1.5.1/0

Serial Communication

Simplex Half-Duplex

129

Serial Communication
Master-Slave (Multi-)Master

Multi-Slave

Master-Multi-Slave

130

Serial Communication

Synchronous

Asynchronous

Master [oy Slave

131

Some Bus Types

RS-232

RS-485

SPI [aka SSP,
Microwire]

12C
[SMBus]
1-Wire

USB 2.0

USB 3.0

Wires
(+Gnd)

3/5-8

3/5
4

3/5

Directionality

full duplex

half/full duplex

full duplex

half duplex

half duplex

half-duplex

full-duplex

Synchrony

asynchronous
+synchronous

asynchronous

synchronous

synchronous

time-slot
based,
synchronous

asynchronous

asynchronous

Distance
typ.
10 m

1000 m

few cm

few m

tens of m

few m

few m

Speed typ.

115kbps /
1Mbps

Mbps
10 Mbps

100kbps-
3Mbps

15kbps/
125kbps

12Mbits/
480 MBits

5/10 GBits

Remarks

Point-to-Point
Interference prone

Differential Signalling

Master-Multi-Slave
with Slave select

Addressed Multi-Master

Master-Multi-Slave
Parasitic power

isochronous/ bulk/
interrupt transfers

SPI

SCLK
MOSI
shift shift
register MISO register
sS
SS
SCLK: Serial bit-rate Clock
MOSI: Master data Output, Slave data Input shift

register
MISO: Master data Input, Slave data Output

SS: Slave Select

SPI

= Four wire serial bus invented / named by Motorola
= Serial connection between two or more devices (microprocessors, D/A converters)
= Configurations

= 1 Master, 1 Slave (single slave mode)

= 1 Master, N Slaves (multiple slave mode)
= Synchronous bidirectional data transfer
= Data transfer initiated by Master
= Bandwidth some KBits/s up to several MBits/s
= Simple implementation in software

= Used in a variety of devices, such as memory (flash, EEPROM), LCD displays and in all
MMC / SD cards

Communication

sampling

MOSI / Bit[7] X Bit[6] I Bit[5] X: 22 X Bit[1] X Bit[0] X End of transfer data state

MISO undefinq:d X EBit[7] X Bit[6] Bit[5] X: 22 X Bit[1] X Bit[0] X u:ndefined

MSB 8 bits LSB

135

Polarity

SCLK

po.ar.ty 1 _/__/__f gg w

X Bit[7] X Bit[6] X Bit[5] X: 22 X Bit[1] X Bit[0] X End of tran sfe datastate

136

Phase

SCLK

Phase =1\ /_/ 1\, "/

X Bit[1] X Bit[0] X End of transfer data state

X Bit[7] X Bit[6] X BI5] X:

137

SPI — Data Transfer

= Master configures the clock
= Master selects slave (SS), followed by waiting period (if required by slave)
= Full duplex data transmission in each cycle
= Master sends bit over MOSI line, slave reads bit
= Slave sends bit over MISO line, master reads bit
= Two shift registers, one in slave, one in master for transfer
= When no data is to be transmitted any more, master stops toggling the clock

= No acknowledgement mechanism
= No device interrupts

138

Programming SPI

1. Bit-Banging

GPIO Pins

139

Programming SPI

1. Bit-Banging

FOR 1 := 7 TO @ BY -1 DO
IF ODD(ASH(data,-1i)) THEN
Platform.WriteBits(Platform.GPSETO, MOSI);
ELSE
Platform.WriteBits(Platform.GPCLRO, MOSI);
END;
Kernel.MicroWait(HalfClock);
Platform.WriteBits(Platform.GPSETO, CLOCK);
Kernel.MicroWait(HalfClock);
Platform.WriteBits(Platform.GPCLRO, CLOCK);
END;

140

Programming SPI

2. Using a Controller

SPI Controller —

141

Programming SPI

2. Using a Controller

(* start transition *)
Platform.SetBits(Platform.SPI CS, {TA});

REPEAT UNTIL TXD IN Platform.ReadBits(Platform.SPI_CS);

Platform.WriteWord(Platform.SPI_FIFO, data);
junk := Platform.ReadWord(Platform.SPI_FIFO);

REPEAT UNTIL DONE IN Platform.ReadBits(Platform.SPI_CS);

(* transfer inactive *)
Platform.ClearBits(Platform.SPI_CS, {TA});

