
OTHER MESSAGE PASSING COMPUTE MODELS
AND FRAMEWORKS

DataFlow Architectures / Languages (1975)

Kahn Process Networks (1974)

Communicating Sequential Processes (CSP) (1978)

Actor Model (1973/1978)

Message Passing Interface (MPI) (1992)

432

Dataflow Architectures and Languages*

 Take advantage of massive parallelism.

 Von Neumann Architecture unsuitable for parallelism. Bottlenecks:

 Global program counter and

 Global updatable memory

 Alternative proposal: dataflow architecture

 Local memory

 Execute instructions as soon as operands are available

 Program in a dataflow computer is a directed graph and data flows between
instructions along its edges

433
*following „Advances in Dataflow Programming Languages“, Johnston,
Hanna, Millar, ACM Computing Surveys Vol36, No.1, 2004
Dataflow Programming Languages invented in the mid 1970s

Example

 A := X + Y

 B := Y / 10

 C := A * B

434

X Y 10

+ /



C

token

fireable
node

special control nodes (gates):

merge split
c c

T F

T F

Early Dataflow Hardware Architectures

 Static Architecture (Dennis /Misunas 1975)

 Each arc can hold only one token

 Firing rule: token available on all input nodes and no token on output nodes

 Single token per arc  second loop cannot begin until the previous one has ended –
parallelism boils down to pipelining

 Dynamic Architecture (Watson/Gurd 1979)

 Multiple incovations of a subgraph allowed

 Each arc a bag of tokens with different tags (destinations, value)

 Node fireable when on each input edge the same tag is available

 Can take full advantage of pipelining and out of order execution.

435

MIT Tagged Token Dataflow Architecture

Conceptual Encoding of graph

Program memory:

Opcode Destination(s)

Encoding of token:

A “token” contains

120R, 6.847 Destination instruction address,
Left/Right port, Value

Possible reasons for the failure of early dataflow

 Totally new programming paradigm not accepted

 Dataflow languages almost invariably functional

 Programs in imperative languages hard to compile to a dataflow
architecture

 Dataflow architecture operated on a too fine grained level

 Von Neumann: process level granularity

 Early dataflow: instruction level granularity

437

Hybrid Dataflow

Realization in the 1990s:
Dataflow and von Neumann
architectures are not
mutually exclusive but the
two extremes of a continuum
of possible computer architectures

 Large-grain dataflow: each node contains an entire function expressed in a
sequential language

438

thread granularity

execution

time

Kahn Process Networks
 Seminal Paper „The Semantics of a Simple Language for Parallel

Programming“ by Gilles Kahn, 1974.

 „Formal approach to the design of programming languages and
system programming“

 Programming language based on Algol.

 KPNs describe a signal processing system:
Processes communicate by passing data tokens through
unidirectional FIFO channels

 KPN provide a distributed model of computation

 KPNs consist of a set of arbitrary deterministic sequential
processes

439

Concepts

 Channels

 Processes

 Wait
(Blocking Receive)

 Send
(Non-Blocking, unbounded fifos)

 Parallel invocation
of processes in
program body

440

Determinism
Execution Model

 Channels are the only way for communication

 Communication for each line takes unpredictable but finite time

 Each process is either computing or waiting on one of its input lines.Processes are not allowed to test
input channels for existence of tokens without consuming them (reads are blocking)

 Each process is a sequential process (given a specific input history for a process, the process must be
determinstic). Timing / execution order may not influence the result

 Determinism

 The history of tokens produced on communication channel does not depend on execution order

 Every execution order that obeys the semantic of the process network produces the same result

441

The Actor Model*

Actor = Computational agent that maps
communication to

 a finite set of communications sent to other actors
(messages)

 a new behavior (state)

 a finite set of new actors created (dynamic
reconfigurability)

 Undefined global ordering

 Asynchronous Message Passing

 Invented by Carl Hewitt 1973**

442

*Gul Agha (1986). Actors: A Model of Concurrent Computation in Distributed Systems. Doctoral Dissertation. MIT Press
**Carl Hewitt; Peter Bishop and Richard Steiger (1973). A Universal Modular Actor Formalism for Artificial Intelligence. IJCAI.

Actor

Thread

State

Mailbox

The Actor Model

Actor model provides a dynamic interconnection topology

 dynamically configure the graph during runtime (add channels)

 dynamically allocate resources

An actor sends messages to other actors using "direct naming", without
indirection via port / channel / queue / socket (etc.)

