
CASE STUDY 4: CUSTOM DESIGNED MULTI-
PROCESSOR SYSTEM

Active Cells:

A Programming Model for Configurable Multicore Systems 
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Vision
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Objectives

 TRM Processor and Interconnects

 Software Hardware Co-Design

 The Active Cells Toolchain

 Case Studies and Examples

330



Motivation: Multicore Systems Challenges

 Cache Coherence

 Shared Memory Communication Bottleneck

 Thread Synchronization Overhead

Hard to predict performance of a program

Difficult to scale the design to massive multi-core architecture
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Operating System Challenges

 Processor Time Sharing

 Interrupts

 Context Switches

 Thread Synchronisation

 Memory Sharing

 Inter-process: Paging

 Intra-process, Inter-Thread: Monitors

332



Project Supercomputer in the Pocket
Funded by Microsoft in ICES programme, 2009 - 2014

Manycore architecture for embedded systems on the basis of 
programmable hardware (FPGA)

 Emphasis on high-performance computing in the small in the field of 
sensor driven medical IT

 Enhance industrial applications and ease teaching of parallel computing
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Project Time

General
purpose
manycore
for teaching

Processor 
Designs and
Interconnects

Idea
"Configurability 
over all levels"

Novel computing model 
and toolchain for 
constructing distributed 
system on chip.

ICES II



Focus: Streaming Applications

Structural Example: 
ECG for realtime desease detection
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Stream Parallelism

Pipelining
335



Task Parallelism

Parallel
Execution
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Data Parallelism

Vector Computing
Loop-level parallelism
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Key Idea: On-chip distributed system

 Replace shared memory by local memory

 Message passing for interaction between processes

 Separate processor for each process

 Very simple processors

 No scheduling, no interrupts, 

 Application-aware processors

Minimal operating system

Conceptually no memory bottleneck

Higher reliability and predictability by design
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4.1. HARDWARE BUILDING BLOCKS
TRM AND INTERCONNECTS
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TRM: Tiny Register Machine*

 Extremely simple processor on FPGA with Harvard architecture.

 Two-stage pipelined

 Each TRM contains 

 Arithmetic-logic unit (ALU) and a shifter. 

 32-bit operands and results stored in a bank of 2*8 registers. 

 local data memory: d*512 words of 32 bits. 

 local program memory:  i*1024 instructions with 18 bits.

 7 general purpose registers

 Register H for storing the high 32 bits of a product, and 4 conditional registers C, N, V, Z.

 No caches

340* Invented and implemented by Dr. Ling Liu and Prof. Niklaus Wirth



TRM Machine Language

 Machine language: binary representation of instructions

 18-bit instructions 

 Three instruction types:

 Type a:  arithmetical and logical operations

 Type b:  load and store instructions

 Type c:  branch instructions  (for jumping)

341

from Lectures on Reconfigurable Computing, Dr. Ling Liu, ETH Zürich



Encoding Overview
 Register Operations

 Load and Store

 Conditional Branches

 Special Instructions

 Branch and Link
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091011131417

0 immRdop imm is zero extended to 32 bits
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TRM architecture
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Figure from: Niklaus Wirth, Experiments in Computer System Design, Technical Report, August 2010

http://www.inf.ethz.ch/personal/wirth/Articles/FPGA-relatedWork/ComputerSystemDesign.pdf

http://www.inf.ethz.ch/personal/wirth/Articles/FPGA-relatedWork/ComputerSystemDesign.pdf


Variants of TRM

 FTRM

 includes floating point unit

 VTRM (Master Thesis Dan Tecu)

 includes a vector processing unit

 supports 8 x 8-word registers

 available with / without FP unit

 TRM with software-configurable instruction width (Master Thesis Stefan Koster, 

2015)
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First Experiment: TRM12
A Multicore Processor Architecture on FPGA
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Interface to network and I/O

 TRM processor connected to a network controller („NetNode“)