142

BCM 2835 Registers

CS -- Control and Status FIFO Register CLK
Data

Write: Read:
TX Fifo RX Fifo

143

MAX7219 8-Digit LED Display Driver

SEG A-SEG G, DP DIG 0-DIG 7
1 1 I I I | 1 1 T O I |
SEGMENT DRIVERS DIGIT DRIVERS
PP B
'Y
A8 —»| SHUTDOWN REGISTER
CODEB |«
Ve ROM WITH — MODE REGISTER |NF’TLEEISJSéW
BYPASS —-| INTENSITY REGISTER [——| |,/
Regr } | SCAN-LIMIT REGISTER MODULATOR
SEGMENT 8 —»| DISPLAY-TEST REGISTER
CURRENT 8x8
REFERENCE DUAL-PORT | MULTIPLEX
SRAM SCAN . —
A ADDRESS CIRCUITRY
/a 8 | REGISTER
LOAD (CS) » 4 DECODER

9 {D10|{D11|D12{D13(D14(D15

* f f * T * f ? + f + ? * * ? * Max7219 Specification, p.5

(MSB)

144

MAX7219 8-Digit LED Display Driver

I
s \
ORLOAD ! T

—! icss :4— -~ toL—j=—toH—|

f 1 1 1
| 1 1 1
CLK /—_/—\i\

._..h

—-—tDs-—.

- JARRRNHL) -

DouT ><

R

1 .
— fpp le

XX

Figure 1. Timing Diagram

Table 1. Serial-Data Format (16 Bits)

D15 D14 | D13 | D12 | D1t D10 D9 D8

D7

D6 D5 D4 D3 D2

D1

DO

X X X X ADDRESS

MSB

DATA

LSB

Max7219 Specification, p.6

145

MMC and SD Cards

" Low cost memory system for persistent data on ,,solid state mass
storage” (for example flash memory cards)

= Separate bus system
= 1 master, N slaves (cards)

= typically 1 master for one card

= Serial & synchronous transfer of commands and data

= Sequential read/ write

Power Bus

= Block read/ write Supply " Master

* I Multi Media Card Bus

Card Card Card
(I/0) (ROM) (Flash)

146

MMC System Interaction

Command and

Response Clock for
Channel synchronous
transfer

Host (BCM 2835) SD Card

CLK
Core cMP
EMMC . < -
= o
Controller =l DAT S B SD Card
o ¢ > & "L Interface
o 2 = Controller
< > @
Memory
Bidirectional

Data Channels

SD Card

JBREIR

DAT2 CMD C LK DATO
DAT3 DAT1

SD Physical Layer Spec. P. 12 148

SD Mode vs SPI Mode

Datl
Dat2

Block Read/ Write Operation

[
Re d d from host to card from card to host data from card to host stop command
\L / stops data transfer
CMD --- command - response ------- e Nl Rl command ‘- response
DAT[0-7] 4= =-=--------- datablock crc + datablock crc - datablock crc - - - - - - - -
< block read operation < _
_ - < data stop operation
- multiple block read ZI=
= Write
data from host to card
from host to card from card to host stop command
stops data transfer
busy from card to hosf
CMD - -- command - response ———— === ====" command - response
DAT[0-7] 4= = === ===~ -~ datablock crc - busy -+ datablock crc - busy -----
_ block write operation - P data stop operation
= multiple block write -

SD Physical Layer Spec. P. 6ff

150

Packet Formats

Command and Response

transmitter Command content: command and address information of ~ €nd bit,

] CO mman d bt, 11h03t parameter, protj/cted by 7 bit CRC checkium always 1
TO ke n 0 1 Content CRC 1
48 bits
start bit,
always 0
m Res po nse 0O O Content CRC 1 Response types

T /]\ /]\ R1, R3. R4, R5*

Response content, mirrored command and status
information (R1 response), OCR register (R3 respone) or
RCA (R4 and R5), protected by 7-bit checksum

) ! l

0O O Content = CID or CSD CRC 1 Response type R2 *

Tokens

transmitter
bit, O=client

136 bits

151

Example: MMC Memory Card State Diagram

(boot mode)