Implemented in various languages such as Erlang, Scala, Ruby and in
frameworks such as Akka (for Scala and Java)

443

Example: Erlang

Functional Programming Language

 code might look unconventional at
first

Developed by Ericsson for distributed
fault-tolerant applications

 if no state is shared, recovering
from errors becomes much easier

Open source

Concurrent, follows the actor model

444

-module(pingpong).
-export([start/1, ping/2, pong/0]).

ping(0, Pong_Node) ->
{pong, Pong_Node} ! finished,
io:format("ping finished~n", []);

ping(N, Pong_Node) ->
{pong, Pong_Node} ! {ping, self()},
receive

pong ->
io:format("Ping received pong~n", [])

end,
ping(N - 1, Pong_Node).

pong() ->
receive

finished ->
io:format("Pong finished~n", []);

{ping, Ping_PID} ->
io:format("Pong received ping~n", []),
Ping_PID ! pong,
pong()

end.

start(Ping_Node) ->
register(pong, spawn(tut18, pong, [])),
spawn(Ping_Node, tut18, ping, [3, node()]).

445

Erlang example
Start() ->

Pid = spawn(fun() -> hello() end),

Pid ! Hello,
Pid ! bye.

hello() ->
receive

hello ->
io:fwrite("Hello world\n"),

hello();
bye ->

io:fwrite("Bye cruel world\n"),
ok

end.

new task (actor) that will execute the hello
function
spawn returns address (Pid) of new task

Address (Pid) can be used to send messages to
task

446

Erlang example
Start() ->

Pid = spawn(fun() -> hello() end),

Pid ! Hello,
Pid ! bye.

hello() ->
receive

hello ->
io:fwrite("Hello world\n"),

hello();
bye ->

io:fwrite("Bye cruel world\n"),
ok

end.

new task (actor) that will execute the hello
function
spawn returns address (Pid) of new task

Address (Pid) can be used to send messages to
task

Messages sent to a task are put in a
mailbox

Receive reads the first message in the
mailbox, which is matched against
patterns (similar to a switch statement)

Event-driven programming:
code is structured as reactions to events

Communicating Sequential Processes

Sir Charles Antony Richard Hoare (aka C.A.R. / Tony Hoare) (1978, 1985)

Formal language defining a process algebra for concurrent systems.

Operators seq (sequential) and par (parallel) for the hierarchical
composition of processes.

Synchronisation and Communication between parallel processes with
Message Passing.

 Symbolic channels between sender and receiver

 Read and write requires a rendevouz (synchronous!)

CSP was firstly implemented in Occam.

447

CSP: Indirect Naming

 Most message passing architectures (including CSP) include an
intermediary entity (port / channel) to address send destination

 Process issuing send() specifies the port to which the message is sent

 Process issuing receive() specifies a port number and waits for the first
message that arrives at the port

448

process

CSP Example (from Hoare's seminal Paper)

Conway's Problem

 Write a program that transforms a series of cards with 80-character
columns in a series of printing lines with 125 characters each. Replace
each "**" by "^"

 Separation into processes (Threads)
R par C par P

 R: Reading process reading 80-character records

 C: Converting process converting "**" into "^"

 W: Writing process: write records with 125 characters

449

C PR

Channel c Channel d
c!x c?x d!x d?x

CSP Example (from Hoare's seminal Paper)

[west :: DISASSEMBLE] || X :: SQUASH || east :: ASSEMBLE]

SQUASH
X ::
*[c:character; west?c 

[c # asterisk  east!c
|c = asterisk  west?c;

[c # asterisk  east!asterisk; east!c
|c = asterisk  east!upward arrow
]

]
]

450

Repetition of guarded
command

Guarded receive

Blocking send

Guarded alternatives

SQUASHwest east

OCCAM

First programming language to implement CSP (1983)

