
System Construction

Autumn Semester 2015

Felix Friedrich

1

Goals

 Competence in building custom system software from scratch

 Understanding of „how it really works“ behind the scenes across all
levels

 Knowledge of the approach of fully managed lean systems

A lot of this course is about detail.
A lot of this course is about bare metal programming.

2

Course Concept

 Discussing elaborated case studies

 In theory (lectures)

 and practice (hands-on lab)

 Learning by example vs. presenting topics

3

Prerequisite

 Knowledge corresponding to lectures
Systems Programming and/or Operating
Systems

 Do you know what a stack-frame is?

 Do you know how an interrupt works?

 Do you know the concept of virtual memory?

 Good reference for recapitulation:
Computer Systems – A Programmer's
Perspective

4

Links

 SVN repository

https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2015/shared

 Links on the course homepage

http://lec.inf.ethz.ch/syscon/2015

5

https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2015/shared
http://lec.inf.ethz.ch/syscon/2015

Background: Co-Design @ ETH

Lilith Ceres
x86 / IA64/ ARM

Emulations on
Unix / Linux

1980 1990 2000 2010

Modula Oberon ActiveOberon

Zonnon

+MathOberon

Oberon07

Medos Oberon Aos

HeliOs

A2 SoC

TRM
(FPGA)

Active
Cells

Languages (Pascal Family)

Operating / Runtime Systems

Hardware

RISC
(FPGA)

Minos LockFree
Kernel

6

Course Overview
Part1: Contemporary Hardware

Case Study 1. Minos: Embedded System
 Safety-critical and fault-tolerant monitoring system

 Originally invented for autopilot system for helicopters

 Topics: ARM Architecture, Cross-Development, Object Files and Module
Loading, Basic OS Core Tasks (IRQs, MMUs etc.), Minimal Single-Core
OS: Scheduling, Device Drivers, Compilation and Runtime Support.

 Now with hands-on lab on Raspberry Pi (2)new

7

Course Overview
Part1: Contemporary Hardware

Case Study 2. A2: Multiprocessor OS
 Universal operating system for symmetric multiprocessors (SMP)

 Based on the co-design of a
programming language (Active Oberon) and operating system (A2)

 Topics: Intel SMP Architecture, Multicore Operating System, Scheduling,
Synchronisation, Synchronous and Aysynchronous Context Switches, Priority
Handling, Memory Handling, Garbage Collection.

Case Study 2a: Lock-free Operating System Kernel
 With hands-on labs on x86ish hardware and Raspberry Pi

8

Course Overview
Part2: Custom Designed Systems

Case Study 3. RISC: Single-Processor System

 RISC single-processor system designed from scratch: hardware on FPGA

 Graphical workstation OS and compiler ("Project Oberon")

 Topics: building a system from scratch, Art of simplicity, Graphical OS, Processor
Design.

Case Study 4. Active Cells: Multi-Processor System

 Special purpose heterogeneous system on a chip (SoC)

 Massively parallel hard- and software architecture based on Message Passing

 Topics: Dataflow-Computing, Tiny Register Machine: Processor Design Principles,
Software-/Hardware Codesign, Hybrid Compilation, Hardware Synthesis

9

Organization

 Lecture Tuesday 13:15-15:00 (CAB G 57)
with a break around 14:00

 Exercise Lab Tuesday 15:00 – 17:00 (CAB G 56)
Guided, open lab, duration normally 2h
First exercise: today (15th September)

 Oral Examination in examination period after semester (15 minutes).
Prerequisite: knowledge from both course and lab

10

Design Decisions: Area of Conflict

11

simple /
undersized

sophisticated /
complex

tailored /
non-generic

universal /
overly generic

comprehensible /
simplicistic

elaborate /
incomprehensible

customizable /
inconvenient

feature rich /
predetermined

I am about here

Programming Model
Compiler
Language

Tools
System

optimized /
uneconomic

economic /
unoptimzed

1. CASE STUDY MINOS
Minimal Operating System

12

Focus Topics

 Hardware platform

 Cross development

 Simple modular OS

 Runtime Support

 Realtime task scheduling

 I/O (SPI, UART)*

 Filesystem (flash disk)

13

*Serial Peripheral Interface,
Universal Asynchronous Receiver Transmitter

1.1 HARDWARE
Learn to Know the Target Architecture

14

ARM Processor Architecture Family
 32 bit Reduced Instruction Set Computer architecture by ARM Holdings

 1st production 1985 (Acorn Risc Machine at 4MHz)

 ARM Ltd. today does not sell hardware but (licenses for) chip designs

 StrongARM

 by DEC & Advanced Risc Machines.

