.)

755

Algorithm Any-Segments-Intersect(S)
Input : List of line segments S
Output : Returns if S contains intersecting segments
T ← ∅
Sort endpoints of line segments in S from left to right (left before right and lower

before upper)
for Sorted end points p do

if p left end point of a segment s then
Insert(T, s)
if Above(T, s) ∩ s 6= ∅ ∨ Below(T, s) ∩ s 6= ∅ then return true

if p right end point of a segment s then
if Above(T, s) ∩ Below(T, s) 6= ∅ then return true
Delete(T, s)

return false;

756

Illustration

a

b

c

d

e

a b
d
e
c

b
a
c

b
d
a
e
c

b
a
e
c

e
d
ee

d
c×!

757

Analysis

Runtime of the algorithm Any-Segments-Intersect

Sorting O(n log n)

n iterations of the for loop. Each operation on the balanced tree
O(log n)

Overal O(n log n)

758

Convex Hull
Konvexe Hülle CH(Q) einer Menge Q von Punkten: kleinstes
konvexes Polygon P , so dass jeder Punkt entweder auf dem Rand
oder im Inneren liegt.

p0
p1

p2

p4p5

p6

p7

p8

p9p12

p14

p3

p10

p11

p13

p15

759

Algorithm Graham-Scan
Input : Set of points Q
Output : Stack S of points of the convex hull of Q
p0: point with minimal y coordinate (if required, additionally minimal x-) coordinate
(p1, . . . , pm) remaining points sorted by polar angle counter-clockwise in relation to
p0; if points with same polar angle available, discard all except the one with
maximal distance from p0

S ← ∅
if m < 2 then return S
Push(S, p0); Push(S, p1); Push(S, p2)
for i← 3 to m do

while Winkel (NextToTop(S), Top(S), pi) nicht nach links gerichtet do
Pop(S);

Push(S, pi)

return S

760

Illustration Graham-Scan

p0
p1

p2

p4

p5

p7

p8p10
p11

p12

p13

p3

p6

p9

p14

p15

Stack:
p15
p14
p9
p6
p2
p1
p0

761

Analysis

Runtime of the algorithm Graham-Scan

Sorting O(n log n)

n Iterations of the for-loop
Amortized analysis of the multipop on a stack: amortized constant
runtime of mulitpop, same here: amortized constant runtime of the
While-loop.

Overal O(n log n)

762

Jarvis Marsch / Gift Wrapping algorithm

1 Starte mit Extrempunkt (z.B. unterster Punkt) p = p0
2 Suche Punkt q, so dass pq am weitesten rechts liegende

Gerade, d.h. jeder andere Punkt liegt links von der Geraden pq
(oder auf der Geraden näher bei p).

3 Fahre mit p← q bei (2) weiter, bis p = p0.

763

Illustration Jarvis

p0
p1

p2

p4p5

p6

p7

p8

p9p12

p14

p3

p10

p11

p13

p15

764

Analysis Gift-Wrapping

Let h be the number of corner points of the convex hull.
Runtime of the algorithm O(h · n).

765

Closest Point Pair
Euclidean Distance d(s, t) of two points s
and t:

d(s, t) = ‖s− t‖2
=

√
(sx − tx)2 + (sy − ty)2

Problem: Find points p and q from Q for
which

d(p, q) ≤ d(s, t) ∀ s, t ∈ Q, s 6= t.

Naive: all
(
n
2

)
= Θ(n2) point pairs.

766

Divide And Conquer

Set of points P , starting with P ← Q

Arrays X and Y , containing the
elements of P , sorted by x- and
y-coordinate, respectively.
Partition point set into two
(approximately) equally sized sets PL
and PR, separated by a vertical line
through a point of P .
Split arrays X and Y accrodingly in
XL, XR. YL and YR.

767

Divide And Conquer

Recursive call with PL, XL, YL and
PR, XR, YR. Yields minimal distances
δL, δR.
(If only k ≤ 3 points: compute the
minimal distance directly)
After recursive call δ = min(δL, δR).
Combine (next slides) and return best
result.

768

Combine
Generate an array Y ′ holding y-sorted
points from Y , that are located within a
2δ band around the dividing line
Consider for each point p ∈ Y ′ the
seven! (!) points after p . Compute
minimal distance δ′.
If δ′ < δ, then a closer pair in P than in
PL and PR found. Return minimal
distance.

*It can be shown that maximally eight points from P can be located in the

shown rectangle. Here without proof.

2δ

δ

δ δ

δ′

769

Implementation

Goal: recursion equation (runtime) T (n) = 2 · T (n2) +O(n).
Consequence: forbidden to sort in each steps of the recursion.
Non-trivial: only arrays Y and Y ′

Idea: merge reversed: run through Y that is presorted by
y-coordinate. For each element follow the selection criterion of the
x-coordinate and append the element either to YL or YR. Same
procedure for Y ′. Runtime O(|Y |).

Overal runtime: O(n log n).

770

27. Parallel Programming I

Moore’s Law and the Free Lunch, Hardware Architectures, Parallel
Execution, Flynn’s Taxonomy, Scalability: Amdahl and Gustafson,
Data-parallelism, Task-parallelism, Scheduling

[Task-Scheduling: Cormen et al, Kap. 27]

771

The Free Lunch

The free lunch is over 35

35"The Free Lunch is Over", a fundamental turn toward concurrency in software, Herb Sutter, Dr. Dobb’s Journal, 2005
772

Moore’s Law

Gordon E. Moore (1929)Observation by Gordon E. Moore:

The number of transistors on integrated circuits doubles
approximately every two years.

