
OTHER MESSAGE PASSING COMPUTE MODELS 
AND FRAMEWORKS

DataFlow Architectures / Languages (1975)

Kahn Process Networks (1974)

Communicating Sequential Processes (CSP) (1978)

Actor Model (1973/1978)

Message Passing Interface (MPI) (1992)
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Dataflow Architectures and Languages*

 Take advantage of massive parallelism.

 Von Neumann Architecture unsuitable for parallelism. Bottlenecks:

 Global program counter and

 Global updatable memory

 Alternative proposal: dataflow architecture

 Local memory

 Execute instructions as soon as operands are available

 Program in a dataflow computer is a directed graph and data flows between
instructions along its edges
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*following „Advances in Dataflow Programming Languages“, Johnston, 
Hanna, Millar, ACM Computing Surveys Vol36, No.1, 2004
Dataflow Programming Languages invented in the mid 1970s



Example

 A := X + Y

 B :=  Y / 10

 C := A * B
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Early Dataflow Hardware Architectures

 Static Architecture (Dennis /Misunas 1975)

 Each arc can hold only one token

 Firing rule: token available on all input nodes and no token on output nodes

 Single token per arc  second loop cannot begin until the previous one has ended –
parallelism boils down to pipelining

 Dynamic Architecture (Watson/Gurd 1979)

 Multiple incovations of a subgraph allowed

 Each arc a bag of tokens with different tags (destinations, value)

 Node fireable when on each input edge the same tag is available

 Can take full advantage of pipelining and out of order execution.
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MIT Tagged Token Dataflow Architecture

Conceptual Encoding of graph

Program memory:

Opcode Destination(s)

Encoding of token:

A “token” contains

120R, 6.847 Destination instruction address, 
Left/Right port, Value



Possible reasons for the failure of early dataflow

 Totally new programming paradigm not accepted

 Dataflow languages almost invariably functional

 Programs in imperative languages hard to compile to a dataflow 
architecture

 Dataflow architecture operated on a too fine grained level

 Von Neumann: process level granularity

 Early dataflow: instruction level granularity
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Hybrid Dataflow

Realization in the 1990s: 
Dataflow and von Neumann 
architectures are not 
mutually exclusive but the
two extremes of a continuum
of possible computer architectures

 Large-grain dataflow: each node contains an entire function expressed in a 
sequential language
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Kahn Process Networks
 Seminal Paper „The Semantics of a Simple Language for Parallel 

Programming“ by Gilles Kahn, 1974.

 „Formal approach to the design of programming languages and 
system programming“

 Programming language based on Algol.

 KPNs describe a signal processing system:
Processes communicate by passing data tokens through 
unidirectional FIFO channels

 KPN provide a distributed model of computation

 KPNs consist of a set of arbitrary deterministic sequential 
processes
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Concepts

 Channels

 Processes

 Wait
(Blocking Receive)

 Send
(Non-Blocking, unbounded fifos)

 Parallel invocation
of processes in
program body
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Determinism
Execution Model

 Channels are the only way for communication

 Communication for each line takes unpredictable but finite time

 Each process is either computing or waiting on one of its input lines.Processes are not allowed to test 
input channels for existence of tokens without consuming them (reads are blocking)

 Each process is a sequential process (given a specific input history for a process, the process must be 
determinstic). Timing / execution order may not influence the result

 Determinism

 The history of tokens produced on communication  channel does not depend on execution order

 Every execution order that obeys the semantic of the process network produces the same result
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The Actor Model*

Actor = Computational agent that maps 
communication to

 a finite set of communications sent to other actors 
(messages)

 a new behavior (state)

 a finite set of new actors created (dynamic 
reconfigurability)

 Undefined global ordering

 Asynchronous Message Passing

 Invented by Carl Hewitt 1973**

442

*Gul Agha (1986). Actors: A Model of Concurrent Computation in Distributed Systems. Doctoral Dissertation. MIT Press
**Carl Hewitt; Peter Bishop and Richard Steiger (1973). A Universal Modular Actor Formalism for Artificial Intelligence. IJCAI.

