
System Construction Course 2016,

Assignment 8

Felix Friedrich, ETH Zürich, 15.11.2016

Implementing a Mutex on Lock-Free A2

Goal of this exercise is to implement a scheduled lock on a lock-free operating system, thereby
taking into account lock-free implicit cooperative scheduling.

• Understand mechanisms of lock-free scheduling and cooperative scheduling

• Investigate performance differences of spin-locks vs. scheduled locks

Lessons to Learn

Preparation

The tool for this exercise contains scripts for x86 based computers and for Raspberry Pi. The
former can be used in order to run the code in a virtualization environment such as bochs, qemu,
VirtualBox or VMWare (or on bare hardware). The latter will be used in order to run the tests on
the Raspberry Pi computer and is recommended for this exercise.

1. Update your repository.

2. Open a console in directory assignments/assignment8

3. Use the script in files MakeA2.RPI.cmds or MakeA2.x86.cmds in order to to compile and
link the boot-file for the RPI or x86, respectively, calling oberon run MakeA2.xxx.txt 1

4. Connect the Raspberry Pi to your computer using the Usb-To-Serial TTL cable as we did in
Assignment 2. Connection to the RPI can be done via any telnet client you like, e.g. putty
or minicom.

Implement a Mutex

A mutex is a data structure with an algorithm to enforce mutual exclusion of several threads on a
set of code regions. For a given mutex m, the code regions consist of intervals designated by pair
of statements Mutexes.Acquire(m) and Mutex.Release(m).

Prepared for this exercise are files Mutexes.Mod containing a CAS-based spin-lock implementation
of Mutexes and TestMutexes.Mod to test the correctness and performance of the implementation.

Tasks

1. Build the kernel as described above. Copy the kernel kernel.img to the SD card of the
RPI, open a terminal connecting via serial port to the RPI and check that you see the output
of the test module.2

2. The stub module Mutexes.Mod does not implement a mutex yet. Implement a mutex as a
CAS-based Spin-lock first. Check that it works and observe its performance.

1Or, equivalently, by executing SystemTools.DoFile MakeA2.xxx.txt within the Oberon shell.
2A successful build of the kernel can be detected by a short alternating flashing of the red and green LED on the RPI

board at boot time. Then you should see text appearing on the serial console.

https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared/assignments/assignment8
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared/assignments/assignment8/MakeA2.RPI.cmds
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared/assignments/assignment8/MakeA2.x86.cmds


System Construction Course 2016, 8 2

3. Now change the implementation of the mutexes in Mutexes.Mod such that they employ a
scheduled lock instead of a spin-lock. Of course, you are free to experiment later and
implement a hybrid scheme but for now you ”just” implement the mutex such that when the
mutex is currently taken by a different process, then the process goes sleeping on some
waiting queue. Test correctness and performance of your implementation.

Hints

• The expression CAS(v, oldvalue, newvalue) returns the observed value of the variable v

with the corresponding type of v.

• Activities.GetCurrentActivity() returns the currently running activity (process).

• Module Queues.Mod contains a lock-free queue with precautions against the ABA problem
using Hazard-Pointers as discussed in the lecture. While you are encouraged to browse
and understand the implementation, you can consider it a given and don’t have to worry
about lock-free queues in this assignment. Queues.Enqueue(act,q) can be used in order
to enqueue an activity act to queue q. Queues.Dequeue(it,q) can be used in order to
dequeue an item it from queue q. It returns TRUE upon success. Recall that type guards
of the form it(Activities.Activity) can be used in order to interprete it as of type
Activities.Activity in a type-safe way.

• The most intricate part of this assignment is about scheduling. Recall from the lecture that
it is often required to execute a switch finalizer on behalf of the new scheduled thread as
indicated with the following lines of code:

IF Activities.Select (nextAct, Activities.IdlePriority) THEN
Activities.SwitchTo (nextAct, SwitchFinalizer, ADDRESS OF Data);
Activities.FinalizeSwitch;

END;

Activities.Select fetches a new process from the ready queues with at least idle priority.
Activities.SwitchTo performs a synchronous context switch to nextAct. This resumed
activity continues its execution by first calling the specified finalizer procedure with the given
argument. As a rule of this lock-free kernel, each invocation of Activities.SwitchTo must
be followed by a call to the Activires.FinalizeSwitch. This finalizes the task switch
performed by calling the task switch finalizer of the previously suspended activity.

For an example use of this mechanism, refer to procedure Activities.Switch.

• Be aware that in lock-free programming at any times something can happen. Consider all
possible interleavings.

Documents

• System Construction Lecture 8 and 9 slides from the course-homepage
http://lec.inf.ethz.ch/syscon

• F. Negele, Combining Lock-Free Programming with Cooperative Multitasking for a Portable
Multiprocessor Runtime System, Dissertation, ETH Zürich (2014)

http://lec.inf.ethz.ch/syscon
http://e-collection.library.ethz.ch/view/eth:47094
http://e-collection.library.ethz.ch/view/eth:47094