773

Moore’s Law

B
y

W
gs

im
on

,h
tt

ps
:/

/c
om

mo
ns

.w
ik

im
ed

ia
.o

rg
/w

/i
nd

ex
.p

hp
?c

ur
id

=1
51

93
54

2

774

https://commons.wikimedia.org/w/index.php?curid=15193542

For a long time...

the sequential execution became faster (Instruction Level
Parallelism, Pipelining, Higher Frequencies)
more and smaller transistors = more performance
programmers simply waited for the next processor generation

775

Today

the frequency of processors does not increase significantly and
more (heat dissipation problems)
the instruction level parallelism does not increase significantly any
more
the execution speed is dominated by memory access times (but
caches still become larger and faster)

776

Trends

ht
tp

:/
/w

ww
.g

ot
w.

ca
/p

ub
li

ca
ti

on
s/

co
nc

ur
re

nc
y-

dd
j.

ht
m

777

http://www.gotw.ca/publications/concurrency-ddj.htm

Multicore

Use transistors for more compute cores
Parallelism in the software
Programmers have to write parallel programs to benefit from new
hardware

778

Forms of Parallel Execution

Vectorization
Pipelining
Instruction Level Parallelism
Multicore / Multiprocessing
Distributed Computing

779

Vectorization

Parallel Execution of the same operations on elements of a vector
(register)

x

y
+ x+ yskalar

x1 x2 x3 x4

y1 y2 y3 y4
+ x1 + y1 x2 + y2 x3 + y3 x4 + y4vector

x1 x2 x3 x4

y1 y2 y3 y4
fma 〈x, y〉vector

780

Home Work

781

More efficient

782

Pipeline

783

Throughput

Throughput = Input or output data rate
Number operations per time unit
larger througput is better
Approximation

throughput =
1

max(computationtime(stages))

ignores lead-in and lead-out times

784

Latency

Time to perform a computation
Pipeline latency only constant when Pipeline is balanced: sum of
all operations over all stages
Unbalanced Pipeline

First batch as with the balanced pipeline
In a balanced version, latency= #stages ·max(computationtime(stages))

785

Homework Example

Washing T0 = 1h, Drying T1 = 2h, Ironing T2 = 1h, Tidy up
T3 = 0.5h

Latency first batch: L = T0 + T1 + T2 + T3 = 4.5h

Latency second batch: L = T1 + T1 + T2 + T3 = 5.5h

In the long run: 1 batch every 2h (0.5/h).

786

Throughput vs. Latency

Increasing throughput can increase latency
Stages of the pipeline need to communicate and synchronize:
overhead

787

Pipelines in CPUs

Fetch Decode Execute Data Fetch Writeback

Multiple Stages

Every instruction takes 5 time units (cycles)
In the best case: 1 instruction per cycle, not always possible
(“stalls”)

Paralellism (several functional units) leads to faster execution.

788

ILP – Instruction Level Parallelism

Modern CPUs provide several hardware units and execute
independent instructions in parallel.

Pipelining
Superscalar CPUs (multiple instructions per cycle)
Out-Of-Order Execution (Programmer observes the sequential
execution)
Speculative Execution

789

27.2 Hardware Architectures

790

Shared vs. Distributed Memory

CPU CPU CPU

Shared Memory

Mem

CPU CPU CPU

Mem Mem Mem

Distributed Memory

Interconnect

791

Shared vs. Distributed Memory Programming

Categories of programming interfaces

Communication via message passing
Communication via memory sharing

It is possible:

to program shared memory systems as distributed systems (e.g. with
message passing MPI)
program systems with distributed memory as shared memory systems
(e.g. partitioned global address space PGAS)

792

Shared Memory Architectures

Multicore (Chip Multiprocessor - CMP)
Symmetric Multiprocessor Systems (SMP)
Simultaneous Multithreading (SMT = Hyperthreading)

one physical core, Several Instruction Streams/Threads: several virtual
cores
Between ILP (several units for a stream) and multicore (several units for
several streams). Limited parallel performance.

Non-Uniform Memory Access (NUMA)

Same programming interface

793

Overview

CMP SMP NUMA

794

An Example

AMD Bulldozer: be-
tween CMP and SMT

2x integer core
1x floating point core

W
ik

ip
ed

ia

795

Flynn’s Taxonomy

Single-Core Fault-Tolerance

Vector Computing / GPU Multi-Core
796

Massively Parallel Hardware
[General Purpose] Graphical Processing
Units ([GP]GPUs)

Revolution in High Performance
Computing

Calculation 4.5 TFlops vs. 500 GFlops
Memory Bandwidth 170 GB/s vs. 40
GB/s

SIMD

High data parallelism
Requires own programming model. Z.B.
CUDA / OpenCL

797

27.3 Multi-Threading, Parallelism and Concurrency

798

Processes and Threads

Process: instance of a program

each process has a separate context, even a separate address space
OS manages processes (resource control, scheduling, synchronisation)

Threads: threads of execution of a program

Threads share the address space
fast context switch between threads

799

Why Multithreading?

Avoid “polling” resources (files, network, keyboard)
Interactivity (e.g. responsivity of GUI programs)
Several applications / clients in parallel
Parallelism (performance!)

800

Multithreading conceptually

Thread 1

Thread 2

Thread 3

Single Core

Thread 1

Thread 2

Thread 3

Multi Core

801

Thread switch on one core (Preemption)

thread 1 thread 2

idle
busy

Store State t1
Interrupt

Load State t2

busyidle

Store State t2
Interrupt

Load State t1
busy

idle

802

Parallelität vs. Concurrency
Parallelism: Use extra resources to solve a problem faster
Concurrency: Correctly and efficiently manage access to shared
resources
Begriffe überlappen offensichtlich. Bei parallelen Berechnungen
besteht fast immer Synchronisierungsbedarf.

Parallelism

Work

Resources

Concurrency

Requests

Resources

803

Thread Safety

Thread Safety means that in a concurrent application of a program
this always yields the desired results.

Many optimisations (Hardware, Compiler) target towards the correct
execution of a sequential program.