Actor

Thread

State

Mailbox



The Actor Model

Actor model provides a dynamic interconnection topology

 dynamically configure the graph during runtime (add channels)

 dynamically allocate resources

An actor sends messages to other actors using "direct naming", without 
indirection via port / channel / queue / socket (etc.)

Implemented in various languages such as Erlang, Scala, Ruby and in 
frameworks such as Akka (for Scala and Java)
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Example: Erlang

Functional Programming Language

 code might look unconventional at 
first

Developed by Ericsson for distributed 
fault-tolerant applications

 if no state is shared, recovering 
from errors becomes much easier

Open source

Concurrent, follows the actor model
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-module(pingpong).
-export([start/1,  ping/2, pong/0]).

ping(0, Pong_Node) ->
{pong, Pong_Node} ! finished,
io:format("ping finished~n", []);

ping(N, Pong_Node) ->
{pong, Pong_Node} ! {ping, self()},
receive

pong ->
io:format("Ping received pong~n", [])

end,
ping(N - 1, Pong_Node).

pong() ->
receive

finished ->
io:format("Pong finished~n", []);

{ping, Ping_PID} ->
io:format("Pong received ping~n", []),
Ping_PID ! pong,
pong()

end.

start(Ping_Node) ->
register(pong, spawn(tut18, pong, [])),
spawn(Ping_Node, tut18, ping, [3, node()]).
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Erlang example
Start() ->

Pid = spawn(fun() -> hello() end),

Pid ! Hello,
Pid ! bye.

hello() ->
receive

hello ->
io:fwrite("Hello world\n"),

hello();
bye ->

io:fwrite("Bye cruel world\n"),
ok

end.

new task (actor)  that will execute the hello 
function
spawn returns address (Pid) of new task

Address (Pid) can be used to send messages to 
task
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Erlang example
Start() ->

Pid = spawn(fun() -> hello() end),

Pid ! Hello,
Pid ! bye.

hello() ->
receive

hello ->
io:fwrite("Hello world\n"),

hello();
bye ->

io:fwrite("Bye cruel world\n"),
ok

end.

new task (actor)  that will execute the hello 
function
spawn returns address (Pid) of new task

Address (Pid) can be used to send messages to 
task

Messages sent to a task are put in a 
mailbox

Receive reads the first message in the 
mailbox, which is matched against 
patterns (similar to a switch statement)

Event-driven programming:
code is structured as reactions to events



Communicating Sequential Processes

Sir Charles Antony Richard Hoare  (aka C.A.R. / Tony Hoare) (1978, 1985)

Formal language defining a process algebra for concurrent systems.

Operators seq (sequential) and par (parallel) for the hierarchical 
composition of processes.

Synchronisation and Communication between parallel processes with 
Message Passing.

 Symbolic channels between sender and receiver

 Read and write requires a rendevouz (synchronous!)

CSP was firstly implemented in Occam.

447



CSP: Indirect Naming

 Most message passing architectures (including CSP) include an 
intermediary entity (port / channel) to address send destination

 Process issuing send() specifies the port to which the message is sent

 Process issuing receive() specifies a port number and waits for the first 
message that arrives at the port 
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CSP Example (from Hoare's seminal Paper)

Conway's Problem

 Write a program that transforms a series of cards with 80-character 
columns in a series of printing lines with 125 characters each. Replace 
each "**" by "^"

 Separation into processes (Threads)
R par C par P

 R: Reading process reading 80-character records

 C: Converting process converting "**" into "^"

 W: Writing process: write records with 125 characters
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CSP Example (from Hoare's seminal Paper)

[west :: DISASSEMBLE] || X :: SQUASH || east :: ASSEMBLE]

SQUASH
X :: 
*[c:character; west?c 

[c # asterisk  east!c
|c = asterisk  west?c;

[c # asterisk  east!asterisk; east!c
|c = asterisk  east!upward arrow
]

]
]
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Repetition of guarded 
command

Guarded receive

Blocking send

Guarded alternatives

SQUASHwest east



OCCAM

First programming language to implement CSP (1983)

