
LOCK FREE RUNTIME SYSTEM

251

Whatever can go wrong
will go wrong.

attributed to Edward A. Murphy

Murphy was an optimist.
authors of lock-free programs

Literature

Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

Florian Negele. Combining Lock-Free Programming with Cooperative Multitasking for a
Portable Multiprocessor Runtime System. ETH-Zürich, 2014.
http://dx.doi.org/10.3929/ethz-a-010335528

A substantial part of the following material is based on Florian Negele's Thesis.

Florian Negele, Felix Friedrich, Suwon Oh and Bernhard Egger, On the Design and
Implementation of an Efficient Lock-Free Scheduler, 19th Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP) 2015.

252

http://dx.doi.org/10.3929/ethz-a-010335528

Problems with Locks

Deadlock Livelock Starvation

Parallelism? Progress Guarantees? Reentrancy? Granularity? Fault Tolerance?

Politelock

254

Lock-Free

255

Definitions

Lock-freedom: at least one algorithm makes progress even if other
algorithms run concurrently, fail or get suspended.
Implies system-wide progress but not freedom from starvation.

Wait-freedom: all algorithms eventually make progress.
Implies freedom from starvation.

256

implies

Progress Conditions

Art of Multiprocessor Programming 257

Blocking Non-Blocking

Someone make
progress

Deadlock-free Lock-free

Everyone makes
progress

Starvation-free Wait-free

Goals

Lock Freedom

 Progress Guarantees

 Reentrant Algorithms

Portability

 Hardware Independence

 Simplicity, Maintenance

Guiding principles

1. Keep things simple

2. Exclusively employ non-blocking algorithms in the system

 Use implicit cooperative multitasking

 no virtual memory

 limits in optimization

Where are the Locks in the Kernel?

Scheduling Queues / Heaps

Memory Management

260

object header

P PPP

ready queues array

P P NILP NILNIL P P PP P PP P

CAS (again)
 Compare old with data

at memory location

 If and only if data at memory
equals old overwrite data with
new

 Return previous memory value

int CAS (memref a, int old, int new)

previous = mem[a];

if (old == previous)

Mem[a] = new;

return previous;

Parallel Programming – SS 2015 261
a

to
m

ic

CAS is implemented wait-free(!)
by hardware.

Simple Example: Non-blocking counter

PROCEDURE Increment(VAR counter: LONGINT): LONGINT;

VAR previous, value: LONGINT;

BEGIN

REPEAT

previous := CAS(counter,0,0);

value := CAS(counter, previous, previous + 1);

UNTIL value = previous;

return previous;

END Increment;

262

Lock-Free Programming
Performance of CAS

 on the H/W level, CAS triggers a
memory barrier

 performance suffers with
increasing number of contenders
to the same variable

4 8 12 16 20 24 28 32

1

2

3

4

5

6

#Processors

Successful
CAS
Operations
[106]

CAS with backoff

264

103 iterations

104 iterations

105 iterations

106 iterations

4 8 12 16 20 24 28 32

1

2

3

4

5

6

#Processors

Successful
CAS Operations
[106]

constant backoff with

Memory Model for Lockfree Active Oberon

Only two rules

1. Data shared between two or more activities at the same time has to be
protected using exclusive blocks unless the data is read or modified
using the compare-and-swap operation

2. Changes to shared data visible to other activities after leaving an
exclusive block or executing a compare-and-swap operation.
Implementations are free to reorder all other memory accesses as long
as their effect equals a sequential execution within a single activity.

265

Inbuilt CAS

 CAS instruction as statement of the language
PROCEDURE CAS(variable, old, new: BaseType): BaseType

 Operation executed atomically, result visible instantaneously to other processes

 CAS(variable, x, x) constitutes an atomic read

 Compilers required to implement CAS as a synchronisation barrier

 Portability, even for non-blocking algorithms

 Consistent view on shared data, even for systems that represent words using
bytes

266

Stack
Node = POINTER TO RECORD

item: Object;

next: Node;

END;

Stack = OBJECT

VAR top: Node;

PROCEDURE Pop(VAR head: Node): BOOLEAN;

PROCEDURE Push(head: Node);

END;

267

item
next

item
next

item
next

NIL

top

Stack -- Blocking
PROCEDURE Push(node: Node): BOOLEAN;
BEGIN{EXCLUSIVE}

node.next := top;
top := node;

END Push;

