ETH Vorlesung Systembau / Lecture System Construction
>252-0286-00L - Dr. Felix Friedrich, Paul Reed

>

>Case Study: Custom-designed Single-Processor System
>Paul Reed (paulreed@paddedcell.com)

>

- First Lecture: The RISC Architecture

- [Second Lecture: Project Oberon on RISC]

The belief that...

>...complex systems require armies of designers and programmers
>is wrong. A system that is not understood in its entirety, or at
>least to a significant degree of detail by a single individual,
>should probably not be built.

>

- Niklaus Wirth (Feb. 1995), "A Plea for Lean Software", IEEE Computer

Introduction

- RISC single-processor personal computer designed from scratch
- Hardware on field-programmable gate array (FPGA)

- (this lecture) Motivation and goals; RISC CPU

- (next lecture) Graphical workstation OS and compiler (Project
Oberon)

Motivation

- "Project Oberon" (1992) by N. Wirth & J. Gutknecht, at ETH Zurich

- building a complete system from scratch is achievable and beneficial
- available commercial systems are far from perfect

- not just a "toy" system: complete and self-hosting

- personally: need good and reliable tools for commercial programming

Case Study Goals

- weigh pros and cons of designing from scratch

- overview of using FPGAs to design custom hardware

- competence in building complete custom system from the ground up

- understanding of "how it really works" from hardware to application
- courage to apply "lean systems" approach wherever appropriate

Discussion: Why Build from Scratch? (1)

- reduce complexity: no "baggage"

- clear design: easy to see where to extend or fix

- increase control, reduce the number of dependencies
- more choices of implementation

- design based solely on problem domain and experience

Discussion: Why Build from Scratch? (2)
- eliminate surprises: deliver on time and on budget
- highly flexible solution

- more of what the customer asked for
- source of competitive advantage
- accept less of what you don't like

Discussion: Why not Build from Scratch?

- duplication of effort: re-inventing the wheel
- more fundamental knowledge required

- may be more actual work (the first time)

- restricted component choices

- not for the short-term

Introduction to Configurable Hardware

- evolution of programmable logic (PALs/GALs, CPLDs)

- look-up tables (LUTs), registers and interconnect

- current field programmable gate array (FPGA) technology

- loadable configuration, not "set in stone" like VLSI / ASIC

- applications from telecommunications to automotive and industrial
- now big enough for entire system-on-chip

Introduction to HDLs

- hardware description language to define circuits formally
- used for both simulation and synthesis

- commercial examples: Verilog, VHDL

- developed at ETH: Lola, Active Cells

- VERY different from conventional programming languages

Hardware Flashing-LED Test

- [handout TestLEDs-Verilog.pdf: "TestLEDs.v"]

- hardware-only solution as a simple example of Verilog
- define module inputs and outputs, registers, and wires
- wiring up: "assignh"

- register-transfer: "always @()"

- constraints file (Xilinx .ucf) for pin assignment

Introduction to Niklaus Wirth's RISC Processor

- originally a 32-bit virtual target for "Compiler Construction"
- RISC vs. CISC; registers vs. stack machine

- Harvard vs. Von Neumann memory architecture

- hardware floating-point option

- now defined in Verilog and implemented on FPGA

RISC Architecture Overview

- [handout RISC-Architecture.pdf: "The RISC Architecture"]

- program counter (PC) and instruction register (IR)

- instruction decode logic

- "register file" consisting of 16 general-purpose 32-bit registers
- arithmetic and logic unit; barrel shifter; flags NZCV

- memory interface



The RISC Instruction Set

arithmetic and logic instructions (reg/reg and reg/immediate)
load and store register to/from data memory (word and byte)
conditional branch (-and-1ink)

that's it!

RISCO Implementation on a Xilinx FPGA

[handout RISCO-Verilog.pdf: "module RISCOTop..."]
Harvard RISCO core in Verilog

on-FPGA ROM for program, on-FPGA RAM for data
memory-mapped I/0 ports

port examples: timer, LEDs, switches/jumpers, RS232
Verilog "top" module: outside-world interface

user constraints file (UCF)

Software Flashing-LED Test

[handout TestLEDs-Oberon.pdf: "MODULE* TestLEDs"]
"MODULE*" signifies a standalone module e.g. ROM
initialisation of stack and global base

main loop - output to LED port

nested delay loops

class exercise set-up / demonstration

Exercise 1: RISC on the OberonStation FPGA Board

Exercise la: Tools and Workflow

[handout OberonStation.pdf: "OberonStation"]
[handout XilinxSetupRISCO.pdf: "RISCO Project Setup and Test

Instructions"]

[handout ORC-Compile.pdf: "ORC: The Oberon-07 Command-line

Compiler"]

install Xilinx ISE and Oberon cross-compiler ORC

create RISCO project, add Verilog source code (src directory)
compile TestLEDs.Mod Oberon program, prom.mem to proj dir

in ISE generate "programming file", ie hardware bitstream
download to board using programming tool, e.g. iMPACT
compile TestSwi.Mod example, update prom.mem and regenerate

bitstream

Exercise 1b: Develop an Instruction Timer

use TestLEDs.Mod as template, add variable t

SYSTEM.GET(-64, t): 32-bit mS tick counter at port -64

get tick in t at beginning, and into z at end, of outer loop
run middle loop 100 times, inner loop 10000 times

display (z - t) DIV 100 on LEDs at end of outer loop

note mS, then compare after adding a DIV in inner loop
(optional) calculate exact cycle time for DIV instruction

Exercise 1lc (optional): Compare Hardware Implementations

use above performance meter to measure multiply

change hardware to use Multiplyl.v employing MULT18X18
(remove Multiplier.v, add Multiplierl.v, edit RISCO.v)
measure performance of multiply again

consider pros and cons of both designs

[end of first lecture and exercisel]



