
System Construction Course 2016,

Assignment 1

Felix Friedrich, ETH Zürich, 20.9.2016

Introduction

At the beginning of systems programming stands the communication with hardware. Very often
no diagnostic device such as debugger connected via JTAG is accessible. Therefore the first that
we need is a sign of life of the hardware we are working with. The simplest you can do is let some
lights blink in order to see that your code is actually running. In this exercise we will execute just
this: with a very simple program written in assembly language we will let an LED light up. In the
second part of the exercise we will learn more about linking and will experience the advantages
of high level (systems) programming.

• Learn to know ARM assembly language basics, understand the limits

• Understand GPIO control on BCM 2835/6

• Understand basics of linking and bootloading

Lessons to Learn

1 Sign of Life

In this part of the exercise we illuminate an LED using low level assembler code.

Preparation

We have already prepared the boot media (SD card) for the Raspberry Pi such that it can load
and boot a file called kernel.img from the first FAT partition. This is the standard procedure for
the RPI. Parts of the bootloader image stems from http://openelec.tv/get-openelec.

All other resources can be found in our subversion repository located at
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared

referred to as shared in the following. Use your ETH account credentials.

Preparation

1. Development tools: Download the command line Oberon Compiler/Linker/Interpreter run-
time for Windows (oberon.exe) or Linux (oberon) from shared/tools

2. If you run a 64-bit linux version and observe problems executing oberon such as

Unix.Dlopen: loading library libc.so.6 failed

then you have to install the intel architecture 32-bit libraries (aos is currently compiled only
as 32-bit application). For example, in Ubuntu the following worked for me:

sudo apt-get install ia32-libs

or, more recently

sudo apt-get install libc6:i386

http://openelec.tv/get-openelec
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared/tools/windows/oberon.exe
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared/tools/linux/oberon
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared/tools


System Construction Course 2016, Assignment 1 2

If you get problems with using X11 in oberon, receiving this

Unix.Dlopen: loading library libX11.so.6 failed

you might want to install the 32-bit X11 library using

sudo apt-get install libx11-6:i386

3. Download the exercise material from shared/assignments/assignment1

Tasks

1. Open file RPI.MinimalLED.Mos in your favourite editor.

2. Connect an LED to ground and GPIO pin number 21 on the RPI2 expansion slot. The GPIO
pin number does not coincide with the expansion slot pin number!

3. Using ARM assembler language, program the GPIO pin 21 as output pin and set the pin
accordingly. You can either execute the following commands in the oberon shell

Compiler.Compile -p=ARM RPI.MinimalLED.Mos

StaticLinker.Link -p=RPI MinimalLED

FoxARMInstructionSet.Disassemble kernel.img

exit

or, equivalently, call

oberon < MakeMinimalLED.txt

4. Compile and link the kernel. Copy kernel.img to the FAT partition on the SD card and
insert the SD card into the (powered off) RPI.

5. Power on the RPI and check if the LED lights up upon start.

2 Blinkenlights

Introduction

In this part of the exercise, we will use some high level language code in order to let the LED
blink. Do not start with this second part before having solved the first part.

Tasks

1. Open file RPI.BlinkLED.Mos in your favourite editor.

2. Read the file. On a first sight, the code should light up the LED. But it does not work (try, if
you like). Why? Compile and link it. Look at the linked image and understand how things are
organized. Understand what is missing in order to run the program and patch the program.
Check that the LED lights up when booting.

3. Now, using high-level language features, implement a blinking LED: Compile and link the
kernel. Copy kernel.img to the SD card and insert the SD card into the (powered off) RPI.

https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared/assignments/assignment1
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared/assignments/assignment1/RPI.MinimalLED.Mos
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared/assignments/assignment1/RPI.BlinkLED.Mos


System Construction Course 2016, Assignment 1 3

4. Power on the RPI and check if the LED blinks up upon start. Look at the frequency of
the LED and try to estimate the rate of executed instructions per second. What is your
observation? Try to explain what you find.

(Of course, if you like, you can now also add other LED colors and play with the hardware.)

Have fun!

Documents

• BCM2835 ARM Peripherals Technical Manual:
shared/documents/rpi/BCM2835-ARM-Peripherals.pdf

• Lecture Slides System Construction Lecture 1 from the course-homepage
http://lec.inf.ethz.ch/syscon

• A2 Quickstart Guide
shared/documents/oberon/A2QuickStartGuide.pdf

More documents that are not strictly required for this exercise can be found in the repository .

https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared/documents/rpi/BCM2835-ARM-Peripherals.pdf
http://lec.inf.ethz.ch/syscon
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2016/shared/documents/oberon/A2QuickStartGuide.pdf

	Sign of Life
	Blinkenlights