Concurrent programs need an annotation that switches off certain
optimisations selectively.

804

Example: Caches

Access to registers faster than to
shared memory.
Principle of locality.
Use of Caches (transparent to the
programmer)

If and how far a cache coherency is guar-
anteed depends on the used system.

805

27.4 Scalability: Amdahl and Gustafson

806

Scalability

In parallel Programming:

Speedup when increasing number p of processors
What happens if p→∞?
Program scales linearly: Linear speedup.

807

Parallel Performance

Given a fixed amount of computing work W (number computing
steps)

Sequential execution time T1
Parallel execution time on p CPUs

Perfection: Tp = T1/p

Performance loss: Tp > T1/p (usual case)
Sorcery: Tp < T1/p

808

Parallel Speedup

Parallel speedup Sp on p CPUs:

Sp =
W/Tp
W/T1

=
T1
Tp
.

Perfection: linear speedup Sp = p

Performance loss: sublinear speedup Tp > T1/p (the usual case)
Sorcery: superlinear speedup Tp < T1/p

Efficiency:Ep = Sp/p

809

Reachable Speedup?
Parallel Program

Parallel Part Seq. Part

80% 20%

T1 = 10

T8 =?

T8 =
10 · 0.8

8
+ 10 · 0.2 = 1 + 2 = 3

S8 =
T1
T8

=
10

3
= 3.33 810

Amdahl’s Law: Ingredients

Computational work W falls into two categories

Paralellisable part Wp

Not parallelisable, sequential part Ws

Assumption: W can be processed sequentially by one processor in
W time units (T1 = W):

T1 = Ws +Wp

Tp ≥ Ws +Wp/p

811

Amdahl’s Law

Sp =
T1
Tp
≤ Ws +Wp

Ws +
Wp

p

812

Amdahl’s Law

With sequential, not parallelizable fraction λ: Ws = λW ,
Wp = (1− λ)W :

Sp ≤
1

λ+ 1−λ
p

Thus
S∞ ≤

1

λ

813

Illustration Amdahl’s Law

p = 1

t

Ws

Wp

p = 2

Ws

Wp

p = 4

Ws

Wp

T1

814

Amdahl’s Law is bad news

All non-parallel parts of a program can cause problems

815

Gustafson’s Law

Fix the time of execution
Vary the problem size.
Assumption: the sequential part stays constant, the parallel part
becomes larger

816

Illustration Gustafson’s Law

p = 1

t

Ws

Wp

p = 2

Ws

Wp Wp

p = 4

Ws

Wp Wp Wp Wp

T

817

Gustafson’s Law
Work that can be executed by one processor in time T :

Ws +Wp = T

Work that can be executed by p processors in time T :

Ws + p ·Wp = λ · T + p · (1− λ) · T

Speedup:

Sp =
Ws + p ·Wp

Ws +Wp
= p · (1− λ) + λ

= p− λ(p− 1)

818

Amdahl vs. Gustafson

Amdahl Gustafson

p = 4 p = 4

819

27.5 Task- and Data-Parallelism

820

Parallel Programming Paradigms

Task Parallel: Programmer explicitly defines parallel tasks.
Data Parallel: Operations applied simulatenously to an aggregate
of individual items.

821

Example Data Parallel (OMP)

double sum = 0, A[MAX];
#pragma omp parallel for reduction (+:ave)
for (int i = 0; i< MAX; ++i)

sum += A[i];
return sum;

822

Example Task Parallel (C++11 Threads/Futures)

double sum(Iterator from, Iterator to)
{

auto len = from − to;
if (len > threshold){

auto future = std::async(sum, from, from + len / 2);
return sumS(from + len / 2, to) + future.get();

}
else

return sumS(from, to);
}

823

Work Partitioning and Scheduling

Partitioning of the work into parallel task (programmer or system)

One task provides a unit of work
Granularity?

Scheduling (Runtime System)

Assignment of tasks to processors
Goal: full resource usage with little overhead

824

Example: Fibonacci P-Fib

if n ≤ 1 then
return n

else
x← spawn P-Fib(n− 1)
y ← spawn P-Fib(n− 2)
sync
return x+ y;

825

P-Fib Task Graph

826

P-Fib Task Graph

827

Question

Each Node (task) takes 1 time unit.
Arrows depict dependencies.
Minimal execution time when number
of processors =∞?

critical path

828

Performance Model

p processors
Dynamic scheduling
Tp: Execution time on p processors

829

Performance Model

Tp: Execution time on p processors
T1: work: time for executing total work
on one processor
T1/Tp: Speedup

830

Performance Model

T∞: span: critical path, execution time
on∞ processors. Longest path from
root to sink.
T1/T∞: Parallelism: wider is better
Lower bounds:

Tp ≥ T1/p Work law
Tp ≥ T∞ Span law

831

Greedy Scheduler

Greedy scheduler: at each time it schedules as many as availbale
tasks.
Theorem
On an ideal parallel computer with p processors, a greedy scheduler
executes a multi-threaded computation with work T1 and span T∞ in
time

Tp ≤ T1/p+ T∞

832

Beispiel
Assume p = 2.

Tp = 5 Tp = 4

833

Proof of the Theorem

Assume that all tasks provide the same amount of work.

Complete step: p tasks are available.
incomplete step: less than p steps available.

Assume that number of complete steps larger than bT1/pc.
Executed work ≥ P · (bT1/pc · p) = T1 − T1 mod p+ p ≥ T1.
Contradiction. Therefore maximally bT1/pc complete steps.

Each incomplete step executed at any time all available tasks t with
deg−(t) = 0 and decreases the length of the span. Otherwise the
chosen span would not have been maximal. Number of incomplete
steps thus maximally T∞.

834

Consequence

if p� T1/T∞, i.e. T∞ � T1/p, then Tp ≈ T1/p.

