
1.5. I/O

128

Serial Communication

129

Simplex Half-Duplex Duplex

Serial Communication

130

Master Slave

Master Slave

Slave

Master-Slave

Master-Multi-Slave

Master

Slave

Slave

Slave

(Multi-)Master
Multi-Slave

Serial Communication

131

Master

SlaveMaster

Slave

Synchronous

Asynchronous

Some Bus Types
Wires
(+Gnd)

Directionality Synchrony Distance
typ.

Speed typ. Remarks

RS-232 3/5 –8 full duplex asynchronous
+synchronous

10 m 115kbps /
1Mbps

Point-to-Point
Interference prone

RS-485 3/5 half/full duplex asynchronous 1000 m Mbps Differential Signalling

SPI [aka SSP,
Microwire]

4 full duplex synchronous few cm 10 Mbps Master-Multi-Slave
with Slave select

I2C
[SMBus]

2 half duplex synchronous few m 100kbps-
3Mbps

Addressed Multi-Master

1-Wire 1 half duplex time-slot
based,
synchronous

tens of m 15kbps/
125kbps

Master-Multi-Slave
Parasitic power

USB 2.0 3/5 half-duplex asynchronous few m 12Mbits/
480 MBits

isochronous/ bulk/
interrupt transfers

USB 3.0 5 full-duplex asynchronous few m 5/10 GBits

132

SPI

SCLK: Serial bit-rate Clock

MOSI: Master data Output, Slave data Input

MISO: Master data Input, Slave data Output

SS: Slave Select

133

SCLK

MOSI

MISO

SS

SS

Master Slaveshift
register

shift
register

Slaveshift
register

SPI

 Four wire serial bus invented / named by Motorola

 Serial connection between two or more devices (microprocessors, D/A converters)

 Configurations

 1 Master, 1 Slave (single slave mode)

 1 Master, N Slaves (multiple slave mode)

 Synchronous bidirectional data transfer

 Data transfer initiated by Master

 Bandwidth some KBits/s up to several MBits/s

 Simple implementation in software

 Used in a variety of devices, such as memory (flash, EEPROM), LCD displays and in all
MMC / SD cards

134

Communication

135

Bit[7]

Bit[7] Bit[6] Bit[5] Bit[1] Bit[0]

Bit[1] Bit[0]Bit[6] Bit[5]

End of transfer data state

undefinedundefined

MSB 8 bits LSB

SCLK

SS

MOSI

MISO

sampling

Polarity

136

SCLK

Bit[7] Bit[6] Bit[5] Bit[1] Bit[0] End of transfer data state

Polarity = 0

Polarity = 1

Phase

137

SCLK

Bit[7] Bit[6] Bit[5] Bit[1] Bit[0] End of transfer data state

Phase = 0

Phase = 1

SPI – Data Transfer

 Master configures the clock

 Master selects slave (SS), followed by waiting period (if required by slave)

 Full duplex data transmission in each cycle

 Master sends bit over MOSI line, slave reads bit

 Slave sends bit over MISO line, master reads bit

 Two shift registers, one in slave, one in master for transfer

 When no data is to be transmitted any more, master stops toggling the clock

 No acknowledgement mechanism

 No device interrupts

138

Programming SPI

1. Bit-Banging

139

Master

GPIO Pins

Programming SPI

1. Bit-Banging

140

FOR i := 7 TO 0 BY -1 DO
IF ODD(ASH(data,-i)) THEN
Platform.WriteBits(Platform.GPSET0, MOSI);

ELSE
Platform.WriteBits(Platform.GPCLR0, MOSI);

END;
Kernel.MicroWait(HalfClock);
Platform.WriteBits(Platform.GPSET0, CLOCK);
Kernel.MicroWait(HalfClock);
Platform.WriteBits(Platform.GPCLR0, CLOCK);

END;

Programming SPI

2. Using a Controller

141

Master

SPI Controller

Programming SPI

2. Using a Controller

142

(* start transition *)
Platform.SetBits(Platform.SPI_CS, {TA});

