
CASE STUDY 4: CUSTOM DESIGNED MULTI-
PROCESSOR SYSTEM

Active Cells:

A Programming Model for Configurable Multicore Systems

328

Vision

329

P P NILP NILNIL P P PP P PP P

core core

cache

bus

cache

memory

P P

core core
PP

core engine
P

core core
PP

core
P

core
P

engine

General Purpose Shared Memory Computer Application Specific Multicore Network On Chip

Objectives

 TRM Processor and Interconnects

 Software Hardware Co-Design

 The Active Cells Toolchain

 Case Studies and Examples

330

Motivation: Multicore Systems Challenges

 Cache Coherence

 Shared Memory Communication Bottleneck

 Thread Synchronization Overhead

Hard to predict performance of a program

Difficult to scale the design to massive multi-core architecture

331

Operating System Challenges

 Processor Time Sharing

 Interrupts

 Context Switches

 Thread Synchronisation

 Memory Sharing

 Inter-process: Paging

 Intra-process, Inter-Thread: Monitors

332

Project Supercomputer in the Pocket
Funded by Microsoft in ICES programme, 2009 - 2014

Manycore architecture for embedded systems on the basis of
programmable hardware (FPGA)

 Emphasis on high-performance computing in the small in the field of
sensor driven medical IT

 Enhance industrial applications and ease teaching of parallel computing

333

Project Time

General
purpose
manycore
for teaching

Processor
Designs and
Interconnects

Idea
"Configurability
over all levels"

Novel computing model
and toolchain for
constructing distributed
system on chip.

ICES II

Focus: Streaming Applications

Structural Example:
ECG for realtime desease detection

334

Stream Parallelism

Pipelining
335

Task Parallelism

Parallel
Execution

336

Data Parallelism

Vector Computing
Loop-level parallelism

337

Key Idea: On-chip distributed system

 Replace shared memory by local memory

 Message passing for interaction between processes

 Separate processor for each process

 Very simple processors

 No scheduling, no interrupts,

 Application-aware processors

Minimal operating system

Conceptually no memory bottleneck

Higher reliability and predictability by design

338
338

4.1. HARDWARE BUILDING BLOCKS
TRM AND INTERCONNECTS

339

TRM: Tiny Register Machine*

 Extremely simple processor on FPGA with Harvard architecture.

 Two-stage pipelined

 Each TRM contains

 Arithmetic-logic unit (ALU) and a shifter.

 32-bit operands and results stored in a bank of 2*8 registers.

 local data memory: d*512 words of 32 bits.

 local program memory: i*1024 instructions with 18 bits.

 7 general purpose registers

 Register H for storing the high 32 bits of a product, and 4 conditional registers C, N, V, Z.

 No caches

340* Invented and implemented by Dr. Ling Liu and Prof. Niklaus Wirth

TRM Machine Language

 Machine language: binary representation of instructions

 18-bit instructions

 Three instruction types:

 Type a: arithmetical and logical operations

 Type b: load and store instructions

 Type c: branch instructions (for jumping)

341

from Lectures on Reconfigurable Computing, Dr. Ling Liu, ETH Zürich

Encoding Overview
 Register Operations

 Load and Store

 Conditional Branches

 Special Instructions

 Branch and Link

342

091011131417

0 immRdop imm is zero extended to 32 bits

091011131417

1 RsRdop 0 0 0 x x 0

(a)

(b)

091011131417

1 VRsVRdop 1 0 0 x x x(c)

091011131417

1 x x xRdop 0 0 0 0 0 1(a)

(c)

091011131417

1 RsRdop 1 0 x x x x

091011131417

1 RsRdop 0 1 x x x x(d)

091011131417

1 x x xVRdop 1 0 0 001(b)

091011131417

1 RsRdop 101(e) xxxx

6

(a)

(b)