 TRM core 11 connected to RS232 controller, a 2-line LCD 

controller, a timer and 8 LEDs

 TRM processor core 6 connected to 512 MB DDR2 controller

 Netnodes and RS232 controller treated as I/O port to the TRM 

processor, communication with TRM core through 32-bit I/O bus

 I/O accessed via memory mapped I/O at fixed addresses
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Problems with this approach

 Not scalable

 Huge resource consumption

 Little but existing contention
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Second Experiment: Ring of 12 TRMs
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Connection TRM / Ring

TRM

Adapter

Ring

• Ring interconnect
very simple

• Small router

• Predictable latency
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Problems with this approach

 Not scalable without huge loss of performance

 Large delays
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4.2 ACTIVE CELLS

Programming Model

Case Studies
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Software / Hardware Co-design
Vision: Custom System on Button Push

System 
design as 
high-level 
program 
code

Electronic 
circuits

Computing model

Programming 
Language

Compiler, 
Synthesizer,

Hardware Library,

Simulator

Programmable 
Hardware

(FPGA)
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System specification, HW/SW 
partitioning

Program 
microcontroller in 

C/C++

Program
system specific 

hardware in HDL

Compilation Synthesis

Microcontroller + machine code + 
specific hardware (eg. DSP)

Traditional HW/SW co-
design for embedded 

systems

Traditional HW/SW co-design

One Program

One Toolchain

System on FPGA

Active Cells approach for 
embedded systems 

development

Goal
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Software  Hardware Map

channel

cell

fifo
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Consequences of the approach

 No global memory

 No processor sharing

 No pecularities of specific processor

 No predefined topology (NoC)

 No interrupts

 No operating system
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Active Cells Computing Model

 Distributed system in the small

 Computation units: "Cells"

 Different parallelism levels addressed by

 Communication Structure (Pipelining, Parallel Execution)

 Cell Capabilities (Vector Computing, Simultaneous Execution)

 Inspired by

 Kahn Process Networks

 Dataflow Programming

 CSP

 ..

356



Active Cell Components

 Active Cell

 Object with private state space

 Integrated control thread(s)

 Connected via channels

 Cell Net

 Network of communication cells
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Active Cells
 Scope and environment for a running isolated process.

 Cells do not immediately share memory

 Defined as types with port parameters
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type

Adder = cell (in1, in2: port in; result: port out);

var summand1, summand2: integer;

begin

in1 ? summand1;

in2 ? summand2;

result ! summand1 + summand2

end Adder;

communication ports

blocking receive

non-blocking send

(Adder)

result

in1 in2



Cell Constructors

 Constructors to parameterize cells during allocation time
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type

Filter = cell (in: port in; result: port out);

var ...; filterLength: integer;

procedure & Init(filterLength: integer)

begin self.filterLength := filterLength

end Init;

begin

(* ... filter action ... *)

end Filter;

var filter: Filter;
begin

.... new(filter, 32); (* initialization parameter filterlength = 32 *)

constructor



Further Configurations:Cell Capabilities

 Cells can be parametrized further, being provided with further capabilities or non-default values.

type

Filter = cell {Vector, DataMemory(2048), DDR2} 
(in: port in (64); result: port out);

var ...

begin

(* ... filter action ... *)

end Filter;

....

Cell is a VectorTRM with 2k 
of Data Memory and has 
access to DDR2 memory

This port is implemented 
with a (bit-)width of 64
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Engine Cell Made From Hardware
 Special cells are provided as prefabricated hardware components (Engines).
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type

Convolver2d= cell {Engine} 
(in: port in (64); result: port out);

end Convolver2d;



Hierarchic Composition: Cell Nets
 Cellnets consist of a set of cells that can be connected over their ports.