 XScale implementation by Intel (now Marvell) after DEC take over

 More than 90 percent of the sold mobile phones (since 2007) contain at least one
ARM processor (often more)*
[95% of smart phones, 80% of digital cameras and 35% of all electronic
devices*]

 Modular approach:
ARM families produced for different profiles, such as Application Profile, Realtime
Profile and Microcontroller / Low Cost Profile

15
*http://news.cnet.com/ARMed-for-the-living-room/2100-1006_3-6056729.html
*http://arm.com/about/company-profile/index.php

ARM Architecture Versions

16

Architecture Features

ARM v1-3 Cache from ARMv2a,

32-bit ISA in 26-bit address space

ARM v4 Pipeline, MMU,

32 bit ISA in 32 bit address space

ARM v4T 16-bit encoded

Thumb Instruction Set

ARM v5TE Enhanced DSP instructions,

in particular for audio processing

ARM v5TEJ Jazelle Technology extension to support Java acceleration

technology (documentation restricted)

ARM v6 SIMD instructions, Thumb 2, Multicore, Fast Context Switch

Extension

ARM v7 profiles: Cortex- A (applications), -R (real-time), -M

(microcontroller)

ARM v8 Supports 64-bit data / addressing (registers).

Assembly language overview available (more than 100 pages pure

instruction semantics)

[http://www.arm.com/products/processors/instruction-set-architectures/]

ARM Processor Families
very simplified & sparse

Architecture Product Line / Family

(Implementation)

Speed (MIPS)

ARMv1-ARMv3 ARM1-3, 6 4-28 (@8-33MHz)

ARMv3 ARM7 18-56 MHz

ARMv4T, ARMv5TEJ ARM7TDMI up to 60

ARMv4 StrongARM up to 200 (@200MHz)

ARMv4 ARM8 up to 84 (@72MHz)

ARMv4T ARM9TDMI 200 (@180MHz)

ARMv5TE(J) ARM9E 220(@200MHz)

ARMv5TE(J) ARM10E

ARMv5TE XScale up to 1000 @1.25GHz

ARMv6 ARM11 740

ARMv6, ARMv7, ARMv8 ARM Cortex up to 2000 (@>1GHz)

17

ARM Architecture Reference Manuals
describe

 ARM/Thumb instruction sets

 processor modes and states

 exception and interrupt model

 system programmer's model,
standard coprocessor interface

 memory model, memory ordering and memory management for different
potential implementations

 (optional) extensions like Floating Point, SIMD, Security, Virtualization ...

for example required for the implementation of assembler, disassembler,
compiler, linker and debugger and for the systems programmer.

18

ARMv5 Architecture Reference Manual

ARMv6-M Architecture Reference Manual

ARMv7-M Architecture Reference Manual

ARMv7-M Architecture Reference Manual

ARMv7-AR Architecture Reference Manual

ARMv8-A Architecture Reference Manual

ARM Technical System Reference Manuals

describe

 particular processor implementation
of an ARM architecture

 redundant information from the
Architecture manual (e.g. system control processor)

 additional processor implementation specifics
(e.g. cache sizes and cache handling, interrupt controller, generic timer)

usually required by a system's programmer

19

Cortex™-A7 MPCore™
Technical Reference Manual

System on Chip Implementation Manuals

describe

 particular implementation of a System on Chip

 address map:
physical addresses and
bit layout for the registers

 peripheral components / controllers,
such as Timers, Interrupt controller, GPIO, USB, SPI, DMA, PWM, UARTs

usually required by a system's programmer.