091011131417

0 RsRdop off

091011131417

1 RsVRdop off

3

3

off is zero extended to 13 bits

0910131417

cond1110 off off is sign extended to 12 bits
0131417

1111 off off is 14-bit offset

TRM architecture

343

Figure from: Niklaus Wirth, Experiments in Computer System Design, Technical Report, August 2010

http://www.inf.ethz.ch/personal/wirth/Articles/FPGA-relatedWork/ComputerSystemDesign.pdf

http://www.inf.ethz.ch/personal/wirth/Articles/FPGA-relatedWork/ComputerSystemDesign.pdf

Variants of TRM

 FTRM

 includes floating point unit

 VTRM (Master Thesis Dan Tecu)

 includes a vector processing unit

 supports 8 x 8-word registers

 available with / without FP unit

 TRM with software-configurable instruction width (Master Thesis Stefan Koster,

2015)

344

First Experiment: TRM12
A Multicore Processor Architecture on FPGA

345

Column 0

Column 1

Column 2

Column 3

H0

H1

H2
H3

C0

inbound arbiter
outbound arbiter

inbound arbiter
outbound arbiter

inbound arbiter
outbound arbiter

inbound arbiter

outbound arbiter

N0

C7

N1

N2

C2

N6

N7

N8

C6

C1

C8

N3

N4

N5

N9

N10

N11

C5 C11

C4

C3

C10

C9

RS232TR

Ci
Ni

: processor core : network controller RS232TR : RS232 transmitter receiver

Timer

LCD

LEDs

DDR2

•12 RISC Cores
(two stage
pipelined at
116MHz)

• Message
passing
architecture

•Bus based on-
chip interconnect

• On-chip Memory
controller

Ling Liu, A 12-Core-Processor Implementation on FPGA, ETH Technical Report, October 2009

ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/6xx/646.pdf

Interface to network and I/O

 TRM processor connected to a network controller („NetNode“)

 TRM core 11 connected to RS232 controller, a 2-line LCD

controller, a timer and 8 LEDs

 TRM processor core 6 connected to 512 MB DDR2 controller

 Netnodes and RS232 controller treated as I/O port to the TRM

processor, communication with TRM core through 32-bit I/O bus

 I/O accessed via memory mapped I/O at fixed addresses

346
346

Problems with this approach

 Not scalable

 Huge resource consumption

 Little but existing contention

347

Second Experiment: Ring of 12 TRMs

node0 node1 node2 node3 node4 node5

node11 node10 node9 node8 node7 node6

TRM0 TRM1 TRM2 TRM3 TRM4 TRM5

TRM11 TRM10 TRM9 TRM8 TRM7 TRM6

T
R

M
R

in
g

RS232

T
R

M
R

in
g

T
R

M
R

in
g

T
R

M
R

in
g

T
R

M
R

in
g

T
R

M
R

in
g

T
R

M
R

in
g

T
R

M
R

in
g

T
R

M
R

in
g

T
R

M
R

in
g

T
R

M
R

in
g

T
R

M
R

in
g

0111
1110

0111
1110

0111
1110

0111
1110

0111
1110

0111
1110

0111
1110

0111
1110

0111
1110 0111

1110
0111
1110

0111
1110

Slide from Dr. Ling Liu‘s Lecture Series on Reconfigurable Computing
348

>trash

RingNode

RB SB

fromRing toRing

statuswreqinDataoutDatardreq

n-bit link

slot

receiving

sending

TRM

TRMRingChannel

ioadr outbus iord iowr inbus

dataToTRMdataFromTRM

dataFromRN statusOfRN

Slide from Dr. Ling Liu‘s Lecture Series on Reconfigurable Computing

Connection TRM / Ring

TRM

Adapter

Ring

• Ring interconnect
very simple

• Small router

• Predictable latency

349

Problems with this approach

 Not scalable without huge loss of performance

 Large delays

350

4.2 ACTIVE CELLS

Programming Model

Case Studies

351

Software / Hardware Co-design
Vision: Custom System on Button Push

System
design as
high-level
program
code

Electronic
circuits

Computing model

Programming
Language

Compiler,
Synthesizer,

Hardware Library,

Simulator

Programmable
Hardware

(FPGA)