REPEAT UNTIL TXD IN Platform.ReadBits(Platform.SPI_CS);

Platform.WriteWord(Platform.SPI_FIFO, data);
junk := Platform.ReadWord(Platform.SPI_FIFO);

REPEAT UNTIL DONE IN Platform.ReadBits(Platform.SPI_CS);

(* transfer inactive *)
Platform.ClearBits(Platform.SPI_CS, {TA});

BCM 2835 Registers

143

CS -- Control and Status
Chip Select
FIFO Status
Transfer Progress
Interrupts
Polarity & Phase

FIFO Register
Data

Read:
RX Fifo

Write:
TX Fifo

Other
DMA Control
Special Mode Control

CLK
Clock Divider

MAX7219 8-Digit LED Display Driver

144

Max7219 Specification, p.5

MAX7219 8-Digit LED Display Driver

145

Max7219 Specification, p.6

MMC and SD Cards

 Low cost memory system for persistent data on „solid state mass
storage“ (for example flash memory cards)

 Separate bus system

 1 master, N slaves (cards)

 typically 1 master for one card

 Serial & synchronous transfer of commands and data

 Sequential read/ write

 Block read/ write

146

Power
Supply

Bus
Master

Card

(I/O)

Card

(ROM)

Card

(Flash)

Multi Media Card Bus

MMC System Interaction

147

CMD

DAT

Host (BCM 2835)

EMMC

Controller

G
P

IO
 P

in
s

CPU
Core

SD Card

Clock for
synchronous

transfer

Memory

SD Card
Interface

Controller

S
D

 C
ar

d
 P

in
s

CLK

Bidirectional
Data Channels

Command and
Response
Channel

SD Card

148

VDD
DAT2

DAT3
CMD DAT0CLK

DAT1

OCR[31:0]

CID[127:0]

RCA[15:0]

DSR[15:0]

CSD[127:0]

SCR[63:0]

SSR[511:0]

CSR[31:0]

Card Interface
Controller

Memory Core Interface

Memory Core

Po
w

er
 O

n
 D

et
ec

ti
o

n

reset

reset

SD Physical Layer Spec. P. 12

SD Mode vs SPI Mode

149

(Micro) SD Card HeaderSPI-MODE

CS DI CLKVDD GND DO

Dat2
Dat3

CMD CLK
VDD GND

Dat0
Dat1

Block Read/ Write Operation

 Read

 Write

150

command response

data block crc data block crc data block crc

command response

block read operation

multiple block read
data stop operation

from host to card from card to host data from card to host stop command

stops data transfer

CMD

DAT[0-7]

command response

data block crc data block crc

command response

block write operation

multiple block write

data stop operation

from host to card from card to host
data from host to card stop command

stops data transfer

CMD

DAT[0-7] busy busy

busy from card to host

SD Physical Layer Spec. P. 6ff

Packet Formats
Command and Response

 Command
Token

 Response
Tokens

151

0 1 Content CRC 1

0 0 Content CRC 1

0 0 Content = CID or CSD CRC 1

48 bits
start bit,

always 0

transmitter
bit, 1=host

Command content: command and address information of

parameter, protected by 7 bit CRC checksum

end bit,

always 1

Response content, mirrored command and status

information (R1 response), OCR register (R3 respone) or

RCA (R4 and R5), protected by 7-bit checksum

136 bits

transmitter
bit, 0=client

Response types

R1, R3. R4, R5 *

Response type R2 *

Example: MMC Memory Card State Diagram

152

Idle State

Ready State

Identification
State

Stand-by
State

Wait IRQ
State

Inactive StateCMD1

CMD2

CMD3

CMD40

CMD0

CMD15

from all states

any start bit detected on the bus

card identification mode

data transfer mode

from all states except

sleep state in data transfer more

non compatible
voltage range cards

card wins bus

card looses bus

interrupt mode

go idle state

send op cond

all send CID

set relative adr

set irq mode

(boot mode)

Power
on

card busy

or missing voltage range

RS232

153

Terminal [DTE]

UART

Data Set [DCE]
(Modem)