20

BCM2835 ARM Peripherals

ARM Instruction Set

consists of

 Data processing instructions

 Branch instructions

 Status register transfer instructions

 Load and Store instructions

 Generic Coprocessor instructions

 Exception generating instructions

21

Some Features
of the ARM Instruction Set

 32 bit instructions / many in one cycle / 3 operands

 Load / store architecture (no memory operands such as in x86)

ldr r11, [fp, #-8]

add r11, r11, #1 ?
str r11, [fp, #-8]

22

increment a
local variable

Some Features
of the ARM Instruction Set

 Index optimized instructions (such as pre-/post-indexed
addressing)

stmdb sp!,{fp,lr} ; store multiple decrease before and update sp

... ?

ldmia sp!,{fp,pc} ; load multiple decrease after and update sp

23

stack activation
frame

Some Features
of the ARM Instruction Set

 Predication: all instructions can be conditionally executed*

cmp r0, #0
swieq #0xa ?

24

null pointer
check

Some Features
of the ARM Instruction Set

Link Register

bl #0x0a0100070 ?

 Shift and rotate in instructions

add r11, fp, r11, lsl #2 ?

25

procedure call

r11 = fp + r11*4
e.g. array access

Some Features
of the ARM Instruction Set

 PC-relative addressing

ldr r0, [pc, #+24] ?

 Coprocessor access instructions

mrc p15, 0, r11, c6, c0, 0 ?

26

load a large
constant

setup the mmu

ARM Instruction Set
Encoding (ARM v5)

27

shiftable register

8 bit immediates with
even rotate

generic coprocessor
instructions

branches with 24 bit
offset

load / store with multiple
registers

load / store with
destination increment

conditional execution

undefined instruction:
user extensibility

From ARM Architecture Reference Manual

Thumb Instruction Set
ARM instruction set complemented by

 Thumb Instruction Set

 16-bit instructions, 2 operands

 eight GP registers accessible from most instructions

 subset in functionality of ARM instruction set

 targeted for density from C-code (~65% of ARM code size)

 Thumb2 Instruction Set

 extension of Thumb, adds 32 bit instructions to support almost all of ARM ISA
(different from ARM instruction set encoding!)

 design objective: ARM performance with Thumb density

28

Other Contemporary RISC Architectures
Examples

 MIPS (MIPS Technologies)

 Business model similar to that of ARM

 Architectures MIPS(I|…|V), MIPS(32|64), microMIPS(32|64)

 AVR (Atmel)

 Initially targeted towards microcontrollers

 Harvard Architecture designed and Implemented by Atmel

 Families: tinyAVR, megaAVR, AVR32

 AVR32: mixed 16-/32-bit encoding

 SPARC (Sun Microsystems)

 Available as open-source: e.g. LEON (FPGA)

 …

29

ARM Processor Modes

 ARM from v5 has (at least) seven basic operating modes

 Each mode has access to own stack and a different subset of registers

 Some operations can only be carried out in a privileged mode

30

Mode Description / Cause

Supervisor Reset / Software Interrupt

FIQ Fast Interrupt

IRQ Normal Interrupt

Abort Memory Access Violation

Undef Undefined Instruction

System Privileged Mode with same registers as in User Mode

User Regular Application Mode

p
ri

v
ile

g
e

d

e
x
c
e

p
tio

n
s

n
o

rm
a
l

e
x
e

c
u

tio
n

ARM Register Set

31

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13 SP
R14 LR
R15 PC

CPSR*

User/System

R8.FIQ
R9.FIQ
R10.FIQ
R11.FIQ
R12.FIQ
R13.FIQ SP
R14.FIQ LR

SPSR*.FIQ

FIQ

R13.SVC SP
R14.SVC LR

SPSR.SVC

SVC

R13.IRQ SP
R14.IRQ LR

SPSR.IRQ

IRQ

R13.UND SP
R14.UND LR

SPSR.UND

UND

R13.ABT SP
R14.ABT LR

SPSR.ABT

ABT

Shadowing

ARM has 37 registers, all 32-bits long

A subset is accessible in each mode

Register 13 is the Stack Pointer (by convention)