ALT
count1 < 100 & c1 ? data

SEQ
count1 := count1 + 1
merged ! data

count2 < 100 & c2 ? data
SEQ
count2 := count2 + 1
merged ! data

status ? request
SEQ
out ! count1
out ! count2
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Superpascal (Per Brinch Hansen (1994))
Typed channels, processes, parallel statements, message passing

type channel= *(boolean, number);

procedure ring(a: number; var prime: boolean);
var left, right: channel;
begin

open(left, right);
parallel
pipeline(left, right) | master(a, prime, left, right)
end

end;

procedure node(i: integer;
left, right: channel);

var a: number; j: integer;
composite: boolean;

begin
receive(left, a);
if i < p then send(right, a);
test(a, i, composite);
send(right, composite);
for j := 1 to i - 1 do
begin

receive(left, composite);
send(right, composite)

end
end;

procedure master(
a: number; var prime: boolean;
left, right: channel);

var 
i: integer; composite: boolean;

begin
send(left, a); prime := true;
for i := 1 to p do

begin
receive(right, composite);
if composite then

prime := false
end

end;

procedure pipeline(left, right: channel);
type row = array [0..p] of channel;
var c: row; i: integer;

begin
c[0] := left; c[p] := right;
for i := 1 to p ¡ 1 do

open(c[i]);
forall i := 1 to p do

node(i, c[i-1], c[i])
end;
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Go programming language
Concurrent programming language from Google

Language support for:
– Lightweight tasks (called goroutines)

– Typed channels for task communications

● channels are synchronous (or unbuffered) by default

● support for asynchronous (buffered) channels

Inspired by CSP

Language roots in Algol Family: Pascal, Modula, Oberon [Prof. Niklaus Wirth, ETH]

[One of the inventors of Go: Robert Griesemer holding a PhD from ETH]
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Go example
func main() {

msgs := make(chan string)
done := make(chan bool)

go hello(msgs,done);

msgs <- "Hello"
msgs <- "bye"

ok := <-done

fmt.Println("Done:", ok);
}

func hello(msgs chan string,
done chan bool) {

for {
msg := <-msgs
fmt.Println("Got:", msg)

if msg == "bye" {
break

}
}

done <- true;
}

454



Go example
func main() {

msgs := make(chan string)
done := make(chan bool)

go hello(msgs,done);

msgs <- "Hello"
msgs <- "bye"

ok := <-done

fmt.Println("Done:", ok);
}

func hello(msgs chan string,
done chan bool) {

for {
msg := <-msgs
fmt.Println("Got:", msg)

if msg == "bye" {
break

}
}

done <- true;
}
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Create two channels:
●msgs: for strings
●done: for boolean values



Go example
func main() {

msgs := make(chan string)
done := make(chan bool)

go hello(msgs,done);

msgs <- "Hello"
msgs <- "bye"

ok := <-done

fmt.Println("Done:", ok);
}

func hello(msgs chan string,
done chan bool) {

for {
msg := <-msgs
fmt.Println("Got:", msg)

if msg == "bye" {
break

}
}

done <- true;
}
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Create a new task (goroutine), 
that will execute function 
hello with the given 
arguments



Go example
func main() {

msgs := make(chan string)
done := make(chan bool)

go hello(msgs,done);

msgs <- "Hello"
msgs <- "bye"

ok := <-done

fmt.Println("Done:", ok);
}

func hello(msgs chan string,
done chan bool) {

for {
msg := <-msgs
fmt.Println("Got:", msg)

if msg == "bye" {
break

}
}

done <- true;
}
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Hello takes two channels as 
arguments for communication



Go example
func main() {

msgs := make(chan string)
done := make(chan bool)

go hello(msgs,done);

msgs <- "Hello"
msgs <- "bye"

ok := <-done

fmt.Println("Done:", ok);
}

func hello(msgs chan string,
done chan bool) {

for {
msg := <-msgs
fmt.Println("Got:", msg)

if msg == "bye" {
break

}
}

done <- true;
}
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Write arguments to msgs
channel

Read result via done channel



Towers of Hanoi (sequential)
package main
import "fmt"

func Hanoi(n, f, t, u int) {
if n<=1 {

fmt.Println(f, "->", t)
} else{

Hanoi(n-1, f, u, t);
fmt.Println(f, "->", t);
Hanoi(n-1, u, t, f);

}
}

func main() {
Hanoi(4,1,3,2)

}
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Q: How can I easily return the 
moves in this sequence to 
main()?