PROCEDURE Pop(VAR head: Node): BOOLEAN;
VAR next: Node;
BEGIN{EXCLUSIVE}

head := top;
IF head = NIL THEN

RETURN FALSE
ELSE

top := head.next;
RETURN TRUE;

END;
END Pop;

268

Stack -- Lockfree
PROCEDURE Pop(VAR head: Node): BOOLEAN;
VAR next: Node;
BEGIN

LOOP
head := CAS(top, NIL, NIL);
IF head = NIL THEN

RETURN FALSE
END;
next := CAS(head.next, NIL, NIL);
IF CAS(top, head, next) = head THEN

RETURN TRUE
END;
CPU.Backoff

END;
END Pop;

269

A

B

C

NIL

top

head

next

Stack -- Lockfree
PROCEDURE Push(new: Node);
BEGIN

LOOP
head := CAS(top, NIL, NIL);
CAS(new.next, new.next, head);
IF CAS(top, head, new) = head THEN

EXIT
END;
CPU.Backoff;

END;
END Push;

270

A

B

C

NIL

top

head

new

Node Reuse

Assume we do not want to allocate a new node for each Push and
maintain a Node-pool instead. Does this work?

NO !

271

ABA Problem

A

NIL

top

head

next

Thread X

in the middle

of pop: after read

but before CAS

Thread Y

pops A

A

NIL

top

Thread Z

pushes B

B

NIL

top

Thread Z'

pushes A

B

NIL

Thread X

completes pop

A

NIL

top

head

next

BA

time

Pool

Pool

top

The ABA-Problem

"The ABA problem ... occurs when one activity fails to recognise that a
single memory location was modified temporarily by another activity and
therefore erroneously assumes that the overal state has not been
changed."

273

A

X observes
Variable V as A

B

meanwhile V
changes to B ...

A

.. and back to A

A

X observes A again
and assumes the
state is unchanged

time

How to solve the ABA problem?
• DCAS (double compare and swap)

 not available on most platforms

• Hardware transactional memory

 not available on most platforms

• Garbage Collection

 relies on the existence of a GC

 impossible to use in the inner of a runtime kernel

 can you implement a lock-free garbage collector relying on garbage collection?

• Pointer Tagging

 does not cure the problem, rather delay it

 can be practical

• Hazard Pointers

274

Pointer Tagging
ABA problem usually occurs with CAS on pointers

Aligned addresses (values of pointers) make some bits available for pointer
tagging.

Example: pointer aligned modulo 32 5 bits available for tagging

Each time a pointer is stored in a data structure, the tag is increased by one.
Access to a data structure via address x – x mod 32

This makes the ABA problem very much less probable because now 32 versions
of each pointer exist.

275

MSB 00000XXXXXXXX...

Hazard Pointers

The ABA problem stems from reuse of a pointer P that has been read by
some thread X but not yet written with CAS by the same thread.
Modification takes place meanwhile by some other thread Y.

Idea to solve:

• Before X reads P, it marks it hazarduous by entering it in a thread-
dedicated slot of the n (n= number threads) slots of an array associated
with the data structure (e.g. the stack)

• When finished (after the CAS), process X removes P from the array

• Before a process Y tries to reuse P, it checks all entries of the hazard
array

276

Unbounded Queue (FIFO)

277

item item item item item item

first last

Enqueue

278

item item item item item item

first last

new
①

②

first last

new

case last != NIL

case last = NIL

① ②

Dequeue

279

item item item item item item

first last①

②

last != first

item

first last

last == first

①

Naive Approach
Enqueue (q, new)

REPEAT last := CAS(q.last, NIL, NIL);
UNTIL CAS(q.last, last, new) = last;
IF last != NIL THEN

CAS(last.next, NIL, new);
ELSE

CAS(q.first, NIL, new);
END

Dequeue (q)
REPEAT

first= CAS(q.first, null, null);
IF first = NIL THEN RETURN NIL END;
next = CAS(first.next, NIL,NIL)

UNTIL CAS(q.first, first, next) = first;
IF next == NIL THEN

CAS(q.last, first, NIL);
END

280

e1

e2

e3

d1

d2

d3

A

first last

A

first last

B A A

first last

B

first last

e1 e3+ e1 e2+ d2 d3+ d2

Scenario

281

Process P enqueues A
Process Q dequeues

first last

initial

A

first last

P:

A

first last

Q:

A

first last

P:

e1 d1 e3

Scenario

282

first last

initial

A

first last

P:

A

first last

Q: P:

B B B A

first last

B

Process P enqueues A
Process Q dequeues

e1 e2d2

Analysis

 The problem is that enqueue and dequeue do under some
circumstances have to update several pointers at once [first, last, next]

 The transient inconsistency can lead to permanent data structure
corruption

 Solutions to this particular problem are not easy to find if no double
compare and swap (or similar) is available

 Need another approach: Decouple enqueue and dequeue with a
sentinel. A consequence is that the queue cannot be in-place.