ALT
count1 < 100 & c1 ? data

SEQ
count1 := count1 + 1
merged ! data

count2 < 100 & c2 ? data
SEQ
count2 := count2 + 1
merged ! data

status ? request
SEQ
out ! count1
out ! count2

451

Superpascal (Per Brinch Hansen (1994))
Typed channels, processes, parallel statements, message passing

type channel= *(boolean, number);

procedure ring(a: number; var prime: boolean);
var left, right: channel;
begin

open(left, right);
parallel
pipeline(left, right) | master(a, prime, left, right)
end

end;

procedure node(i: integer;
left, right: channel);

var a: number; j: integer;
composite: boolean;

begin
receive(left, a);
if i < p then send(right, a);
test(a, i, composite);
send(right, composite);
for j := 1 to i - 1 do
begin

receive(left, composite);
send(right, composite)

end
end;

procedure master(
a: number; var prime: boolean;
left, right: channel);

var
i: integer; composite: boolean;

begin
send(left, a); prime := true;
for i := 1 to p do

begin
receive(right, composite);
if composite then

prime := false
end

end;

procedure pipeline(left, right: channel);
type row = array [0..p] of channel;
var c: row; i: integer;

begin
c[0] := left; c[p] := right;
for i := 1 to p ¡ 1 do

open(c[i]);
forall i := 1 to p do

node(i, c[i-1], c[i])
end;

452

Go programming language
Concurrent programming language from Google

Language support for:
– Lightweight tasks (called goroutines)

– Typed channels for task communications

● channels are synchronous (or unbuffered) by default

● support for asynchronous (buffered) channels

Inspired by CSP

Language roots in Algol Family: Pascal, Modula, Oberon [Prof. Niklaus Wirth, ETH]

[One of the inventors of Go: Robert Griesemer holding a PhD from ETH]

453

Go example
func main() {

msgs := make(chan string)
done := make(chan bool)

go hello(msgs,done);

msgs <- "Hello"
msgs <- "bye"

ok := <-done

fmt.Println("Done:", ok);
}

func hello(msgs chan string,
done chan bool) {

for {
msg := <-msgs
fmt.Println("Got:", msg)

if msg == "bye" {
break

}
}

done <- true;
}

454

Go example
func main() {

msgs := make(chan string)
done := make(chan bool)

go hello(msgs,done);

msgs <- "Hello"
msgs <- "bye"

ok := <-done

fmt.Println("Done:", ok);
}

func hello(msgs chan string,
done chan bool) {

for {
msg := <-msgs
fmt.Println("Got:", msg)

if msg == "bye" {
break

}
}

done <- true;
}

455

Create two channels:
●msgs: for strings
●done: for boolean values

Go example
func main() {

msgs := make(chan string)
done := make(chan bool)

go hello(msgs,done);

msgs <- "Hello"
msgs <- "bye"

ok := <-done

fmt.Println("Done:", ok);
}

func hello(msgs chan string,
done chan bool) {

for {
msg := <-msgs
fmt.Println("Got:", msg)

if msg == "bye" {
break

}
}

done <- true;
}

456

Create a new task (goroutine),
that will execute function
hello with the given
arguments

Go example
func main() {

msgs := make(chan string)
done := make(chan bool)

go hello(msgs,done);

msgs <- "Hello"
msgs <- "bye"

ok := <-done

fmt.Println("Done:", ok);
}

func hello(msgs chan string,
done chan bool) {

for {
msg := <-msgs
fmt.Println("Got:", msg)

if msg == "bye" {
break

}
}

done <- true;
}

457

Hello takes two channels as
arguments for communication

Go example
func main() {

msgs := make(chan string)
done := make(chan bool)

go hello(msgs,done);

msgs <- "Hello"
msgs <- "bye"

ok := <-done

fmt.Println("Done:", ok);
}

func hello(msgs chan string,
done chan bool) {

for {
msg := <-msgs
fmt.Println("Got:", msg)

if msg == "bye" {
break

}
}

done <- true;
}

458

Write arguments to msgs
channel

Read result via done channel

Towers of Hanoi (sequential)
package main
import "fmt"

func Hanoi(n, f, t, u int) {
if n<=1 {

fmt.Println(f, "->", t)
} else{

Hanoi(n-1, f, u, t);
fmt.Println(f, "->", t);
Hanoi(n-1, u, t, f);

}
}

func main() {
Hanoi(4,1,3,2)

}

459

Q: How can I easily return the
moves in this sequence to
main()?