Example Fibonacci
T1(n)/T∞(n) = Θ(φn/n). For moderate sizes of n we can use a lot
of processors yielding linear speedup.

835

Granularity: how many tasks?
#Tasks = #Cores?
Problem if a core cannot be fully used
Example: 9 units of work. 3 core.
Scheduling of 3 sequential tasks.

Exclusive utilization:

P1

P2

P3

s1

s2

s3

Execution Time: 3 Units

Foreign thread disturbing:

P1

P2

P3

s1

s2 s1

s3

Execution Time: 5 Units
836

Granularity: how many tasks?
#Tasks = Maximum?
Example: 9 units of work. 3 cores.
Scheduling of 9 sequential tasks.

Exclusive utilization:

P1

P2

P3

s1

s2

s3

s4

s5

s6

s7

s8

s9

Execution Time: 3 + ε Units

Foreign thread disturbing:

P1

P2

P3

s1

s2

s3

s4 s5

s6 s7

s8

s9

Execution Time: 4 Units. Full uti-
lization.

837

Granularity: how many tasks?

#Tasks = Maximum?
Example: 106 tiny units of work.

P1

P2

P3

Execution time: dominiert vom Overhead.

838

Granularity: how many tasks?

Answer: as many tasks as possible with a sequential cutoff such that
the overhead can be neglected.

839

Example: Parallelism of Mergesort

Work (sequential runtime) of
Mergesort T1(n) = Θ(n log n).
Span T∞(n) = Θ(n)

Parallelism T1(n)/T∞(n) = Θ(log n)
(Maximally achievable speedup with
p =∞ processors)

split

merge

840

28. Parallel Programming II

C++ Threads, Shared Memory, Concurrency, Excursion: lock
algorithm (Peterson), Mutual Exclusion Race Conditions [C++
Threads: Anthony Williams, C++ Concurrency in Action]

841

C++11 Threads
#include <iostream>
#include <thread>

void hello(){
std::cout << "hello\n";

}

int main(){
// create and launch thread t
std::thread t(hello);
// wait for termination of t
t.join();
return 0;

}

create thread

hello

join

842

C++11 Threads
void hello(int id){

std::cout << "hello from " << id << "\n";
}

int main(){
std::vector<std::thread> tv(3);
int id = 0;
for (auto & t:tv)

t = std::thread(hello, ++id);
std::cout << "hello from main \n";
for (auto & t:tv)

t.join();
return 0;

}

create threads

join

843

Nondeterministic Execution!

One execution:
hello from main
hello from 2
hello from 1
hello from 0

Other execution:
hello from 1
hello from main
hello from 0
hello from 2

Other execution:
hello from main
hello from 0
hello from hello from 1
2

844

Technical Detail

To let a thread continue as background thread:
void background();

void someFunction(){
...
std::thread t(background);
t.detach();
...

} // no problem here, thread is detached

845

More Technical Details

With allocating a thread, reference parameters are copied, except
explicitly std::ref is provided at the construction.
Can also run Functor or Lambda-Expression on a thread
In exceptional circumstances, joining threads should be executed
in a catch block

More background and details in chapter 2 of the book C++ Concurrency in Action,
Anthony Williams, Manning 2012. also available online at the ETH library.

846

28.2 Shared Memory, Concurrency

847

Sharing Resources (Memory)

Up to now: fork-join algorithms: data parallel or
divide-and-conquer
Simple structure (data independence of the threads) to avoid race
conditions
Does not work any more when threads access shared memory.

848

Managing state

Managing state: Main challenge of concurrent programming.

Approaches:

Immutability, for example constants.
Isolated Mutability, for example thread-local variables, stack.
Shared mutable data, for example references to shared memory,
global variables

849

Protect the shared state

Method 1: locks, guarantee exclusive access to shared data.
Method 2: lock-free data structures, exclusive access with a much
finer granularity.
Method 3: transactional memory (not treated in class)

850

Canonical Example

class BankAccount {
int balance = 0;

public:
int getBalance(){ return balance; }
void setBalance(int x) { balance = x; }
void withdraw(int amount) {

int b = getBalance();
setBalance(b − amount);

}
// deposit etc.

};

(correct in a single-threaded world)

851

Bad Interleaving

Parallel call to widthdraw(100) on the same account

Thread 1
int b = getBalance();

setBalance(b−amount);

Thread 2

int b = getBalance();

setBalance(b−amount);
t

852

Tempting Traps

WRONG:
void withdraw(int amount) {

int b = getBalance();
if (b==getBalance())

setBalance(b − amount);
}

Bad interleavings cannot be solved with a repeated reading

853

Tempting Traps

also WRONG:
void withdraw(int amount) {

setBalance(getBalance() − amount);
}

Assumptions about atomicity of operations are almost always wrong

854

Mutual Exclusion

We need a concept for mutual exclusion

Only one thread may execute the operation withdraw on the same
account at a time.

The programmer has to make sure that mutual exclusion is used.

855

More Tempting Traps
class BankAccount {

int balance = 0;
bool busy = false;

public:
void withdraw(int amount) {

while (busy); // spin wait
busy = true;
int b = getBalance();
setBalance(b − amount);
busy = false;

}

// deposit would spin on the same boolean
};

does not work!

856

Just moved the problem!

Thread 1

while (busy); //spin

busy = true;

int b = getBalance();

setBalance(b − amount);

Thread 2

while (busy); //spin

busy = true;

int b = getBalance();
setBalance(b − amount);

t

857

How ist this correctly implemented?

We use locks (mutexes) from libraries
They use hardware primitives, Read-Modify-Write (RMW)
operations that can, in an atomic way, read and write depending
on the read result.
Without RMW Operations the algorithm is non-trivial and requires
at least atomic access to variable of primitive type.