283

Queues with Sentinel

284

first last

1

S A B C

2 3

next

item
sentinel

Queue empty: first = last
Queue nonempty: first # last
Invariants: first # NIL

last # NIL

Node Reuse

285

B

2simple idea:
link from node to item
and from item to node

Enqueue and Dequeue with Sentinel

286

first last

1

S A B C

2 3

next

first last

1

S A B

2

A becomes the new sentinel.
S associated with free item.

Item enqueued together
with associated node.

Enqueue
PROCEDURE Enqueue- (item: Item; VAR queue: Queue);
VAR node, last, next: Node;
BEGIN

node := Allocate();
node.item := Item:
LOOP

last := CAS (queue.last, NIL, NIL);
next := CAS (last.next, NIL, node);
IF next = NIL THEN EXIT END;
IF CAS (queue.last, last, next) # last THEN CPU.Backoff END;

END;
ASSERT (CAS (queue.last, last, node) # NIL);

END Enqueue;

287

Set last node's next pointer

If failed, then help other
processes to set last node
Progress guarantee

Set last node, can fail but
then others have already
helped

last

B C

2 3

Dequeue
PROCEDURE Dequeue- (VAR item: Item; VAR queue: Queue): BOOLEAN;
VAR first, next, last: Node;
BEGIN

LOOP
first := CAS (queue.first, NIL, NIL);
next := CAS (first.next, NIL, NIL);
IF next = NIL THEN RETURN FALSE END;
last := CAS (queue.last, first, next);
item := next.item;
IF CAS (queue.first, first, next) = first THEN EXIT END;
CPU.Backoff;

END;
item.node := first;
RETURN TRUE;

END Dequeue;

288

Remove inconsistency, help
other processes to set last
pointer

set first pointer

first last

1

S A B

2

associate node with first

ABA

Problems of unbounded lock-free queues

 unboundedness dynamic memory allocation is inevitable

 if the memory system is not lock-free, we are back to square 1

 reusing nodes to avoid memory issues causes the ABA problem (where ?!)

 Employ Hazard Pointers now.

289

Hazard Pointers
• Store pointers of memory

references about to be accessed
by a thread

• Memory allocation checks all
hazard pointers to avoid the ABA
problem

Number of threads unbounded

→time to check hazard pointers
also unbounded!

→difficult dynamic bookkeeping!

thread A

- hp1
- hp2

thread B

- hp1
- hp2

thread C

- hp1
- hp2

…

Key idea of Cooperative MT & Lock-free Algorithms

Use the guarantees of cooperative multitasking to
implement efficient unbounded lock-free queues

Time Sharing

- save processor registers (assembly)

- call timer handler (assembly)

- lock scheduling queue

- pick new process to schedule

- unlock scheduling queue

- restore processor registers (assembly)

- interrupt return (assembly)

thread A

tim
e

thread B

user mode kernel mode

timer IRQ

inherently hardware
dependent

(timer programming
context save/restore)

inherently non-parallel
(scheduler lock)

Cooperative Multitasking

thread A

tim
e

thread B

user mode user mode

function call

hardware independent
(no timer required,

standard procedure calling convention
takes care of register save/restore)

finest granularity
(no lock)

- save processor registers (assembly)

- call timer handler (assembly)

- lock scheduling queue

- pick new process to schedule (lockfree)

- unlock scheduling queue

- switch base pointer

- return from function call

Implicit Cooperative Multitasking

Ensure cooperation

 Compiler automatically inserts code at specific points in the code

Details

 Each process has a quantum

 At regular intervals, the compiler inserts code to decrease the
quantum and calls the scheduler if necessary

implicit cooperative multitasking – AMD64

uncooperative

PROCEDURE Enqueue- (item: Item; VAR queue: Queue);
BEGIN {UNCOOPERATIVE}

...
(* no scheduling here ! *)
...