Towers of Hanoi with go-routine
func Hanoi(ch chan<- int, n, f, t, u int) {

if n<=1 {
ch <- f
ch <- t

} else{
Hanoi(ch, n-1, f, u, t);
ch <- f
ch <- t
Hanoi(ch, n-1, u, t, f);

}
}

func Towers(ch chan<- int, n, f, t, u int) {
Hanoi(ch,n,f,t,u);
ch <- -1

}

func main() {
ch := make(chan int)
go Towers(ch, 4,1,3,2)
for ;; {

i := <-ch
if i<0 {return}
j := <-ch
fmt.Println(i,"<-",j)

}
}

460

Towers main()

Concurrent prime sieve

461source code copied from golang.org

G F2 F3 F5

... 9 8 7 6 5 4 3 2 9 7 5 3 ... 7 5 ... 7

Each station removes multiples of the first element received and passes on
the remaining elements to the next station

Concurrent prime sieve

func main() {

ch := make(chan int)

go Generate(ch)

for i := 0; i < 10; i++ {

prime := <-ch

fmt.Println(prime)

ch1 := make(chan int)

go Filter(ch, ch1, prime)

ch = ch1

}

}

462source code copied from golang.org

func Generate(ch chan<- int) {

for i := 2; ; i++ {

ch <- i

}

}

func Filter(in <-chan int, out chan<- int, prime int) {

for {

i := <-in // Receive value from 'in'.

if i%prime != 0 {

out <- i // Send 'i' to 'out'.

}

}

}

G F2 F3 F5

... 7 6 5 4 3 2 7 5 3 ... 7 5 ... 7

G
Fprime

Message Passing Interface (MPI)

Message passing libraries:

 PVM (Parallel Virtual Machines) 1980s

 MPI (Message Passing Interface) 1990s

MPI = Standard API

• Hides Software/Hardware details

• Portable, flexible

• Implemented as a library

463

Program

MPI library

Standard
TCPI/IP

Standard
Network

HW

Specialized
Driver

Custom
Network

HW

SPMD

Single Program

Multiple Data
(Multiple Instances)

464

if (rank == 0)
do this

else
do that

if (rank == 0)
do this

else
do that

P0

if (rank == 0)
do this

else
do that

P1

if (rank == 0)
do this

else
do that

P2

if (rank == 0)
do this

else
do that

P3

we compile
one program

the if-else
makes it

SPMD

Synchronous / Asynchronous vs Blocking / Nonblocking

Synchronous / Asynchronous

 about communication between sender and receiver

Blocking / Nonblocking

 about local handling of data to be sent / received

465

MPI Send and Receive Defaults

Send

• blocking,

• synchrony implementation dependent

 depends on existence of buffering, performance considerations etc

Receive

• blocking

466

Danger of Deadlocks.
Don’t make any assumptions!

There are a lot of
different variations of
this in MPI.

Group Communication

MPI supports sending messages between groups of processors

• not absolutely necessary for programming

• but essential for performance

Examples: broadcast, gather, scatter, reduce, barrier

467

Reduce

468

2 3 4 5

14

0 1 2 3process

sender
buffer

receiver
buffer

+

Allreduce

Useful in a situation in which all of the processes need the result of a
global sum in order to complete some larger computation.

469

2 3 4 5

14 14 14 14

0 1 2 3process

sender
buffer

receiver
buffer

Allreduce = Reduce + Broadcast?

470

A global sum followed
by distribution of the
result.

Allreduce ≠ Reduce + Broadcast

471

A butterfly-structured global sum.

Broadcast

Data belonging to a single process is sent to all of the processes in the
communicator.

472

2

2 2 2 2

0 1 2 3process

sender
buffer

receiver
buffer

P0 10 20 30 P0 10 20 30

P1 10 20 30

P2 10 20 30

𝑦 =
1 2 3
4 5 6
7 8 9

⋅
𝟏𝟎
𝟐𝟎
𝟑𝟎

Scatter

Scatter can be used in a function that reads in an entire vector on process 0 but only
sends the needed components to each of the other processes.

473

2

3

4

5

2 4 6 8

0 1 2 3process

sender
buffer

receiver
buffer

6

7

3 5 7 9

8

9

P0

1 2 3 P0 1 2 3

P1 4 5 6

P2 7 8 9

4 5 6

7 8 9

𝑦 =
𝟏 𝟐 𝟑
𝟒 𝟓 𝟔
𝟕 𝟖 𝟗

⋅
10
20
30

Gather

Collect all of the components of the vector onto destination process, then destination

process can process all of the components.

474

2

3

4

5

2 4 6 8

0 1 2 3process

sender
buffer

receiver
buffer

6

7

3 5 7 9

8

9

P0 140 320 500

P0 140

P1 320

P2 500

𝒚 =
1 2 3
4 5 6
7 8 9

⋅
10
20
30