858

28.3 Excursion: lock algorithm

859

Alice’s Cat vs. Bob’s Dog

860

Required: Mutual Exclusion

861

Required: No Lockout When Free

862

Communication Types

Transient: Parties participate at the same time

Persistent: Parties participate at different times

863

Communication Idea 1

864

Access Protocol

865

Problem!

866

Communication Idea 2

867

Access Protocol 2.1

868

Different Scenario

869

Problem: No Mutual Exclusion

870

Checking Flags Twice: Deadlock

871

Access Protocol 2.2

872

Access Protocol 2.2:Provably Correct

873

Weniger schwerwiegend: Starvation

874

Final Solution

875

General Problem of Locking remains

876

Peterson’s Algorithm36

for two processes is provable correct and free from starvation
non−critical section

flag[me] = true // I am interested
victim = me // but you go first
// spin while we are both interested and you go first:
while (flag[you] && victim == me) {};

critical section

flag[me] = false

The code assumes that the access to flag
/ victim is atomic and particularly lineariz-
able or sequential consistent. An assump-
tion that – as we will see below – is not nec-
essarily given for normal variables. The
Peterson-lock is not used on modern hard-
ware.

36not relevant for the exam
877

28.4 Mutual Exclusion

878

Critical Sections and Mutual Exclusion

Critical Section
Piece of code that may be executed by at most one process (thread)
at a time.

Mutual Exclusion
Algorithm to implement a critical section

acquire_mutex(); // entry algorithm\\
... // critical section
release_mutex(); // exit algorithm

879

Required Properties of Mutual Exclusion

Correctness (Safety)
At most one process executes the
critical section code

Liveness
Acquiring the mutex must terminate in
finite time when no process executes
in the critical section

880

Almost Correct
class BankAccount {

int balance = 0;
std::mutex m; // requires #include <mutex>

public:
...
void withdraw(int amount) {

m.lock();
int b = getBalance();
setBalance(b − amount);
m.unlock();

}
};

What if an exception occurs?
881

RAII Approach

class BankAccount {
int balance = 0;
std::mutex m;

public:
...
void withdraw(int amount) {

std::lock_guard<std::mutex> guard(m);
int b = getBalance();
setBalance(b − amount);

} // Destruction of guard leads to unlocking m
};

What about getBalance / setBalance?

882

Reentrant Locks

Reentrant Lock (recursive lock)

remembers the currently affected thread;
provides a counter

Call of lock: counter incremented
Call of unlock: counter is decremented. If counter = 0 the lock is released.

883

Account with reentrant lock
class BankAccount {

int balance = 0;
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
int getBalance(){ guard g(m); return balance;
}
void setBalance(int x) { guard g(m); balance = x;
}
void withdraw(int amount) { guard g(m);

int b = getBalance();
setBalance(b − amount);

}
};

884

28.5 Race Conditions

885

Race Condition

A race condition occurs when the result of a computation depends
on scheduling.
We make a distinction between bad interleavings and data races
Bad interleavings can occur even when a mutex is used.

886

Example: Stack

Stack with correctly synchronized access:
template <typename T>
class stack{

...
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
bool isEmpty(){ guard g(m); ... }
void push(T value){ guard g(m); ... }
T pop(){ guard g(m); ...}

};

887

Peek

Forgot to implement peek. Like this?
template <typename T>
T peek (stack<T> &s){

T value = s.pop();
s.push(value);
return value;

}

not thread-safe!

Despite its questionable style the code is correct in a sequential
world. Not so in concurrent programming.

888

Bad Interleaving!

Initially empty stack s, only shared between threads 1 and 2.

Thread 1 pushes a value and checks that the stack is then
non-empty. Thread 2 reads the topmost value using peek().

Thread 1

s.push(5);

assert(!s.isEmpty());

Thread 2

int value = s.pop();

s.push(value);
return value;

t

889

The fix

Peek must be protected with the same lock as the other access
methods

890

Bad Interleavings

Race conditions as bad interleavings can happen on a high level of
abstraction

In the following we consider a different form of race condition: data
race.

891

How about this?
class counter{

int count = 0;
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
int increase(){

guard g(m); return ++count;
}
int get(){

return count;
}

}

not thread-safe!

892

Why wrong?

It looks like nothing can go wrong because the update of count
happens in a “tiny step”.

But this code is still wrong and depends on
language-implementation details you cannot assume.

This problem is called Data-Race

Moral: Do not introduce a data race, even if every interleaving you
can think of is correct. Don’t make assumptions on the memory
order.

893

A bit more formal

Data Race (low-level Race-Conditions) Erroneous program behavior
caused by insufficiently synchronized accesses of a shared resource
by multiple threads, e.g. Simultaneous read/write or write/write of
the same memory location

Bad Interleaving (High Level Race Condition) Erroneous program
behavior caused by an unfavorable execution order of a
multithreaded algorithm, even if that makes use of otherwise well
synchronized resources.

894

We look deeper
class C {

int x = 0;
int y = 0;

public:
void f() {

x = 1;
y = 1;

}
void g() {

int a = y;
int b = x;
assert(b >= a);

}
}

A
B

C
D

Can this fail?

There is no interleaving of f and g that
would cause the assertion to fail:

A B C D X

A C B D X

A C D B X

C A B D X

C C D B X

C D A B X

It can nevertheless fail!