END Enqueue;

295

zero overhead processor
local "locks"

Implicit Cooperative Multitasking

Pros

 extremely light-weight – cost of a regular function call

 allow for global optimization – calls to scheduler known to the compiler

 zero overhead processor local locks

Cons

 overhead of inserted scheduler code

 currently sacrifice one hardware register (rcx)

 require a special compiler and access to the source code

Cooperative MT & Lock-free Algorithms

Guarantees of cooperative MT

• No more than M threads are executing inside an uncooperative
block (M = # of processors)

• No thread switch occurs while a thread is running on a processor

 hazard pointers can be associated with the processor

 Number of hazard pointers limited by M

 Search time constant

thread-local storage processor local storage

No Interrupts?

Device drivers are interrupt-driven

 breaks all assumptions made so far
(number of contenders limited by the number of processors)

Key idea: model interrupt handlers as virtual processors

 M = # of physical processors + # of potentially concurrent interrupts

Queue Data Structures

299

Node Node

Item

Queue first last

processors hazard
first/last

hazard
next

pooled
first/last

pooled
next

hazard
first/last

hazard
next

pooled
first/last

pooled
next

Node

…

#processors

for each queue

global (once!)

hazard
pointers

released
pointers

Marking Hazarduous
PROCEDURE Access (VAR node, reference: Node; pointer: SIZE);
VAR value: Node; index: SIZE;
BEGIN {UNCOOPERATIVE, UNCHECKED}

index := Processors.GetCurrentIndex ();
LOOP

processors[index].hazard[pointer] := node;
value := CAS (reference, NIL, NIL);
IF value = node THEN EXIT END;
node := value;

END;
END Access;

PROCEDURE Discard (pointer: SIZE);
BEGIN {UNCOOPERATIVE, UNCHECKED}

processors[Processors.GetCurrentIndex ()].hazard[pointer] := NIL;
END Discard;

300

guarantee: no change to reference
after node was set hazarduous

Node Reuse

PROCEDURE Acquire (VAR node {UNTRACED}: Node): BOOLEAN;

VAR index := 0: SIZE;

BEGIN {UNCOOPERATIVE, UNCHECKED}

WHILE (node # NIL) & (index # Processors.Maximum) DO

IF node = processors[index].hazard[First] THEN

Swap (processors[index].pooled[First], node); index := 0;

ELSIF node = processors[index].hazard[Next] THEN

Swap (processors[index].pooled[Next], node); index := 0;

ELSE

INC (index)

END;

END;

RETURN node # NIL;

END Acquire;

301

wait free algorithm to find non-
hazarduous node for reuse (if any)

Lock-Free Enqueue with Node Reuse

302

reuse

mark last hazarduous

unmark last

node := item.node;

IF ~Acquire (node) THEN

NEW (node);

END;

node.next := NIL; node.item := item;

LOOP

last := CAS (queue.last, NIL, NIL);

Access (last, queue.last, Last);

next := CAS (last.next, NIL, node);

IF next = NIL THEN EXIT END;

IF CAS (queue.last, last, next) # last THEN CPU.Backoff END;

END;

ASSERT (CAS (queue.last, last, node) # NIL, Diagnostics.InvalidQueue);

Discard (Last);

Lock-Free Dequeue with Node Reuse

303

mark first hazarduous

unmark first and next

unmark first and next

mark next hazarduous

unmark next

LOOP

first := CAS (queue.first, NIL, NIL);

Access (first, queue.first, First);

next := CAS (first.next, NIL, NIL);

Access (next, first.next, Next);

IF next = NIL THEN

item := NIL; Discard (First); Discard (Next); RETURN FALSE

END;

last := CAS (queue.last, first, next);

item := next.item;

IF CAS (queue.first, first, next) = first THEN EXIT END;

Discard (Next); CPU.Backoff;

END;

first.item := NIL; first.next := first; item.node := first;

Discard (First); Discard (Next); RETURN TRUE;

Scheduling -- Activities

304

TYPE Activity* = OBJECT {DISPOSABLE} (Queues.Item)

VAR

END Activity;

(cf. Activities.Mod)

accessed via
activity register

access to current processor

stack management

quantum and scheduling

active object

Lock-free scheduling

Use non-blocking Queues and discard coarser granular locking.

Problem: Finest granular protection makes races possible that did not
occur previously:

current := GetCurrentTask()

next := Dequeue(readyqueue)

Enqueue(current, readyqueue)

SwitchTo(next)

305

Other thread can dequeue
and run (on the stack of)
the currently executing
thread!