Register 14 is the Link Register**

Register 15 is the Program Counter (settable)

CPSR* is not immediately accessibleu
n
b
a
n
k
e
d

b
a
n
k
e
d

* current / saved processor status register, accessible via MSR / MRS instructions

** more than a convention: link register set as side effect of some instructions

Processor Status Register (PSR)

N Z C V Q J GE[3:0] IT cond E A I F T mode

31 28 27 24 23 20 19 16 15 10 9 8 7 6 5 4 0

Condition Codes

•N=Negative result from ALU

•Z=Zero result from ALU

•C=ALU operation Carried out *

•V=ALU operation overflowed

Mode Bits

• Specify processor mode

Other bits

• architecture 5TE(J) and later

• Q flag: sticky overflow flag for saturating instr.

• J flag: Jazelle state

• architecture 6 and later

• GE[0:3]: used by SIMD instructions

• E: controls endianess

• A: controls imprecise data aborts

• IT: controls conditional execution of Thumb2

T Bit

• T=0: Processor in ARM mode

• T=1: Processor in Thumb State

• Introduced in Architecture 4T

Interrupt Disable bits

• I=1: Disables IRQ

• F=1: Disables FIQ

* reverse cmp/sub meaning compared with x86 32

Typical procedure call on ARM
Caller: push parameters

use branch and link instruction. Stores
the PC of the next instruction into the
link register.

Callee: save link register and frame
pointer on stack and set new frame
pointer.

Execute procedure content

Reset stack pointer and restore frame
pointer and and jump back to caller
address.

Caller: cleanup parameters from stack

33

prev fp
lr

local
vars

parameters

(...) stack gro
w

s

...

bl #address

stmdb sp!, {fp, lr}
mov fp, sp

...

mov sp, fp
ldmia sp!, {fp, pc}

add sp, sp, #n
...

fp

Exceptions (General)

Exception = abrupt change in the control flow
as a response to some change in the
processor's state

 Interrupt - asynchronous event triggered by a
device signal

 Trap / Syscall - intentional exception

 Fault - error condition that a handler might be able
to correct

 Abort - error condition that cannot be corrected

34

Exception Handling

Involves close interaction between hardware and software.

Exception handling is similar to a procedure call with important
differences:

 processor prepares exception handling: save* part of the current
processor state before execution of the software exception handler

 assigned to each exception is an exception number, the exception
handler's code is accessible via some exception table that is
configurable by software

 exception handlers run in a different processor mode with complete
access to the system resources.

35* in special registers or on the stack – we will go into the details for some architectures

Exception Table on ARM

36

Type Mode Address* return link(type)**

Reset Supervisor 0x0 undef

Undefined Instruction Undefined 0x4 next instr

SWI Supervisor 0x8 next instr

Prefetch Abort Abort 0xC aborted instr +4

Data Abort Abort 0x10 aborted instr +8

Interrupt (IRQ) IRQ 0x18 next instr +4

Fast Interrupt (FIQ) FIRQ 0x1C next instr +4

* alternatively High Vector Address = 0xFFFF0000 + adr (configurable)

** different numbers in Thumb instruction mode

Context change, schematic

37

Regs

PSW*

Regs

PSW*

Memory

SP

SP

PC

PC

Before the interrupt In the interrupt handler

*Processor Status Word

Exception handling on ARM

38

Hardware action at entry (invoked by exception)
R14(exception_mode):= return link
SPSR(exception_mode) := CPSR
CPSR[4:0] := exception_mode number
CPSR[5] := 0 (* execute in ARM state *)
If exception_mode = Reset or FIQ then CPSR[6]=1 (* disable fast IRQ *)
CPSR[7]=1 (* disable normal interrupts *)
PC=exception vector address

H
ar

d
w

ar
e

So
ft

w
ar

e
H

W
STMDB SP!, {R0 .. R11, FP, LR} (* store all non-banked registers on stack *)

... (* exception handler *)

LDMIA SP! {R0..R11,FP,LR} (* read back all non-banked registers from stack*)

SUBS PC,LR, #ofs (* return from interrupt instruction *)