895

One Resason: Memory Reordering

Rule of thumb: Compiler and hardware allowed to make changes
that do not affect the semantics of a sequentially executed program

void f() {
x = 1;
y = x+1;
z = x+1;

}

⇐⇒
sequentially equivalent

void f() {
x = 1;
z = x+1;
y = x+1;

}

896

From a Software-Perspective

Modern compilers do not give guarantees that a global ordering of
memory accesses is provided as in the sourcecode:

Some memory accesses may be even optimized away completely!
Huge potential for optimizations – and for errors, when you make
the wrong assumptions

897

Example: Self-made Rendevouz

int x; // shared

void wait(){
x = 1;
while(x == 1);

}

void arrive(){
x = 2;

}

Assume thread 1 calls wait, later thread 2
calls arrive. What happens?

thread 1

thread 2

wait

arrive

898

Compilation

Source
int x; // shared

void wait(){
x = 1;
while(x == 1);

}

void arrive(){
x = 2;

}

Without optimisation

wait:
movl $0x1, x
test:
mov x, %eax
cmp $0x1, %eax
je test

arrive:
movl $0x2, x

With optimisation

wait:
movl $0x1, x
test:
jmp test

arrive
movl $0x2, x

if equal

always

899

Hardware Perspective

Modern multiprocessors do not enforce global ordering of all
instructions for performance reasons:

Most processors have a pipelined architecture and can execute
(parts of) multiple instructions simultaneously. They can even
reorder instructions internally.
Each processor has a local cache, and thus loads/stores to shared
memory can become visible to other processors at different times

900

Memory Hierarchy

Registers

L1 Cache

L2 Cache

...

System Memory slow,high latency,low cost,high capacity

fast,low latency, high cost, low capacity

901

An Analogy

902

Schematic

903

Memory Models

When and if effects of memory operations become visible for
threads, depends on hardware, runtime system and programming
language.

A memory model (e.g. that of C++) provides minimal guarantees for
the effect of memory operations

leaving open possibilities for optimisation
containing guidelines for writing thread-safe programs

For instance, C++ provides guarantees when synchronisation with a
mutex is used.

904

Fixed
class C {

int x = 0;
int y = 0;
std::mutex m;

public:
void f() {

m.lock(); x = 1; m.unlock();
m.lock(); y = 1; m.unlock();

}
void g() {

m.lock(); int a = y; m.unlock();
m.lock(); int b = x; m.unlock();
assert(b >= a); // cannot happen

}
};

905

Atomic
Here also possible:
class C {

std::atomic_int x{0}; // requires #include <atomic>
std::atomic_int y{0};

public:
void f() {

x = 1;
y = 1;

}
void g() {

int a = y;
int b = x;
assert(b >= a); // cannot happen

}
}; 906

29. Parallel Programming III

Deadlock and Starvation Producer-Consumer, The concept of the
monitor, Condition Variables

907

Deadlock Motivation
class BankAccount {

int balance = 0;
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
...
void withdraw(int amount) { guard g(m); ... }
void deposit(int amount){ guard g(m); ... }

void transfer(int amount, BankAccount& to){
guard g(m);
withdraw(amount);
to.deposit(amount);

}
};

Problem?

908

Deadlock Motivation
Suppose BankAccount instances x and y

Thread 1: x.transfer(1,y);

acquire lock for x

withdraw from x

acquire lock for y

Thread 2: y.transfer(1,x);

acquire lock for y

withdraw from y

acquire lock for x

909

Deadlock

Deadlock: two or more processes are
mutually blocked because each process
waits for another of these processes to
proceed.

910

Threads and Resources

Grafically t and Resources (Locks) r

Thread t attempts to acquire resource a: t a

Resource b is held by thread q: s b

911

Deadlock – Detection
A deadlock for threads t1, . . . , tn occurs when the graph describing
the relation of the n threads and resources r1, . . . , rm contains a
cycle.

t1

r1t2

r2

t3 r3

t4

r4
held by

wants

912

Techniques

Deadlock detection detects cycles in the dependency graph.
Deadlocks can in general not be healed: releasing locks generally
leads to inconsistent state
Deadlock avoidance amounts to techniques to ensure a cycle can
never arise

Coarser granularity “one lock for all”
Two-phase locking with retry mechanism
Lock Hierarchies
...
Resource Ordering

913

Back to the Example
class BankAccount {

int id; // account number, also used for locking order
std::recursive_mutex m; ...

public:
...
void transfer(int amount, BankAccount& to){

if (id < to.id){
guard g(m); guard h(to.m);
withdraw(amount); to.deposit(amount);

} else {
guard g(to.m); guard h(m);
withdraw(amount); to.deposit(amount);

}
}

};
914

C++11 Style
class BankAccount {

...
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
...
void transfer(int amount, BankAccount& to){

std::lock(m,to.m); // lock order done by C++
// tell the guards that the lock is already taken:
guard g(m,std::adopt_lock); guard h(to.m,std::adopt_lock);
withdraw(amount);
to.deposit(amount);

}
};

915

By the way...
class BankAccount {

int balance = 0;
std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;

public:
...
void withdraw(int amount) { guard g(m); ... }
void deposit(int amount){ guard g(m); ... }

void transfer(int amount, BankAccount& to){
withdraw(amount);
to.deposit(amount);

}
};

This would have worked here also.
But then for a very short amount of
time, money disappears, which does
not seem acceptable (transient incon-
sistency!) 916

Starvation und Livelock

Starvation: the repeated but unsuccess-
ful attempt to acquire a resource that was
recently (transiently) free.

Livelock: competing processes are able
to detect a potential deadlock but make
no progress while trying to resolve it.

917

Politelock

918

Producer-Consumer Problem

Two (or more) processes, producers and consumers of data should
become decoupled by some data structure.

Fundamental Data structure for building pipelines in software.

t1 t2

919

Sequential implementation (unbounded buffer)
class BufferS {

std::queue<int> buf;
public:

void put(int x){
buf.push(x);

}

int get(){
while (buf.empty()){} // wait until data arrive
int x = buf.front();
buf.pop();
return x;

}
};

not thread-safe

920

How about this?
class Buffer {

std::recursive_mutex m;
using guard = std::lock_guard<std::recursive_mutex>;
std::queue<int> buf;

public:
void put(int x){ guard g(m);

buf.push(x);
}
int get(){ guard g(m);

while (buf.empty()){}
int x = buf.front();
buf.pop();
return x;

}
};

Deadlock

921

Well, then this?
void put(int x){

guard g(m);
buf.push(x);

}
int get(){

m.lock();
while (buf.empty()){

m.unlock();
m.lock();

}
int x = buf.front();
buf.pop();
m.unlock();
return x;

}

Ok this works, but it wastes CPU
time.

