1.5. I/O

Serial Communication

Simplex

Half-Duplex

Duplex

Serial Communication

Master-Slave

Master-Multi-Slave

(Multi-)Master Multi-Slave

Serial Communication

Synchronous

Asynchronous

Some Bus Types

	Wires (+Gnd)	Directionality	Synchrony	Distance typ.	Speed typ.	Remarks			
RS-232	2/4 –7	full duplex	asynchronous +synchronous	10 m	115kbps / 1Mbps	Point-to-Point Interference prone			
RS-485	2/4	half/full duplex	asynchronous	1000 m	Mbps	Differential Signalling			
SPI [aka SSP, Microwire]	4	full duplex	synchronous few cm		10 Mbps	Master-Multi-Slave with Slave select			
I ² C [SMBus]	2	half duplex	synchronous	few m	100kbps- 3Mbps	Addressed Multi-Master			
1-Wire	1	half duplex	time-slot based, synchronous	tens of m	15kbps/ 125kbps	Master-Multi-Slave Parasitic power			
USB 2.0	2 + Vcc	half-duplex	asynchronous	few m	12Mbits/ 480 MBits	isochronous/ bulk/ interrupt transfers			
USB 3.0	2/ full-duplex 6 +DGnd + Vcc		asynchronous	few m	5/10 GBits	130			

SPI

SPI

- Four wire serial bus invented / named by Motorola
- Serial connection between two or more devices (microprocessors, D/A converters)
- Configurations
 - 1 Master, 1 Slave (single slave mode)
 - 1 Master, N Slaves (multiple slave mode)
- Synchronous bidirectional data transfer
- Data transfer initiated by Master
- Bandwidth some KBits/s up to several MBits/s
- Simple implementation in software
- Used in a variety of devices, such as memory (flash, EEPROM), LCD displays and in all MMC / SD cards

Communication

Polarity

Phase

SPI – Data Transfer

- Master configures the clock
- Master selects slave (SS), followed by waiting period (if required by slave)
- Full duplex data transmission in each cycle
 - Master sends bit over MOSI line, slave reads bit
 - Slave sends bit over MISO line, master reads bit
- Two shift registers, one in slave, one in master for transfer
- When no data is to be transmitted any more, master stops toggling the clock
- No acknowledgement mechanism
- No device interrupts

1. Bit-Banging

1. Bit-Banging

```
FOR i := 7 \text{ TO } 0 \text{ BY } -1 \text{ DO}
 IF ODD(ASH(data,-i)) THEN
  Platform.WriteBits(Platform.GPSET0, MOSI);
 ELSE
  Platform.WriteBits(Platform.GPCLR0, MOSI);
 END;
 Kernel.MicroWait(HalfClock);
 Platform.WriteBits(Platform.GPSET0, CLOCK);
 Kernel.MicroWait(HalfClock);
 Platform.WriteBits(Platform.GPCLR0, CLOCK);
END;
```

2. Using a Controller

2. Using a Controller

```
(* start transition *)
Platform.SetBits(Platform.SPI CS, {TA});
REPEAT UNTIL TXD IN Platform.ReadBits(Platform.SPI_CS);
Platform.WriteWord(Platform.SPI_FIFO, data);
junk := Platform.ReadWord(Platform.SPI_FIFO);
REPEAT UNTIL DONE IN Platform.ReadBits(Platform.SPI_CS);
(* transfer inactive *)
Platform.ClearBits(Platform.SPI CS, {TA});
```

BCM 2835 Registers

CS -- Control and Status

Chip Select

FIFO Status

Transfer Progress

Interrupts

Polarity & Phase

CLK

Clock Divider

Other

DMA Control

Special Mode Control

MAX7219 8-Digit LED Display Driver

Max7219 Specification, p.5

MAX7219 8-Digit LED Display Driver

Figure 1. Timing Diagram

Table 1. Serial-Data Format (16 Bits)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Χ	X	X	X	ADDRESS			MSB	DATA						LSB	

Max7219 Specification, p.6

MMC and SD Cards

- Low cost memory system for persistent data on "solid state mass storage" (for example flash memory cards)
- Separate bus system
 - 1 master, N slaves (cards)
 - typically 1 master for one card
- Serial & synchronous transfer of commands and data
 - Sequential read/ write
 - Block read/ write

MMC System Interaction

SD Card

SD Mode vs SPI Mode

Block Read/ Write Operation

Read

Write

RS232

RS232 Signalling

UART

Universal Asynchronous Receiver/ Transmitter

- Serial transmission of individual bits in byte packets (lowest significant bit first)
- Configurable
 - Number of data bits per byte: 5, 6, 7, 8
 - Parity: odd, even, none
 - Number of stop bits: 1, 1.5, 2
 - Transfer rate in bps (bits per second): 75, 110, 300,...,
 115200

source: Wikipedia

Implementation

161