UART

TxD

RxD

GND

if Hardware Flow Control

RTS/RTR

CTS

+

RS232 Signalling

154

[+3v , +15 v]

0 v

[-3v ,-15 v]

8 data bits
(+parity, if applicable)

1-2 stop bit(s)
start bit
starts the local clock

Time

Sampling in the middle of bit intervals

LSB MSB

UART

Universal Asynchronous Receiver/ Transmitter

 Serial transmission of individual bits in byte

packets (lowest significant bit first)

 Configurable

 Number of data bits per byte: 5, 6, 7, 8

 Parity: odd, even, none

 Number of stop bits: 1, 1.5, 2

 Transfer rate in bps (bits per second): 75, 110, 300,... ,

115200

155

source: Wikipedia

Implementation

156

2.

UART Driver UART

Receiver buffer

Sender bufferApplication

Receive

Send

in out

IRQ

Port

out

in

2.

1.

IRQ
1.

Receiver FIFO

Sender FIFO

Receiver
Line

Sender
Line

Port

Trigger
level

reached

Hardware

Producer Consumer Implementation

Assumption: one consumer and one producer

Producer

Consumer

157

WHILE (in+1) MOD bufferSize = out DO END;

buffer[in] := produced;

in = (in+1) MOD bufferSize;

WHILE in = out DO END;

consumed := buffer[out];

out := (out+1) MOD bufferSize;

B
u

fferout

in

Driver

 Method Send

 Put data in sender buffer;
Update in (sender)

 Method Receive

 Get data from receiver buffer;
Update out (receiver)

 Sender-Interrupt

 Shift data from sender buffer to sender FIFO;
Update out (sender)

 Receiver Interrupt

 Shift data from receiver FIFO to receiver buffer;
Update in (receiver)

158

1.6. FILE SYSTEM

159

not covered in class

Modular Structure

160

Flat name space

B-tree representation

node block

Sequential files

Files as byte sequences

Riders for reading/writing

Buffering

Block Sequences

Block allocation

Read/ write block

Files

FileDir

BlockDevice

not covered in class

API

 Abstract data types File, Rider

 Open file (new or via name)

 Close file

 Position rider in file

 Read next byte via rider

 Write next byte via rider

161

File* = POINTER TO FileDesc;
FileDesc* = RECORD … END;

Rider* = RECORD
eof*: BOOLEAN;
…
hint*: Buffer;
file*: File;

END;

not covered in class

Block Structure of Files

162

file
data

0
1

127
1K

(3528 B)

index
entries

index
blocks

data
blocks

directory

4B

dddd

i1i1i1i1i1i1i1i1

i2
1K

ddddddd

ddddddd

ddddddd

1K

128 x 4K= 1MB

1K x 4K= 4MB

1K x 4M=
4GB

1K

128

header
mark
name
length
time

not covered in class

Internal Data Structure

Rider for accessing files

 Positioning

 Sequential reading

 Sequential writing

Buffer

caching pages around the current
focus to minimize disk accesses

163

r
f

f

b b

rr

Buffer
File
handle

Rider

hint

not covered in class

Read from Buffered Rider
PROCEDURE Read*(VAR r: Rider; VAR x: CHAR);

VAR buf: Buffer; f: File;

BEGIN

buf := r.hint(Buffer); f := r.file;

IF r.apos # buf.apos THEN

buf := GetBuf(f, r.apos); r.hint := buf

END;

IF r.bpos < buf.lim THEN

x := buf.data.B[r.bpos]; INC(r.bpos)

ELSIF r.apos < f.aleng THEN

Search buffer in file buffers.

If no buffer at r.apos then use r.hint, flush if modified and read

x := buf.data.B[0]; r.bpos := 1

ELSE x := 0X; r.eof := TRUE

END

END Read;

164

not covered in class

Block Allocation Table

165

0 8 16

startup

scavenging

allocate

block-no.

00011100101000100101010001111001

00001100101000100101010001111001

24

0 8 16 243

3

11111111111111111111111111111111 free

allocated

not covered in class