922

Better?
void put(int x){

guard g(m);
buf.push(x);

}
int get(){

m.lock();
while (buf.empty()){

m.unlock();
std::this_thread::sleep_for(std::chrono::milliseconds(10));
m.lock();

}
int x = buf.front(); buf.pop();
m.unlock();
return x;

}

Ok a little bit better, limits reactiv-
ity though.

923

Moral

We do not want to implement waiting on a condition ourselves.

There already is a mechanism for this: condition variables.

The underlying concept is called Monitor.

924

Monitor

Monitor abstract data structure equipped
with a set of operations that run in mutual
exclusion and that can be synchronized.

Invented by C.A.R. Hoare and Per Brinch
Hansen (cf. Monitors – An Operating Sys-
tem Structuring Concept, C.A.R. Hoare
1974)

C.A.R. Hoare,
*1934

Per Brinch Hansen
(1938-2007)

925

Monitors vs. Locks

926

Monitor and Conditions

Monitors provide, in addition to mutual exclusion, the following
mechanism:

Waiting on conditions: If a condition does not hold, then

Release the monitor lock
Wait for the condition to become true
Check the condition when a signal is raised

Signalling: Thread that might make the condition true:

Send signal to potentially waiting threads

927

Condition Variables
#include <mutex>
#include <condition_variable>
...

class Buffer {
std::queue<int> buf;

std::mutex m;
// need unique_lock guard for conditions
using guard = std::unique_lock<std::mutex>;
std::condition_variable cond;

public:
...

};

928

Condition Variables
class Buffer {
...
public:

void put(int x){
guard g(m);
buf.push(x);
cond.notify_one();

}
int get(){

guard g(m);
cond.wait(g, [&]{return !buf.empty();});
int x = buf.front(); buf.pop();
return x;

}
};

929

Technical Details

A thread that waits using cond.wait runs at most for a short time
on a core. After that it does not utilize compute power and
“sleeps”.
The notify (or signal-) mechanism wakes up sleeping threads that
subsequently check their conditions.

cond.notify_one signals one waiting thread
cond.notify_all signals all waiting threads. Required when waiting
thrads wait potentially on different conditions.

930

Technical Details

Many other programming langauges
offer the same kind of mechanism.
The checking of conditions (in a loop!)
has to be usually implemented by the
programmer.

Java Example
synchronized long get() {

long x;
while (isEmpty())

try {
wait ();
} catch (InterruptedException e) { }

x = doGet();
return x;

}

synchronized put(long x){
doPut(x);
notify ();

}

931

By the way, using a bounded buffer..
class Buffer {

...
CircularBuffer<int,128> buf; // from lecture 6

public:
void put(int x){ guard g(m);

cond.wait(g, [&]{return !buf.full();});
buf.put(x);
cond.notify_all();

}
int get(){ guard g(m);

cond.wait(g, [&]{return !buf.empty();});
cond.notify_all();
return buf.get();

}
};

932

30. Parallel Programming IV

Futures, Read-Modify-Write Instructions, Atomic Variables, Idea of
lock-free programming

933

Futures: Motivation

Up to this point, threads have been functions without a result:
void action(some parameters){

...
}

std::thread t(action, parameters);
...
t.join();
// potentially read result written via ref−parameters

934

Futures: Motivation

Now we would like to have the following
T action(some parameters){

...
return value;

}

std::thread t(action, parameters);
...
value = get_value_from_thread();

main

action

da
ta

935

We can do this already!

We make use of the producer/consumer pattern, implemented
with condition variables
Start the thread with reference to a buffer
We get the result from the buffer.
Synchronisation is already implemented

936

Reminder
template <typename T>
class Buffer {

std::queue<T> buf;
std::mutex m;
std::condition_variable cond;

public:
void put(T x){ std::unique_lock<std::mutex> g(m);

buf.push(x);
cond.notify_one();

}
T get(){ std::unique_lock<std::mutex> g(m);

cond.wait(g, [&]{return (!buf.empty());});
T x = buf.front(); buf.pop(); return x;

}
};

937

Application
void action(Buffer<int>& c){

// some long lasting operation ...
c.put(42);

}

int main(){
Buffer<int> c;
std::thread t(action, std::ref(c));
t.detach(); // no join required for free running thread
// can do some more work here in parallel
int val = c.get();
// use result
return 0;

}

main

action

da
ta

938

With features of C++11
int action(){

// some long lasting operation
return 42;

}

int main(){
std::future<int> f = std::async(action);
// can do some work here in parallel
int val = f.get();
// use result
return 0;

}

main

action

da
ta

939

30.2 Read-Modify-Write

940

Example: Atomic Operations in Hardware

941

Read-Modify-Write

Concept of Read-Modify-Write: Read, modify and write back at one
point in time (atomic).

942

Example: Test-And-Set

bool TAS(bool& variable){
bool old = variable;
variable = true;
return old;

}

at
om

ic

943

Application example TAS in C++11

class SpinLock{
std::atomic_flag taken {false};
public:

void lock(){
while (taken.test_and_set());

}

void unlock(){
taken.clear();

}
};

944

30.2 Read-Modify-Write

945

Compare-And-Swap

bool CAS(int& variable, int& expected, int desired){
if (variable == expected){

variable = desired;
return true;

}
else{

expected = variable;
return false;

}
}

at
om

ic

946

Lock-free programming

Data structure is called

lock-free: at least one thread always makes progress in bounded
time even if other algorithms run concurrently. Implies
system-wide progress but not freedom from starvation.
wait-free: all threads eventually make progress in bounded time.
Implies freedom from starvation.