352

System specification, HW/SW
partitioning

Program
microcontroller in

C/C++

Program
system specific

hardware in HDL

Compilation Synthesis

Microcontroller + machine code +
specific hardware (eg. DSP)

Traditional HW/SW co-
design for embedded

systems

Traditional HW/SW co-design

One Program

One Toolchain

System on FPGA

Active Cells approach for
embedded systems

development

Goal

353

Software  Hardware Map

channel

cell

fifo

354

Consequences of the approach

 No global memory

 No processor sharing

 No pecularities of specific processor

 No predefined topology (NoC)

 No interrupts

 No operating system

355

Active Cells Computing Model

 Distributed system in the small

 Computation units: "Cells"

 Different parallelism levels addressed by

 Communication Structure (Pipelining, Parallel Execution)

 Cell Capabilities (Vector Computing, Simultaneous Execution)

 Inspired by

 Kahn Process Networks

 Dataflow Programming

 CSP

 ..

356

Active Cell Components

 Active Cell

 Object with private state space

 Integrated control thread(s)

 Connected via channels

 Cell Net

 Network of communication cells

357

Active Cells
 Scope and environment for a running isolated process.

 Cells do not immediately share memory

 Defined as types with port parameters

358

type

Adder = cell (in1, in2: port in; result: port out);

var summand1, summand2: integer;

begin

in1 ? summand1;

in2 ? summand2;

result ! summand1 + summand2

end Adder;

communication ports

blocking receive

non-blocking send

(Adder)

result

in1 in2

Cell Constructors

 Constructors to parameterize cells during allocation time

359

type

Filter = cell (in: port in; result: port out);

var ...; filterLength: integer;

procedure & Init(filterLength: integer)

begin self.filterLength := filterLength

end Init;

begin

(* ... filter action ... *)

end Filter;

var filter: Filter;
begin

.... new(filter, 32); (* initialization parameter filterlength = 32 *)

constructor

Further Configurations:Cell Capabilities

 Cells can be parametrized further, being provided with further capabilities or non-default values.

type

Filter = cell {Vector, DataMemory(2048), DDR2}
(in: port in (64); result: port out);

var ...

begin

(* ... filter action ... *)

end Filter;

....

Cell is a VectorTRM with 2k
of Data Memory and has
access to DDR2 memory

This port is implemented
with a (bit-)width of 64

360

Engine Cell Made From Hardware
 Special cells are provided as prefabricated hardware components (Engines).

361

type

Convolver2d= cell {Engine}
(in: port in (64); result: port out);

end Convolver2d;

Hierarchic Composition: Cell Nets
 Cellnets consist of a set of cells that can be connected over their ports.

 Allocation of cells: new statement

 Connection of cells: connect statement

 Cellnets can provide ports, ports of cells can be delegated to the ports of the
net

 Delegation of cells: delegate statement

 Terminal (or closed) Cellnets* can be deployed to hardware

362*i.e. Cellnets without ports

Terminal Cellnet Example

363

cellnet Example;

import RS232;

type

UserInterface = cell {RS232}(out1, out2: port out; in:
port in)
(*...*) end UserInterface;

Adder = cell(in1, in2: port in; out: port out)
(* ... *) end Adder;

var interface: UserInterface; adder: Adder

begin

new(interface);

new(adder);

connect(interface.out1, adder.in1);

connect(interface.out2, adder.in2);

connect(adder.result, interface.in);

end Example.

adder

(Adder)

result

in1 in2

interface

(User
Interface)

out1 out2

in

RS232

Hierarchic Composition Example

364

module SimpleCells

import RS232;

type

Adder = cell (in1, in2: port in; result: port out)
(* ... *) end Adder;

Multiplier = cell (in1, in2: port in; result: port out)
(* ... *) end Adder;