Towers of Hanoi with go-routine
func Hanoi(ch chan<- int, n, f, t, u int) {

if n<=1 {
ch <- f
ch <- t

} else{
Hanoi(ch, n-1, f, u, t);
ch <- f
ch <- t
Hanoi(ch, n-1, u, t, f);

}
}

func Towers(ch chan<- int, n, f, t, u int) {
Hanoi(ch,n,f,t,u);
ch <- -1

}

func main() {
ch := make(chan int)
go Towers(ch, 4,1,3,2)
for ;; {

i := <-ch
if i<0 {return}
j := <-ch
fmt.Println(i,"<-",j)

}
}
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Towers main()



Concurrent prime sieve

461source code copied from golang.org

G F2 F3 F5

... 9 8 7 6 5 4 3 2 .... 9 7 5 3 ... 7 5 ... 7

Each station removes multiples of the first element received and passes on 
the remaining elements to the next station



Concurrent prime sieve

func main() {

ch := make(chan int)

go Generate(ch)

for i := 0; i < 10; i++ {

prime := <-ch

fmt.Println(prime)

ch1 := make(chan int)

go Filter(ch, ch1, prime)

ch = ch1

}

}

462source code copied from golang.org

func Generate(ch chan<- int) {

for i := 2; ; i++ {

ch <- i 

}

}

func Filter(in <-chan int, out chan<- int, prime int) {

for {

i := <-in // Receive value from 'in'.

if i%prime != 0 {

out <- i // Send 'i' to 'out'.

}

}

}

G F2 F3 F5

... 7 6 5 4 3 2 .... 7 5 3 ... 7 5 ... 7

G
Fprime



Message Passing Interface (MPI)

Message passing libraries:

 PVM (Parallel Virtual Machines) 1980s

 MPI (Message Passing Interface) 1990s

MPI = Standard API

• Hides Software/Hardware details

• Portable, flexible

• Implemented as a library
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Program

MPI library

Standard 
TCPI/IP

Standard 
Network 

HW

Specialized 
Driver

Custom 
Network 

HW



SPMD

Single Program

Multiple Data 
(Multiple Instances)
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if (rank == 0)
do this

else
do that

if (rank == 0)
do this

else
do that

P0

if (rank == 0)
do this

else
do that

P1

if (rank == 0)
do this

else
do that

P2

if (rank == 0)
do this

else
do that

P3

we compile 
one program

the if-else 
makes it 

SPMD



Synchronous / Asynchronous vs Blocking / Nonblocking

Synchronous / Asynchronous

 about communication between sender and receiver

Blocking / Nonblocking

 about local handling of data to be sent / received
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MPI Send and Receive Defaults

Send

• blocking, 

• synchrony implementation dependent 

 depends on existence of buffering, performance considerations etc

Receive

• blocking
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Danger of Deadlocks.
Don’t make any assumptions!

There are a lot of 
different variations of 
this in MPI.



Group Communication

MPI supports sending messages between groups of processors

• not absolutely necessary for programming

• but essential for performance

Examples: broadcast, gather, scatter, reduce, barrier
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Reduce

468
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Allreduce

Useful in a situation in which all of the processes need the result of a 
global sum in order to complete some larger computation.
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Allreduce = Reduce + Broadcast?

470

A global sum followed
by distribution of the
result.



Allreduce ≠ Reduce + Broadcast

471

A butterfly-structured global sum.



Broadcast

Data belonging to a single process is sent to all of the processes in the 
communicator.
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Scatter

Scatter can be used in a function that reads in an entire vector on process 0 but only 
sends the needed components to each of the other processes.
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Gather

Collect all of the components of the vector onto destination process, then destination 

process can process all of the components.
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