947

Progress Conditions

Non-Blocking Blocking

Everyone makes
progress

Wait-free Starvation-free

Someone makes
progress

Lock-free Deadlock-free

948

Implication

Programming with locks: each thread can block other threads
indefinitely.
Lock-free: failure or suspension of one thread cannot cause
failure or suspension of another thread !

949

Lock-free programming: how?

Beobachtung:

RMW-operations are implemented wait-free by hardware.
Every thread sees his result of a CAS or TAS in bounded time.

Idea of lock-free programming: read the state of a data sructure and
change the data structure atomically if and only if the previously read
state remained unchanged meanwhile.

950

Example: lock-free stack

Simplified variant of a stack in the following

pop prüft nicht, ob der Stack leer ist
pop gibt nichts zurück

951

(Node)

Nodes:
struct Node {

T value;

Node<T>∗ next;
Node(T v, Node<T>∗ nxt): value(v), next(nxt) {}

};

value
next

value
next

value
next

value
next

952

(Blocking Version)
template <typename T>
class Stack {

Node<T> ∗top=nullptr;
std::mutex m;

public:
void push(T val){ guard g(m);

top = new Node<T>(val, top);
}
void pop(){ guard g(m);

Node<T>∗ old_top = top;
top = top−>next;
delete old_top;

}
};

value
next

value
next

value
next

value
next

top

953

Lock-Free
template <typename T>
class Stack {

std::atomic<Node<T>∗> top {nullptr};
public:

void push(T val){
Node<T>∗ new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node−>next, new_node));

}
void pop(){

Node<T>∗ old_top = top;
while (!top.compare_exchange_weak(old_top, old_top−>next));
delete old_top;

}
};

954

Push
void push(T val){

Node<T>∗ new_node = new Node<T> (val, top);
while (!top.compare_exchange_weak(new_node−>next, new_node));

}

2 Threads:

top

new

new

955

Pop
void pop(){

Node<T>∗ old_top = top;
while (!top.compare_exchange_weak(old_top, old_top−>next));
delete old_top;

}

2 Threads:

top

old

old

956

Lock-Free Programming – Limits

Lock-Free Programming is complicated.
If more than one value has to be changed in an algorithm
(example: queue), it is becoming even more complicated: threads
have to “help each other” in order to make an algorithm lock-free.
The ABA problem can occur if memory is reused in an algorithm.

957

	Introduction
	Algorithms
	Organisation
	Ancient Egyptian Multiplication
	Fast Integer Multiplication
	Finde den Star

	Efficiency of algorithms
	Function growth

	Design of Algorithms
	Searching
	Selection
	C++ advanced (I)
	Sorting I
	Simple Sorting

	Sorting II
	Heapsort
	Mergesort
	Quicksort

	C++ advanced (II): Templates
	Sorting III
	Lower bounds for comparison based sorting
	Radixsort and Bucketsort

	Fundamental Data Types
	Stack
	Queue
	Implementation Variants of Linked Lists
	Amortized Analysis

	Dictionaries
	Self Ordering
	Skiplisten

	C++ advanced (III): Functors and Lambda
	Appendix to previous C++ chapters
	Functors and Lambda-Expressions

	Hashing
	Collision Probabilities
	Hash Functions and Tables
	Perfect and Universal Hashing
	Chaining Collisions
	Open Addressing
	Overview

	C++ advanced (IV): Exceptions
	Binary Search Trees
	Trees
	Search Trees
	Key Insertion
	Remove Key
	Tree Traversal

	AVL Trees
	Balance
	AVL Condition
	Fibonacci Numbers
	AVL Insert

	Quadtrees
	Dynamic Programming I
	Fibonacci Numbers
	Memoization
	General Procedure
	Longest Ascending Sequence
	Longest Common Subsequence
	Editing Distance
	Matrix-Chain-Multiplication
	Strassen's Matrix Multiplication

	Dynamic Programming II
	Subset Sum Problem
	NP
	Knapsack Problem
	Fully Polynomial Approximation
	Optimal Binary Search Tree

	Greedy Algorithms
	AktivitätenauswahlActivity Selection
	Gebrochenes RucksackproblemFractional Knapsack Problem
	Huffman-CodierungHufmann Coding

	Graphs
	graphs
	Representation of graphs
	Graphs and Relations
	Graph Traversal
	Connected Components
	Topological Sorting

	Shortest Paths
	Motivation
	Constant Edge Weights
	Dijkstra's Algorithm
	Bellman-Ford Algorithm
	Floyd-Warshall Algorithm
	Johnson Algorithm

	Minimum Spanning Trees
	Motivation
	Greedy
	Algorithm Kruskal
	General Rules
	ADT Union-Find
	Algorithm Jarnik, Prim, Dijkstra
	Fibonacci Heaps

	Flow in Networks
	Flow Network
	Cut
	Maximal Flow
	Rest Network
	Max-Flow Min-Cut
	 Ford-Fulkerson Algorithm
	Edmonds-Karp Algorithm
	Maximales Bipartites Matching

	Geometric Algorithms
	Properties of Line Segments
	Intersection of Line Segments
	Convex Hull
	Closest Point Pair

	Parallel Programming I
	Parallel Execution
	Hardware Architectures
	Multi-Threading, Parallelism and Concurrency
	Scalability: Amdahl and Gustafson
	Task- and Data-Parallelism

	Parallel Programming II
	C++ Threads
	Shared Memory, Concurrency
	Excursion: lock algorithm
	Mutual Exclusion
	Race Conditions

	Parallel Programming III
	Deadlock
	Producer-Consumer Problem
	Monitor Concept
	Condition Variables

	Parallel Programming IV
	C++ Futures
	Read-Modify-Write
	Lock-Free Programming