ScalarProduct*= cellnet (vx,vy,xw,xy: port in; result: port out)

var adder: Adder; multiplier1, multiplier2: Multiplier;

begin

new(mul1); new(mul2); new(adder);

delegate(vx, mul.in1); delegate(wx, mul1.in2);

delegate(vy, mul2.in1); delegate(wy, mul2.in2);

connect(mul1.result, adder.in1); connect(mul2.result, adder.in2);

delegate(result, adder.result)

end ScalarProduct;

end SimpleCells

port
delegation

port
delegation

Example of a wired Cellnet
cellnet Test;

import SimpleCells, RS232;

type

Norm*=cellnet (vX,vY: port in; result: port out)

type

Dup*=cell(in: port in; out1,out2: port out)

var val: LONGINT;

begin

loop in ? val; out1 ! val; out2 ! val end

end Dup;

var s: SimpleCells.ScalarProduct2d; dup1, dup2: Dup;

begin

new(s); new(dup1); new (dup2);

connect (dup1.out1,s.vX); connect(dup1.out2,s.wX);

connect(dup2.out1,s.vY); connect(dup2.out2,s.wY);

delegate(vX,dup1.in);delegate(vY,dup2.in);

delegate(result,s.result);

end Norm;

s

(SimpleCells.
ScalarProduct)

dup1

(Norm.Dup)

dup2

(Norm.Dup
)

in

out1 out2

in

out1 out2

vX wx vY wY

result

norm(Norm)
vX vY

result

365

Flattening

Calculator*=cell {RS232} (in: port in;
outX,outY: port out)

var result: longint; vX,vY,wX,wY: longint;
begin

loop
RS232.ReceiveInteger(vX);
RS232.ReceiveInteger(vY);
send (outX,vX); send(outY,vY);
receive (in,result);
RS232.SendInteger(result);

end;
end Calculator;

var calculator: Calculator; norm:Norm;
begin

new(calculator); new(norm);
connect(calculator.outX,norm.vX);
connect(calculator.outY,norm.vY);
connect(norm.result,calculator.in);

end Test.

s

(SimpleCells.
ScalarProduct)

dup1

(Norm.Dup)

dup2

(Norm.Dup
)

in

out1 out2

in

out1 out2

vX wx vY wY

result

norm(Norm)
vX vY

result

calculator
(Calculator)

in

outYoutX

norm.s.adder

(Adder)

result

in1 in2

norm.s.mul1

(Multiplier)

result

in1 in2

norm.s.mul2

(Multiplier)

result

in1 in2

norm.dup1

(Norm.Dup)

norm.dup2

(Norm.Dup)

in

out1 out2

in

out1 out2

calculator
(Calculator)

in

outYoutX

RS232

Core1

Core2 Core3

Core4

Core6

Core5

366

Hybrid Compilation

Code body Role Compilation method

Cell (Softcore) Program logic Software Compilation

Cell (Engine) Computation unit Hardware Generation

Cell Net Architecture Hardware Compilation

367

cellnet N;

type A=cell(pi: port in; po: port out);
var x: integer;
begin
… pi ? x; … po ! x; …
end A;

var a,b: A;
begin
… connect(a.po, b.pi)
end N.

Automated Mapping to FPGA

368

HLL
Program source

Hybrid Compiler
Frontend

Intermediate
Code

HDL
Hardware

Description

Runtime Library
Hardware

Library

fast lane

Bit
Stream

Hybrid Compiler
Backend

Hardware
Synthesis

Hardware Library

Computation Components

• General purpose minimal
machine: TRM, FTRM

• Vector machine: VTRM

• MAC, Filters etc.

