
System Construction Course 2016,

Assignment 3

Felix Friedrich, ETH Zürich, 4.10.2016

Introduction

The memory layout of Minos is absolutely minimal and taylored for this single-core single-threading
runtime system. Nevertheless, there must be stack and heap for the running process and the tra-
ditional memory layout where the stack top grows towards the heap end provides a good way for
balancing between the memory consumption. In this exercise you will learn to use the MMU in
order to establish a dynamic between stack and heap memory consumption.

• Getting familiar with the Memory Management Unit of the ARM.

• Understanding IRQ contexts on the ARM and how to deal with page faults.

• Getting hands on experience with heap- versus stack allocation and Virtual Memory.

Lessons to Learn

Preparation

1. Update your repository

2. Open a console in directory assignments/assignment3

1 Virtual Memory

Currently, the Minos memory layout is static: stack and heap sizes are fix. For known applications,
this is not an issue as the sizes can be set in the kernel. However, to support a range of unknown
applications that might have different requirements on the stack and heap sizes, a more flexible
way of allocating memory to the stack and the heap is required.

Again, in order to give some hints there are comments starting with STUDENT in the source code
that guide you where you need to amend or modify the source code.

1. You will have to build the Minos Kernel whenever you change the memory Management
in module Kernel, because it is statically linked to the Minos kernel. As in the previous
exercise, you build the kernel using the commands in MakeMinos.txt, e.g. by calling

oberon < MakeMinos.txt

2. Get familiar with the Memory Management Unit of the ARM.

Currently, the system starts up with a 1:1 memory map. See procedure IdentityMapMemory

in module Minos/RPI.Platform.Mos

Modify the InitMMU procedure in module Minos/RPI.Kernel.Mos such that only one page is
allocated each for the stack and the heap during boot up. We use only first level page table
entries (1 MByte).

3. Consult the ARM v7 Architecture Reference Manual and / or the Cortex A7 Technical Refer-
ence Manual in order to find out how to identify the page that was accessed when observing
a page fault trap.

https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared/assignments/assignment3
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared/assignments/assignment3/MakeMinos.txt
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared/assignments/assignment3/Minos/RPI.Platform.Mos
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared/assignments/assignment3/Minos/RPI.Kernel.Mos


System Construction Course 2016, 3 2

4. If the stack or the heap exceed their current limit, a data abort trap (page fault) should
occur. Check this by allocating excessive heap and/or writing recursive procedures. Test
commands TestAllocation.Heap <n> and TestAllocation.Stack <n> are provided with
module TestAllocation.Mos.

Add to the data abort trap handler DataAbort in module Kernel.Mos a functionality to map
one spare page either to the stack or the heap depending on the trap source.

5. Optional: Try to come up with a solution with a minimal number of data abort excep-
tions: refine your implementation making use of the fact that heap allocation happens
explicitly while stack allocation happens implicitly. Requires a modification of module Mi-
nos/Heaps.Mos

Documents

• ARM Architecture ReferenceManual ARMv7-A and ARMv7-R edition in the documents/rpi

folder of the repository

• Cortex-A7 MPCore Technical Reference Manual in documents/rpi folder of the repository

• System Construction Lecture 3 slides from the course-homepage
http://lec.inf.ethz.ch/syscon

https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared/assignments/assignment3/TestAllocation.Mos
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared/assignments/assignment3/Minos/Heaps.Mos
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared/assignments/assignment3/Minos/Heaps.Mos
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared/documents/rpi/DDI0406C_C_arm_architecture_v7_reference_manual.pdf
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared/documents/rpi/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://lec.inf.ethz.ch/syscon

	Virtual Memory

