
Queue Data Structures

299

Node Node

Item

Queue first last

processors hazard
first/last

hazard
next

pooled
first/last

pooled
next

hazard
first/last

hazard
next

pooled
first/last

pooled
next

Node

…

#processors

for each queue

global (once!)

hazard
pointers

released
pointers

Marking Hazarduous
PROCEDURE Access (VAR node, reference: Node; pointer: SIZE);
VAR value: Node; index: SIZE;
BEGIN {UNCOOPERATIVE, UNCHECKED}

index := Processors.GetCurrentIndex ();
LOOP

processors[index].hazard[pointer] := node;
value := CAS (reference, NIL, NIL);
IF value = node THEN EXIT END;
node := value;

END;
END Access;

PROCEDURE Discard (pointer: SIZE);
BEGIN {UNCOOPERATIVE, UNCHECKED}

processors[Processors.GetCurrentIndex ()].hazard[pointer] := NIL;
END Discard;

300

guarantee: no change to reference
after node was set hazarduous

Node Reuse

PROCEDURE Acquire (VAR node {UNTRACED}: Node): BOOLEAN;

VAR index := 0: SIZE;

BEGIN {UNCOOPERATIVE, UNCHECKED}

WHILE (node # NIL) & (index # Processors.Maximum) DO

IF node = processors[index].hazard[First] THEN

Swap (processors[index].pooled[First], node); index := 0;

ELSIF node = processors[index].hazard[Next] THEN

Swap (processors[index].pooled[Next], node); index := 0;

ELSE

INC (index)

END;

END;

RETURN node # NIL;

END Acquire;

301

wait free algorithm to find non-
hazarduous node for reuse (if any)

Lock-Free Enqueue with Node Reuse

302

reuse

mark last hazarduous

unmark last

node := item.node;

IF ~Acquire (node) THEN

NEW (node);

END;

node.next := NIL; node.item := item;

LOOP

last := CAS (queue.last, NIL, NIL);

Access (last, queue.last, Last);

next := CAS (last.next, NIL, node);

IF next = NIL THEN EXIT END;

IF CAS (queue.last, last, next) # last THEN CPU.Backoff END;

END;

ASSERT (CAS (queue.last, last, node) # NIL, Diagnostics.InvalidQueue);

Discard (Last);

Lock-Free Dequeue with Node Reuse

303

mark first hazarduous

unmark first and next

unmark first and next

mark next hazarduous

unmark next

LOOP

first := CAS (queue.first, NIL, NIL);

Access (first, queue.first, First);

next := CAS (first.next, NIL, NIL);

Access (next, first.next, Next);

IF next = NIL THEN

item := NIL; Discard (First); Discard (Next); RETURN FALSE

END;

last := CAS (queue.last, first, next);

item := next.item;

IF CAS (queue.first, first, next) = first THEN EXIT END;

Discard (Next); CPU.Backoff;

END;

first.item := NIL; first.next := first; item.node := first;

Discard (First); Discard (Next); RETURN TRUE;

Scheduling -- Activities

304

TYPE Activity* = OBJECT {DISPOSABLE} (Queues.Item)

VAR

END Activity;

(cf. Activities.Mod)

accessed via
activity register

access to current processor

stack management

quantum and scheduling

active object

Lock-free scheduling

Use non-blocking Queues and discard coarser granular locking.

Problem: Finest granular protection makes races possible that did not
occur previously:

current := GetCurrentTask()

next := Dequeue(readyqueue)

Enqueue(current, readyqueue)

SwitchTo(next)

305

Other thread can dequeue
and run (on the stack of)
the currently executing
thread!

Task Switch Finalizer

PROCEDURE Switch-;

VAR currentActivity {UNTRACED}, nextActivity: Activity;

BEGIN {UNCOOPERATIVE, SAFE}

currentActivity := SYSTEM.GetActivity ()(Activity);

IF Select (nextActivity, currentActivity.priority) THEN

SwitchTo (nextActivity, Enqueue, ADDRESS OF readyQueue[currentActivity.priority]);

FinalizeSwitch;

ELSE

currentActivity.quantum := Quantum;

END;

END Switch;

306

Enqueue runs on
new thread

Calls finalizer of
previous thread

Stack Management

Stacks organized as Heap Blocks.

Stack check instrumented at beginning of each procedure.

Stack expansion possibilities

1.

2.