Idle State <= CMDO = from all states
card busy) 1
7 or missing voltage range v goidle stat:_‘ -
send op cond L_ CMD1 » Inactive State CMD15
o ‘ _ a
Ready State non compatible
voltage range cards

card looses bus
\ 4

all send CID 'E CMD2

card wins bus

\ 4

Identification
State

set relative adr \
~CMD3

card identification mode

data transfer mode
Wait IRQ I Stand-by
State C'\@A'O State
e 7\ from all states except
set irg mode sleep state in data transfer more

» any start bit detected on the bus
|

interrupt mode | 152
I

RS232

Terminal [DTE] Data Set [DCE]
(Modem)
XD
<
UART RxD > UART
GND
+
RTS/RTR Ry
) CTS

if Hardware Flow Control

153

RS232 Signalling

Sampling in the middle of bit intervals

(LRI
[+3v, +15 V] : !
A |
Ov : 7 é
LSB =
[-3v ,-15 V] i
start bit 8 data bits
starts the local clock (+parity, if applicable)

MSB

1-2 stop bit(s)

Time

154

UART

Universal Asynchronous Receiver/ Transmitter

= Serial transmission of individual bits in byte
packets (lowest significant bit first)

= Configurable source: Wikipedia
= Number of data bits per byte: 5,6, 7, 8
= Parity: odd, even, none
= Number of stop bits: 1,1.5,2

= Transfer rate in bps (bits per second): 75, 110, 300,...,
115200

155

Implementation

Application

Send

Receive

in out

Sender buffer
Receiver buffer

e

out
UART Driver

Port
2. ::> Sender
1 Line

IRQ Sender FIFO

Trigger

level

reached
IRQ Receiver FIFO
L <\,: Receiver
5 Line

Port
UART

Hardware

156

Producer Consumer Implementation

Assumption: one consumer and one producer

Producer [\ ~in
WHILE (in+1l) MOD bufferSize = out DO END;

buffer[in] := produced;

in = (in+l) MOD bufferSize; out
Consumer

WHILE in = out DO END;

consumed := buffer|out]; U

out := (out+l) MOD bufferSize;

Jo4ng

Driver

= Method Send

= Put data in sender buffer;
Update in (sender)

= Method Receive

= Get data from receiver buffer;
Update out (receiver)

= Sender-Interrupt

= Shift data from sender buffer to sender FIFO;
Update out (sender)

= Receiver Interrupt

= Shift data from receiver FIFO to receiver buffer;
Update in (receiver)

158

1.6. FILE SYSTEM

Modular Structure

Flat name space
B-tree representation
node < block

Files

FileDir

BlockDevice

Sequential files

Files as byte sequences
Riders for reading/writing
Buffering

Block Sequences
Block allocation
Read/ write block

160

API

= Abstract data types File, Rider File* = POINTER TO FileDesc;
_ _ FileDesc* = RECORD .. END;
= Open file (new or via name)

Rider* = RECORD

= Close file eof*: BOOLEAN;

= Position rider in file hint*: Buffer;
file*: File;

= Read next byte via rider END;

= Write next byte via rider

Block Structure of Files

directory

mark

ﬁl

128 x 4K=1MB

1K

header "™m¢

1K

length
O .
1 index
entries
127

\4

time

(3528 B)

index
blocks

1K

1K x 4K= 4MB

data
blocks

1K x 4M=
[4GB

162

Internal Data Structure

Rider for accessing files

| | | = Positioning

r r r Rider : :
= 5 . = Sequential reading
s v 3 ‘\\I'an;t-_-!
— = Sequential writing
Buffer
: D D
\ 4 o
caching pages around the current
f focus to minimize disk accesses
Buffer
File

handle

163

Read from Buffered Rider

PROCEDURE Read* (VAR r: Rider; VAR x: CHAR) ;
VAR buf: Buffer; f: File;

BEGIN
buf := r.hint(Buffer); £ := r.file;
IF r.apos # buf.apos THEN
buf := GetBuf(f, r.apos); r.hint := buf
END;
IF r.bpos < buf.lim THEN
x := buf.data.B[r.bpos]; INC (r.bpos)

ELSIF r.apos < f.aleng THEN
Search buffer in file buffers.
If no buffer at r.apos then use r.hint, flush 1f modified and read

X := buf.data.B[0]; r.bpos := 1
ELSE x := 0X; r.eof := TRUE
END

END Read;

164

Block Allocation Table

startup

11111111j11111111(111113111111111111 free

scavenging | o 8 16 24

00011100101000100101010001111001

allocate 3

00001100101000100101010001111001| allocated

block-no.

165