Communication Components

• FIFOs

• 32 * 128

• 512 * 128

• 32, 64, 128, 1k * 32

Storage Components

• DDR2 controller

• configurable BRAMs

• CF controller

I/O Components

• UART controller

• LCD, LED controller

• SPI, I2C controller

• VGA, DVI controller

369

TRM1

TRM2

TRM9

TRM10 TRM11 TRM12

FIFO1

FIFO8

FIFO9

FIFO16

FIFO17 FIFO18

FIFO19

FIFO20

FIFO33

FIFO34

UART

controller CF

controller

LCD

controller

Virtex-5LX50T FPGA

Xilinx ML505 board

RS232

CF

LCD

ECG

Sensor

·

·

·

·

·

·

Case Study 1: ECG
Focus: Resources and Power

Real-time

ECG Monitor
Signal
input

Wave
proc_1

QRS
detect

HRV
analysis

Disease
classifier

Wave
proc_2

Wave
proc_8

ECG

bitstream

out

stream

370

Resources

 ECG Monitor*

 Maximum number of TRMs in communication chain

371

#TRMs #LUTs #BRAMs #DSPs TRM load

12 13859
(48%)

52
(86%)

12
(25%)

<5%
@116 MHz

FPGA #TRMs #LUTs #BRAMs #DSPs

Virtex-5 30 27692 (96%) 60
(100%)

30
(62%)

Virtex 6 500

*8 physical channels @ 500 Hz sampling frequency

implemented on Virtex 5 371

Comparative Power Usage

 Preconfigured FPGA (#TRMs, IM/DM, I/O, Interconnect fixed)
versus fully configurable FPGA (Active Cells)

System Static
Power (W)

Dynamic Power
(W)

Preconfigured
("TRM12")

3.44 0.59

Dynamically
configured

0.5 0.58

86% saving!

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

Core 6

Core 7

Core 8

Core 9

Core 10

Core 11

Sign
al

inpu

t

Wave

proc_

1

QR
S

det

ect

HRV
analysis

Disease
classifier

Wave

proc_
2

Wave

proc_
8

372

Case Study 2: Non-Invasive Continuous Blood Pressure Monitor
Focus: Development Cycle Time

A2 Host OS with GUI on PC
Sensor control and
medical algorithms on
Spartan 6 FPGA

Sensors and
Motors
on Bracelet

Project
Results

373

Medical Monitor Network On Chip

Dominated by TRM processors. Feedback driven.

374
374

Development Cycle Times

Step Medical
Monitor

OCT
(full)

Software Compilation 4s 2s

Hardware
Implementation

20 min 20 min

Stream Patching (all) 2 min -

Stream Patching (typical) 12 s -

Deployment 11s 16s

sporadic often
375

375

Case Study 3: Optical Coherence Tomography
Focus: Performance

A(λi) = A(1/fi)

f(z)

z-Axis Processing

1. Non uniform sampling

A(λi)  A(f i)

2. Dispersion compensation

3. (Inverse) FFT

… for many lines x in a row (2d)

… and many rows y in a column (3d)

~

z
x

y 376 376

A component of OCT image processing
Dispersion Compensation

Dominated by Engines. Dataflow driven.

377

Performance and Resource Usage

Medical Monitor Dispersion
Compensation

OCT

Architecture Spartan 6
XC6SLX75

Zynq 7000
XC7Z020

Zynq 7000
XC7Z020

Resources 28% Slice LUTs,
4% Slice Registers
80% BRAMs
24% DSPs

11% Slice LUTs,
6% Slice Registers
7% BRAMs
15% DSPs
1 ARM Cortex A9

17% Slice LUTS
8% Slice Registers
22% BRAMs
31% DSPs
1 ARM Cortex A9

Clock Rate 58 MHz 118 MHz 50 MHz

Performance -- 8.3 GFPOps*
up to 32 GFPops**

4.3 GFPOps*

Data Bandwidth 1.25 Mbit /s (in)
23 kB/s (out)

236 MWords/s (in)
118 MWords/s (out)

50 MWords/s (in)
50 MWords/s (out)

Power ~2W ~5W ~5W

** Fixed point operations, 32bit

* when instantiated 4 times
378

Conclusion

ActiveCells: Computing model and tool-chain for emerging configurable
computing

 Configurable interconnect Simple Computing, Power Saving

 Hybrid compilation Decreased Time to Market

 Embedding of task engines High Performance

379