307

old new

old

copy

old old new

link

Copying stack

Must keep track of all pointers from stack to stack

Requires book-keeping of

 call-by-reference parameters

 open arrays

 records

 unsafe pointer on stack

 e.g. file buffers

turned out to be prohibitively expensive

308

Linked Stack

 Instrumented call to ExpandStack

 End of current stack segment pointer included in process descriptor

 Link stacks on demand with new stack segment

 Return from stack segment inserted into call chain backlinks

309

Linked Stacks

310

parameters

pc
fp
proc desc

var

par

pc (caller of A.B)
fp
pdesc of A.B  pdesc of ReturnToStackSegment

var

par

pc (caller of expandstack)
fp  fp(new)), return new sp
pdesc

var

caller of
A.B

A.B
becomes frame of
ReturnToStackSegment

ExpandStack

par (copy)

pc (ReturnToStackSegment)
fp
pdesc of A.B

var

A.B

Interrupts
First level IRQ handler registration must be made available by non-portable CPU
module
previous := CPU.InstallInterrupt- (handler, index);

Second level IRQ handling with activities: Wait for interrupt

Interrupts.Await(interrupt);

First level IRQ code affecting scheduler queues runs on a virtual processor

PROCEDURE Handle (index: SIZE);
BEGIN {UNCOOPERATIVE, UNCHECKED}

IF previousHandlers[index] # NIL THEN previousHandlers[index] (index) END;

Activities.CallVirtual(NotifyNext,
ADDRESS OF awaitingQueues[index],processors[index]);

END Handle;

311

Interrupts (RPI)
PROCEDURE Sleep- (milliseconds: LONGINT);
VAR interrupt: Interrupts.Interrupt;
BEGIN {UNCOOPERATIVE, UNCHECKED}

IF CAS (timerInterruptInstalled, 0, 1) = 0 THEN
(* setup timer irq on hardware *)

END;
Interrupts.Install (interrupt, CPU.IRQ); INC (milliseconds, clock);
WHILE clock - milliseconds < 0 DO Interrupts.Await (interrupt) END;

END Sleep;

PROCEDURE HandleTimer (index: SIZE);
BEGIN {UNCOOPERATIVE, UNCHECKED}

IF previousTimerHandler # NIL THEN previousTimerHandler (index) END;
IF 1 IN CPU.ReadMask (CPU.STCS) THEN

(* re-enable timer irq on hardware *)
END;

END HandleTimer;

312

Lock-Free Memory Management
 Allocation / De-allocation

implemented using only lock-free
algorithms

 Buddy system with independent
(lock-free) queues for the different
block sizes

 Lock-free mark-sweep garbage
collector

• Several garbage collectors can run in
parallel

Lock-free Garbage Collector

 Mark & Sweep

 Precise

 Optional

 Incremental

 Concurrent

 Parallel

314

Synchronisation

315

Mutators

Collectors

M1 M2 M3

C1 C2 C3

Mark

Traverse

Write
Barrier

Per ObjectPer ObjectPer Object

Data Structures

316

Mark Bit

Marklist

Watchlist

Root Set

Global

Cycle Count

Marked First

Watched First

Global References

Per Object

Cycle Count

Next Marked

Next Watched

Local Refcount

Example

317

Root Set

Marked List

Watched List

A2

C2 D2

E1 G1 F1

Cycle Count = 2

Achieving (Almost) Complete Portability

Lock-free A2 kernel written exclusively in a high-level language

 No timer interrupt required  scheduler hardware independent

 No virtual memory  no separate address spaces  everything runs in
user mode, all the time

 Hardware-dependent functions (CAS) are pushed into the language

 "Almost":
we need a minimal stub written in assembly code to initialize memory
mappings and initialize all processors

How well does it perform? (Simplicity, Portability)

Component Lines of Code (Kernel)

Interrupt Handling 301

Memory Management (including GC!) 352

Modules 82

Multiprocessing 213

Runtime Support 250

Scheduler 540

Total 1738 (28% of A2 orig)

How well does it perform? (Scheduler)

thread creation time thread switching time

Native

A2

Linux

How well does it perform? (Scheduler)

application speedup (matrix multiplication)
in the presence of locks

Native

A2
Linux

Windows

average cost of locking operations

Native

A2

Linux

Windows

How well does it perform? (Scheduler)

thread synchronization

Native

A2

Linux

Windows

How well does it perform? (Memory Manager)

memory allocation of 1’000 byte blocks

Native

Linux

Windows

memory allocation of 10’000 byte blocks

Windows

Linux

Native

How well does it perform? (Memory Manager)

garbage collection latency

Java (Parallel)

Java (CMS)

Java (G1)

Java (Serial)

A2

Native

Lessons Learned

Lock-free programming: new kind of problems in comparison to lock-
based programming:

• Atomic update of several pointers / values impossible, leading to new
kind of problems and solutions, such as threads that help each other in
order to guarantee global progress

• ABA problem (which in many cases disappears with a Garbage
Collector)

Parallel Programming – SS 2015 325

Conclusion

 Lock-free Runtime

 Consequent use of lock-free algorithms in the kernel

 Synchronization primitives (for applications) implemented on top

 Efficient unbounded lock-free queues

 Parallel and lock-free memory management with garbage collection

 A completely lock-free runtime is feasible

 Exploit guarantees of cooperative multitasking

 Performance is good considering
- non-optimizing compiler
- no load-balancing, no distributed run-queues