 Allocation of cells: new statement

 Connection of cells: connect statement

 Cellnets can provide ports, ports of cells can be delegated to the ports of the 
net

 Delegation of cells: delegate statement

 Terminal (or closed) Cellnets* can be deployed to hardware

362*i.e. Cellnets without ports



Terminal Cellnet Example
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cellnet Example;

import RS232;

type

UserInterface = cell {RS232}(out1, out2: port out; in: 
port in)
(*...*) end UserInterface;

Adder = cell(in1, in2: port in; out: port out)
(* ... *) end Adder;

var interface: UserInterface; adder: Adder

begin

new(interface);

new(adder);

connect(interface.out1, adder.in1);

connect(interface.out2, adder.in2);

connect(adder.result, interface.in);

end Example.

adder

(Adder)

result

in1 in2

interface

(User
Interface)

out1 out2

in

RS232



Hierarchic Composition Example
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module SimpleCells

import RS232;

type

Adder = cell (in1, in2: port in; result: port out)
(* ... *) end Adder;

Multiplier = cell (in1, in2: port in; result: port out)
(* ... *) end Adder;

ScalarProduct*= cellnet (vx,vy,xw,xy: port in; result: port out)

var adder: Adder; multiplier1, multiplier2: Multiplier;

begin 

new(mul1); new(mul2); new(adder);

delegate(vx, mul.in1); delegate(wx, mul1.in2);

delegate(vy, mul2.in1); delegate(wy, mul2.in2);

connect(mul1.result, adder.in1); connect(mul2.result, adder.in2);

delegate(result, adder.result)

end ScalarProduct;

end SimpleCells

port 
delegation

port 
delegation



Example of a wired Cellnet
cellnet Test;

import SimpleCells, RS232;

type

Norm*=cellnet (vX,vY: port in; result: port out)

type

Dup*=cell(in: port in; out1,out2: port out)

var val: LONGINT;

begin

loop in ? val; out1 ! val; out2 ! val end

end Dup;

var s: SimpleCells.ScalarProduct2d; dup1, dup2: Dup;

begin

new(s); new(dup1); new (dup2);

connect (dup1.out1,s.vX); connect(dup1.out2,s.wX);

connect(dup2.out1,s.vY); connect(dup2.out2,s.wY);

delegate(vX,dup1.in);delegate(vY,dup2.in);

delegate(result,s.result);

end Norm;

s

(SimpleCells.
ScalarProduct)

dup1

(Norm.Dup)

dup2

(Norm.Dup
)

in

out1 out2

in

out1 out2

vX wx vY wY

result

norm(Norm)
vX vY

result
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Flattening

Calculator*=cell {RS232} (in: port in; 
outX,outY: port out)

var result: longint; vX,vY,wX,wY: longint;
begin

loop
RS232.ReceiveInteger(vX); 
RS232.ReceiveInteger(vY);
send (outX,vX); send(outY,vY);
receive (in,result);
RS232.SendInteger(result);

end;
end Calculator;

var calculator: Calculator; norm:Norm;
begin

new(calculator); new(norm);
connect(calculator.outX,norm.vX);
connect(calculator.outY,norm.vY);
connect(norm.result,calculator.in);

end Test.

s

(SimpleCells.
ScalarProduct)

dup1

(Norm.Dup)

dup2

(Norm.Dup
)

in

out1 out2

in

out1 out2

vX wx vY wY

result

norm(Norm)
vX vY

result
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in
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calculator
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RS232

Core1
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Core4

Core6

Core5
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Hybrid Compilation

Code body Role Compilation method

Cell (Softcore) Program logic Software Compilation

Cell (Engine) Computation unit Hardware Generation

Cell Net Architecture Hardware Compilation
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cellnet N;

type A=cell(pi: port in; po: port out);
var x: integer;
begin
… pi ? x; … po ! x; …
end A;

var a,b: A;
begin
… connect(a.po, b.pi)
end N.



Automated Mapping to FPGA
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HLL
Program source

Hybrid Compiler
Frontend

Intermediate
Code

HDL
Hardware 

Description

Runtime Library
Hardware

Library

fast lane

Bit
Stream

Hybrid Compiler
Backend

Hardware
Synthesis



Hardware Library

Computation Components

• General purpose minimal 
machine: TRM, FTRM

• Vector machine: VTRM

• MAC, Filters etc.

