
System Construction Course 2015,

Assignment 8

Felix Friedrich, ETH Zürich, 10.11.2015

Implementing a Mutex on Lock-Free A2

Goal of this exercise is to implement a scheduled lock on a lock-free operating system, thereby
taking into account lock-free implicit cooperative scheduling.

• Understand mechanisms of lock-free scheduling and cooperative scheduling

• Investigate performance differences of spin-locks vs. scheduled locks

Lessons to Learn

Preparation

1. Update your repository. Copy new and modified files / directories from the Work folder
located in (repo)/a2/ to your work directory.

2. Recompile the compiler: Within A2, open file Fox/Fox.Tool and execute the contained
compile command. Restart A2 before using the compiler.

3. Connect the Raspberry Pi to your computer using the Usb-To-Serial TTL cable as we did
in Assignment 2. Connection to the RPI can be done via the WMV24Component in A2 but
you are also free to use any telnet client you prefer.

The tool for this exercise contains scripts for x86 based computers and for Raspberry Pi. The
former can be used in otder to run the code in a virtualization environment such as bochs, qemu,
VirtualBox or VMWare or on bare hardware. The latter will be used in order to run the tests on
our Raspberry Pi computer and is recommended for this exercise.

Implement a Mutex

A mutex is a data structure with an algorithm to enforce mutual exclusion of several threads on a
set of code regions. For a given mutex m, the code regions consist of intervals designated by pair
of statements Mutexes.Acquire(m) and Mutex.Release(m).

Prepared for this exercise are files Mutexes.Mod containing a CAS-based spin-lock implementation
of Mutexes and TestMutexes.Mod to test the correctness and performance of the implementation.

Tasks

1. Build the kernel using the script in the assignment tool. Copy the kernel to the SD card of
the RPI, open a terminal connecting via serial port to the RPI and check that you see the
output of the test module.

2. The stub module Mutexes.Mod does not implement a mutex yet. Implement a mutex as a
CAS-based Spin-lock first. Check that it works and observe its performance.

3. Change the implementation of the mutexes in Mutexes.Mod such that they employ a sched-
uled lock instead of a spin-lock. Of course, you are free to experiment later and implement
a hybrid scheme but for now you ”just” implement the mutex such that when the mutex
is currently taken by a different process, then the process goes sleeping on some waiting
queue. Test correctness and performance of your implementation.

https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2015/shared/a2


System Construction Course 2015, 8 2

Hints

• The expression CAS(v, oldvalue, newvalue) returns the observed value of the variable v

with the corresponding type of v.

• Activities.GetCurrentActivity() returns the currently running activity (process).

• Module Queues.Mod contains a lock-free queue with precautions against the ABA problem
using Hazard-Pointers as discussed in the lecture. While you are encouraged to browse
and understand the implementation, you can consider it a given and don’t have to worry
about lock-free queues in this assignment. Queues.Enqueue(act,q) can be used in order
to enqueue an activity act to queue q. Queues.Dequeue(it,q) can be used in order to
dequeue an item it from queue q. It returns TRUE upon success. Recall that type guards
of the form it(Activities.Activity) can be used in order to interprete it as of type
Activities.Activity in a type-safe way.

• The most intricate part of this assignment is about scheduling. Recall from the lecture that
it is often required to execute a switch finalizer on behalf of the new scheduled thread as
indicated with the following lines of code:

IF Activities.Select (nextAct, Activities.IdlePriority) THEN
Activities.SwitchTo (nextAct, SwitchFinalizer, ADDRESS OF Data);
Activities.FinalizeSwitch;

END;

Activities.Select fetches a new process from the ready queues with at least idle priority.
Activities.SwitchTo performs a synchronous context switch to nextAct. This resumed
activity continues its execution by first calling the specified finalizer procedure with the given
argument. As a rule of this lock-free kernel, each invocation of Activities.SwitchTo must
be followed by a call to the Activires.FinalizeSwitch. This finalizes the task switch
performed by calling the task switch finalizer of the previously suspended activity.

For an example use of this mechanism, refer to procedure Activities.Switch.

• Be aware that in lock-free programming at any times something can happen. Consider all
possible interleavings.

Documents

• System Construction Lecture 8 and Lecture 9 slides from the course-homepage
http://lec.inf.ethz.ch/syscon

• F. Negele, Combining Lock-Free Programming with Cooperative Multitasking for a Portable
Multiprocessor Runtime System, Dissertation, ETH Zürich (2014)

http://lec.inf.ethz.ch/syscon/2015/slides/LSC15Slides1103.pdf
http://lec.inf.ethz.ch/syscon/2015/slides/LSC15Slides1110.pdf
http://lec.inf.ethz.ch/syscon
http://e-collection.library.ethz.ch/view/eth:47094
http://e-collection.library.ethz.ch/view/eth:47094