Hardware action at exit (invoked by MOVS or SUBS instruction)
CPSR := SPSR(exception mode) (* includes a reset of the irq/fiq flag *)
PC := LR – ofs

Raspberry Pi 2

39

 Raspberry Pi 2 will be the hardware used at least in the first 4 weeks lab sessions

 Produced by element14 in the UK
(www.element14.com)

 Features

 Broadcom BCM2836 ARMv7
Quad Core Processor running at 900 MHz

 1G RAM

 40 PIN GPIO

 Separate GPU ("Videocore")

 Peripherals: UART, SPI, USB, 10/100 Ethernet Port (via USB),
4pin Stereo Audio, CSI camera, DSI display, Micro SD Slot

 Powered from Micro USB port

ARM System Boot

 ARM processors usually starts executing code at adr 0x0
- e.g. containing a branch instruction to jump over the interrupt vectors
- usually requires some initial setup of the hardware

 The RPI, however, is booted from the Video Core CPU (VC):
the firmware of the RPI does a lot of things before we get control:
kernel-image gets copied to address 0x8000H and branches there
No virtual to physical address-translation takes place in the beginning.

 Only one core runs at that time. (More on this later)

40

RPI 1 Memory Map

41

Linux VirtualARM PhysicalVC Virtual

RPI 2 Memory Map

 Initially the MMU is switched
off. No memory translation
takes place.

 System memory divided in
ARM and VC part, partially
shared (e.g. frame buffer)

 ARM's memory mapped
registers start from
0x3F000000
-- opposed to reported offset
0x7E000000 in BCM 2835
Manual

42

0x0

0x30000000 (768 M, configurable)

DEVICES
0x3F000000

SD RAM VC

0xFFFFFFFF (4G-1)

0x40000000 (total system DRAM)

SD RAM ARM

kernel.img
0x8000 (32k)

General Purpose I/O (GPIO)

 Software controlled processor pins

 Configurable direction of transfer

 Configurable connection

 with internal controller (SPI, MMC, memory controller, …)

 with external device

 Pin state settable & gettable

 High, low

 Forced interrupt on state change

 On falling/ rising edge

43

GPIO
Block Diagram (BCM 2835)

44

Raspberry Pi 2 GPIO Pinout
name pin pin name

3.3 V DC 01 ● ● 02 DC power 5v

GPIO 02 03 ● ● 04 DC power 5v

GPIO 03 05 ● ● 06 ground

GPIO 04 07 ● ● 08 GPIO 14

ground 09 ● ● 10 GPIO 15

GPIO 17 11 ● ● 12 GPIO 18

GPIO 27 13 ● ● 14 ground

GPIO 22 15 ● ● 16 GPIO 23

3.3V DC 17 ● ● 18 GPIO 24

GPIO 10 19 ● ● 20 ground

GPIO 09 21 ● ● 22 GPIO 25

GPIO 11 23 ● ● 24 GPIO 08

ground 25 ● ● 26 GPIO 07

ID_SD 27 ● ● 28 ID_SC

GPIO 05 29 ● ● 30 ground

GPIO 06 31 ● ● 32 GPIO 12

GPIO 13 33 ● ● 34 ground

GPIO 19 35 ● ● 36 GPIO 16

GPIO 26 37 ● ● 38 GPIO 20

ground 39 ● ● 40 GPIO 21 45

Documentation Examples

46

GPIO Setup (RPI2)

1. Program GPIO Pin Function (in / out / alternate function)
by writing corresponding (memory mapped) GPFSEL register.
GPFSELn: pins 10*n .. 10*n+9
Use RMW (Read-Modify-Write) operation in order to keep the other bits

2. Use GPIO Pin

a. If writing: set corresponding bit in the GPSETn or GPCLRn register
set pin: GPSETn: pins 32*n .. 32*n+31
clear pin: GPCLRn: pins 32*n .. 32*n+31
no RMW required.

b. If reading: read corrsponding bit in the GPLEVn register
GPLEVn: pins 32*n ... 32*n+1

c. If "alternate function": device acts autonomously. Implement device driver.

47