Communication Components

• FIFOs

• 32 * 128

• 512 * 128

• 32, 64, 128, 1k * 32

Storage Components

• DDR2 controller

• configurable BRAMs

• CF controller

I/O Components

• UART controller

• LCD, LED controller

• SPI, I2C controller

• VGA, DVI controller
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Case Study 1: ECG
Focus: Resources and Power

Real-time

ECG Monitor
Signal
input

Wave 
proc_1

QRS
detect

HRV 
analysis

Disease  
classifier

Wave 
proc_2

Wave 
proc_8

ECG

bitstream

out

stream
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Resources

 ECG Monitor*

 Maximum number of TRMs in communication chain 

371

#TRMs #LUTs #BRAMs #DSPs TRM load

12 13859
(48%)

52
(86%)

12
(25%)

<5%
@116 MHz

FPGA #TRMs #LUTs #BRAMs #DSPs

Virtex-5 30 27692 (96%) 60 
(100%)

30 
(62%)

Virtex 6 500

*8 physical channels @ 500 Hz sampling frequency

implemented on Virtex 5 371



Comparative Power Usage

 Preconfigured FPGA (#TRMs, IM/DM, I/O, Interconnect fixed)
versus fully configurable FPGA (Active Cells)

System Static
Power (W)

Dynamic Power 
(W)

Preconfigured
("TRM12")

3.44 0.59

Dynamically
configured

0.5 0.58

86% saving!

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

Core 6

Core 7

Core 8

Core 9

Core 10

Core 11
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al

inpu
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2

Wave 
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Case Study 2: Non-Invasive Continuous Blood Pressure Monitor
Focus: Development Cycle Time

A2 Host OS with GUI on PC
Sensor control and 
medical algorithms on 
Spartan 6 FPGA

Sensors and 
Motors
on Bracelet

Project
Results
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Medical Monitor Network On Chip

Dominated by TRM processors. Feedback driven.
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Development Cycle Times

Step Medical 
Monitor

OCT 
(full)

Software Compilation 4s 2s

Hardware 
Implementation

20 min 20 min

Stream Patching (all) 2 min -

Stream Patching (typical) 12 s -

Deployment 11s 16s

sporadic often
375
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Case Study 3: Optical Coherence Tomography
Focus: Performance

A(λi) = A(1/fi)

f(z)

z-Axis Processing

1. Non uniform sampling

A(λi)  A(f i)

2. Dispersion compensation

3. (Inverse) FFT

… for many lines x in a row (2d)

… and many rows y in a column (3d)

~

z
x

y 376 376



A component of OCT image processing
Dispersion Compensation

Dominated by Engines. Dataflow driven.
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Performance and Resource Usage

Medical Monitor Dispersion
Compensation

OCT

Architecture Spartan 6
XC6SLX75

Zynq 7000
XC7Z020

Zynq 7000
XC7Z020

Resources 28% Slice LUTs, 
4% Slice Registers
80% BRAMs
24% DSPs

11% Slice LUTs, 
6% Slice Registers
7% BRAMs
15% DSPs
1 ARM Cortex A9

17% Slice LUTS
8% Slice Registers
22% BRAMs
31% DSPs
1 ARM Cortex A9

Clock Rate 58 MHz 118 MHz 50 MHz

Performance -- 8.3 GFPOps*
up to 32 GFPops**

4.3 GFPOps*

Data Bandwidth 1.25 Mbit /s (in)
23 kB/s (out)

236 MWords/s (in)
118 MWords/s (out)

50 MWords/s (in)
50 MWords/s (out)

Power ~2W ~5W ~5W

** Fixed point operations, 32bit

*  when instantiated 4 times
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Conclusion

ActiveCells: Computing model and tool-chain for emerging configurable
computing

 Configurable interconnect Simple Computing, Power Saving

 Hybrid compilation Decreased Time to Market

 Embedding of task engines High Performance
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