
System Construction Course 2016,

Assignment 6

Felix Friedrich, ETH Zürich, 25.10.2016

1 Debugging a Kernel

• Learn how to debug a kernel using virtual environments.

• Understand call chains and stack traces.

Lessons to Learn

Preparation

1. Install a recent version of the Bochs emulator, .e.g from https://sourceforge.net/projects/

bochs/files/bochs/2.6.8/. Ubuntu linux users install it using apt-get install bochs bochs-x.

2. Open a console in directory assignments/assignment6

This lab is about debugging a kernel using the A2-built in tracing features and a hardware emu-
lating tool (Bochs).

Find the Bugs!

For this lab we have prepared an implementation of the A2 kernel together with build scripts to
set it up and run it in a virtual machine. The system reports a successful boot with the following
output

A2 Test System

Successfully booted

You will not see this report in the first place because we have injected bugs into the kernel that
prevent it from booting successfully. Find and correct the bugs!

Guidelines:

1. Use the script in file MakeA2.cmds in order to to compile and link the boot-file and to inject
the files into a bootable HDD image by calling oberon run MakeA2.txt or, equivalently, by
executing SystemTools.DoFile MakeA2.txt within the Oberon shell.

The linker log file linker.log can contain valuable information about the arrangement.
Have a look at it!

2. Use the hardware emulator Bochs (2.6.8) for starting and debugging the kernel.

(a) Windows users start the system by clicking a2.bxrc. If you right-click this file, using the
context menu you can start the debugging mode of Bochs. Use the command “help”
to find out about facilities of the debugger.

(b) Linux users start the system by executing bochs -f linuxBochsSettings.txt. The
Linux version starts in debugging mode. In order to start the emulation, enter c (for
continue).

3. The log of A2 will be written to the serial port. Bochs redirects it to the file a2.log. Hint: Use
the log file for tracing the kind of errors that provide a trap stack trace-back report. Stack
trace-backs are described in the next section of this document.

https://sourceforge.net/projects/bochs/files/bochs/2.6.8/
https://sourceforge.net/projects/bochs/files/bochs/2.6.8/
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared/assignments/assignment6
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared/assignments/assignment6/MakeA2.cmds
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared/assignments/assignment6/a2.bxrc


System Construction Course 2015, 6 2

• Further hints: when in debugging mode, you can interrupt a running system with Ctrl-C
(typed at the debugging console of Bochs). Make use of time-breakpoints in Bochs,
when you cannot locate the exact location of a problem. Use the linker-log to find out
where you are with respect to the source code.

Understanding a Trap Traceback

When you (later on) run code in A2, it can happen that you see a red window popping up. Such a
red window indicates that something went wrong. Usually it happens as a result of an unhandled
runtime exception that needs intervention, such an array index out of bounds, nil pointer access,
programmed halt, assert failed etc. During startup of a kernel the information is displayed on the
text console and / or written to other debug channels such as a serial port.

The following module, for example, will produce a trap when TrapExample.Test is executed.

MODULE TrapExample;

VAR a: ARRAY 2 OF CHAR;

PROCEDURE Test2(x: LONGINT);
BEGIN

a[x] := "A"; (∗ if x exceeds the length of a,
this will lead to a trap ∗)

END Test2;

PROCEDURE Test∗;
BEGIN

Test2(10);
END Test;

END TrapExample.

In A2 the result is a red window popping up that looks like this:

The trap output can be used to diagnose the history of a trap. Inspection of the trap is also



System Construction Course 2015, 6 3

referred to as Post Mortem Debugging. A trap starts with information on the trap number and
reason (here: index out of range). Then there is more general information on the system release
followed by the state of the registers and flags. After that we see the process ID and the active
object that is associated with the process (here: Commands.Runner).

1 TRAP 7 [1] PL 3 7 Index out of range
2 System: WinAos Revision 4634 (12.03.2012) Kernel CRC=688EC717

Uptime=C17E0CB3B7
3 Processor: CS=00000023 DS=0000002B ES=0000002B SS=0000002B PC=08C810CB ...
4 FLAGS: cpazstIdo iopl0 {1, 9}
5 Features={0..9, 11..17, 19, 21..29, 31}{0..9, 13..15, 17, 19..20, 23, 25}
6 Process:20956 run 0 208C7D2F8:Commands.Runner NIL {0, 28}

After this prolog starts the stack trace. The runtime builds this information by traversing the
stack frames from top to bottom. Read from bottom to top (lines 8,7,6,2), it shows how pro-
cedures were called. In our example it starts with Objects.Wrapper. Objects.Wrapper ex-
ecuted the body of object Commands.Runner that called TrapExample.Test which itself called
TrapExample.Test2. This is where the trap occured. More specifically, at offset 20 relative to the
start of TrapExample.Test2. The offset can be utilized to determine the exact location of a trap
both in binary code but also, using the compiler, in source code. At line 4 we see state information
about the module involved in the trap. In a kernel output, the pc=number [hex number] shows
the location of the program counter as absolute value and therefore allows also to examine where
the trap happened by comparison with the linker script.

Between procedure and module names we see other names followed by an equal sign. They
denote the variables and parameters of the respective procedures. For example, in procedure
TrapExample.Test2, variable x had a value of 10, ultimately causing the index out of bound trap.

1 StackTraceBack:
2 TrapExample.Test2:20 pc=27 [0000001BH] = 7 + 20 crc=2B01F3E7
3 x=10 (0000000AH)
4 State TrapExample:
5 a=""
6 TrapExample.Test:10 pc=53 [00000035H] = 43 + 10 crc=2B01F3E7
7 Commands.Runner.@Body:527 pc=1983 [000007BFH] = 1456 + 527 crc=7E9F2BAD
8 Objects.Wrapper:255 pc=6697 [00001A29H] = 6442 + 255 crc=82847D7B
9 lpParameter=08C7E920H (Objects.Process)

10 t=08C7E920H (Objects.Process)
11 obj=08C7D2F8H (Commands.Runner)
12 res=1 (00000001H)
13 bp=76087176 (0488FF88H)
14 sp=76087136 (0488FF60H)
15 excpfrm=Rec@00000138H
16 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Documents

• System Construction Lecture 6 slides from the course-homepage
http://lec.inf.ethz.ch/syscon

• A2 Programming Quickstart Guide. File A2QuickStartGuide.pdf in folder documents/oberon

http://lec.inf.ethz.ch/syscon
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared/documents/oberon/A2QuickStartGuide.pdf
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared/documents/oberon

	Debugging a Kernel