Task Switch Finalizer
PROCEDURE Switch-;

VAR currentActivity {UNTRACED}, nextActivity: Activity;

BEGIN {UNCOOPERATIVE, SAFE}

currentActivity := SYSTEM.GetActivity ()(Activity);

IF Select (nextActivity, currentActivity.priority) THEN

SwitchTo (nextActivity, Enqueue, ADDRESS OF readyQueue[currentActivity.priority]);

FinalizeSwitch;

ELSE

currentActivity.quantum := Quantum;

END;

END Switch;

306

Enqueue runs on
new thread

Stack Management

Stacks organized as Heap Blocks.

Stack check instrumented at beginning of each procedure.

Stack expansion possibilities

1.

2.

307

old new

old

copy

old old new

link

Copying stack

Must keep track of all pointers from stack to stack

Requires book-keeping of

 call-by-reference parameters

 open arrays

 records

 unsafe pointer on stack

 e.g. file buffers

turned out to be prohibitively expensive

308

Linked Stack

 Instrumented call to ExpandStack

 End of current stack segment pointer included in process descriptor

 Link stacks on demand with new stack segment

 Return from stack segment inserted into call chain backlinks

309

Linked Stacks

310

parameters

pc
fp
proc desc

var

par

pc (caller of A.B)
fp
pdesc of A.B pdesc of ReturnToStackSegment

var

par

pc (caller of expandstack)
fp fp(new)), return new sp
pdesc

var

caller of
A.B

A.B
becomes frame of
ReturnToStackSegment

ExpandStack

par (copy)

pc (ReturnToStackSegment)
fp
pdesc of A.B

var

A.B

Lock-Free Memory Management
 Allocation / De-allocation

implemented using only lock-free
algorithms

 Buddy system with independent
(lock-free) queues for the different
block sizes

 Lock-free mark-sweep garbage
collector

• Several garbage collectors can run in
parallel

Lock-free Garbage Collector

 Mark & Sweep

 Precise

 Optional

 Incremental

 Concurrent

 Parallel

312

Synchronisation

313

Mutators

Collectors

M1 M2 M3

C1 C2 C3

Mark

Traverse

Write
Barrier

Per ObjectPer ObjectPer Object

Data Structures

314

Mark Bit

Marklist

Watchlist

Root Set

Global

Cycle Count

Marked First

Watched First

Global References

Per Object

Cycle Count

Next Marked

Next Watched

Local Refcount

Example

315

Root Set

Marked List

Watched List

A2

C2 D2

E1 G1 F1

Cycle Count = 2

Achieving (Almost) Complete Portability

 Lock-free A2 kernel written exclusively in a high-level language

• no timer interrupt required scheduler hardware independent

• no virtual memory no separate address spaces everything runs in
user mode, all the time

• hardware-dependent functions (CAS) are pushed into the language

• “almost”:

 we need a minimal stub written in assembly code to

 initialize memory mappings

 initialize all processors

How well does it perform? (Simplicity, Portability)

Component Lines of Code (Kernel)

Interrupt Handling 301

Memory Management (including GC!) 352

Modules 82

Multiprocessing 213

Runtime Support 250

Scheduler 540

Total 1738 (28% of A2 orig)

How well does it perform? (Scheduler)

thread creation time thread switching time

Native

A2

Linux

How well does it perform? (Scheduler)

application speedup (matrix multiplication)
in the presence of locks

Native

A2
Linux

Windows

average cost of locking operations

Native
A2

Linux

Windows

How well does it perform? (Scheduler)

thread synchronization

Native

A2

Linux

Windows

How well does it perform? (Memory Manager)

memory allocation of 1’000 byte blocks

Native

Linux

Windows

memory allocation of 10’000 byte blocks

Windows

Linux

Native

How well does it perform? (Memory Manager)

garbage collection latency

Java (Parallel)

Java (CMS)

Java (G1)

Java (Serial)

A2

Native

Lessons Learned

 Lock-free programming: new kind of problems in comparison to lock-
based programming:

• Atomic update of several pointers / values impossible, leading to new
kind of problems and solutions, such as threads that help each other in
order to guarantee global progress

• ABA problem (which in many cases disappears with a Garbage
Collector)

Parallel Programming – SS 2015 323

Conclusion
 Lock-free Runtime

 consequent use of lock-free algorithms in the kernel

 synchronization primitives (for applications) implemented on top

 efficient unbounded lock-free queues

 parallel and lock-free memory management with garbage collection

 A completely lock-free runtime is feasible

 exploit guarantees of cooperative multitasking

 performance is good considering

 non-optimizing compiler

 no load-balancing, no distributed run-queues

