
System Construction Course 2015,

Assignment 2

Felix Friedrich, ETH Zürich, 22.9.2015

Introduction

Oberon programs consist of modules that can be linked statically in a kernel or loaded dynamically
when a kernel is already running. The systems that we deal with in this course support dynamic
module loading. Moreover, Minos implements module loading over a serial connection.

In this exercise we will learn about the mechanism of linking and loading in some detail. We start
with a little demonstrating example and then implement module unloading.

• Learn to know the programming model of Oberon.

• Understand the concept of linking and loading.

• Get some insight into the module loading implementation on the Minos system.

Lessons to Learn

Preparation

1. Update your repository

2. Copy the new files / directories from the Work folder located in (repo)/a2/ to your work
directory.

3. For communication between the host PC and the Raspberry Pi we will use a serial connec-
tion. In order to provide the host with a connectivity to RS232 we use a special cable that
contains a USB to serial conversion chip. At the one end of the cable you will find the UBS
plug containing the conversion chip and on the other end there are four wires: red power,
black ground, white RX into USB port, and green TX out of the USB port. The power pin
provides 5V direct from the USB port and the RX/TX pins are 3.3V level for interfacing with
the most common 3.3V logic level chipsets. If you intend to power the Raspberry Pi directly
from your computer using this cable, do not connect the power cable used last week.

Consult the BCM2835 ARM Peripherals Technical Manual (page 102) in order to find out
on which pins you have to connect the cable. The Minos kernel configures ports RXD0 and
TXD0 as alternate function 0. Use slide number 45 from the course in order to find the
GPIO-pin to pinout mapping. Before you connect, double check your findings with figure
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2015/shared/documents/

rpi/usbttl_wiring.jpg in the repository. You can physically destroy the cable and / or
the RPI board when you connect it in a wrong way. Be careful! If in doubt, ask me
before connecting! Again: do not power the device from two sources!

https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2015/shared/a2
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2015/shared/documents/rpi/usbttl_wiring.jpg
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2015/shared/documents/rpi/usbttl_wiring.jpg

System Construction Course 2015, 2 2

Figure 1: Minos Build Commands (left) and terminal (right)

1 Introductory example

Preparation

Open file Assignment2/Assignment.Tool in the development environment (if not already open).
Compile the components required for Minos.

Open file Minos/Minos.Tool in the development environment A2. This tool contains all com-
mands described in the following. To build the Minos Boot Image containing the statically
linked part of Minos (the “Kernel”), the kernel modules have to be compiled and linked. To com-
pile the modules execute command

Compiler.Compile -b=ARM --objectFile=Minos ...

in Minos.Tool, cf. Figure 1. This compiles all kernel modules and generates object files in the
format discussed in the lecture. In order to generate a runnable kernel some initial code has to
be prepared that is executed before the kernel module bodies can run. Effectively this code sets
up the initial stack and copies the kernel from address 0x8000 to address 0x108000 and jumps to
the starting address of the kernel.

The following commands (also contained in Minos.Tool) generate this initial code:

Compiler.Compile -b=ARM --objectFile=Generic --newObjectFile --metaData=simple

--objectFileExtension=.Goa --symbolFileExtension=.Sya Minos/RPI.MinimalInit.Mos ~

StaticLinker.Link --fileName=minimalinit.img --extension=.Goa --displacement=108000H -sa

MinimalInit ~

Now the Minos boot image can be built using the command

MinosLinker.Link minimalinit.img 108000H kernel.img OFSRamVolumes SerialLog Minos ~

Store the kernel on the micro SD card.

With the physical connections being established, execute on the Host PC the commands V24.Scan
folled by Serials.Show. Oberserving the log should make it possible to identify the COM port
where the board is connected.

System Construction Course 2015, 2 3

For linux users: it is required that you map the associated file (usually /dev/ttyUSB0) to a COM
port number (e.g. 5) within A2 using the command V24.Map 5 /dev/ttyUSB0. If this does not
work directly, then please consult the next paragraph.

Try the connection by opening a Minos host terminal using command MinosHost.Open 5 (replace
the appropriate COM port number).

Using the USB-to-Serial Cable in Linux

Having plugged in the Usb-/Serial cable, access to the serial connection may be immediately available via
as /dev/ttyUSB0 (or some port different from 0). Using a terminal application such as minicom or putty, try
to connect to the client board. If this does not immediately work try the following.

admin@server ~ $ lsusb

Bus 002 Device 002: ID 090c:37a2 Silicon Motion, Inc. - Taiwan

Bus 005 Device 002: ID 067b:2303 Prolific Technology, Inc. PL2303 Serial Port

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

If you see (as in the example above) a Prolific to serial device, you can add the respective module to the
kernel with the following command. Replace the vendor and product id by the one that you see from lsusb..

admin@server ~ $ sudo modprobe usbserial vendor=0x067b product=0x2303

Check if the installation worked by executing

admin@server ~ $ dmesg

[131.747013] USB Serial support registered for pl2303

[131.747038] pl2303 5-1:1.0: >pl2303 converter detected

[131.758965] usb 5-1: >pl2303 converter now attached to ttyUSB0

After having installed the usb-to-serial driver it may be necessary to either grant user access rights to the
device (chmod) or run A2 with super user rights.

Tasks

Create a new Oberon module called Hello.Mos1 and write a simple “Hello World” program, i.e.
a program that prints “Hello World”. Do not link this module to the Minos kernel image, but
download and link it dynamically at runtime. You can use the procedure Log.SL("...") to print
a string followed by the newline character.

Open the Minos host terminal using command MinosHost.Open <portnr>. Commands are exe-
cuted in the Minos-Host terminal using SHIFT-ENTER. Check that a connection is established by
executing Minos.ShowModules. Then execute your code.

Write a little program to blink the onboard LED. Consult module Minos/RPI.Platform.Mos (proce-
dure LED) in order to access the onboard LED.

2 Module unloading

Your Minos has no built-in mechanism to unload a module yet. Your task is to add this to Minos.
1using the Mos suffix makes sure that the compiler in the IDE generates object files for Minos

https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2015/shared/a2/Work/Minos/RPI.Platform.Mos

System Construction Course 2015, 2 4

Tasks

Implement procedure Unload(CONST name: ARRAY OF CHAR) in module Modules to unload a cur-
rently loaded module from the system. Make sure a module is only unloaded if no other module
imports it. Do not forget to adjust the reference counters of modules that are imported by the
unloaded module. Please ignore the fact that memory cannot be de-allocated.

Remark: The variable root in Modules.Mos contains the root of a linked list of all currently
loaded modules. You will find that currently the data structure Modules.Module is not pre-
pared for keeping track of imported modules. However, changing the actual interface of the
type Modules.Module would require a change of the linker. (Why?) Develop an alternative. You
will find a hint in the file Assignment2/Modules.Mos. In general, in order to give some hints there
are comments starting with STUDENT in the source code that guide you where you need to amend
or modify the source code.

Check that your module unloading works properly.

Documents

• BCM2835 ARM Peripherals Technical Manual in the documents/rpi folder of the repository

• A2 Quickstart Guide in documents/oberon folder of the repository

• System Construction Lecture 2 slides from the course-homepage
http://lec.inf.ethz.ch/syscon

More documents that are not strictly required for this exercise can be found in the repository .

https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2015/shared/documents/rpi/BCM2835-ARM-Peripherals.pdf
https://svn.inf.ethz.ch/svn/lecturers/vorlesungen/trunk/syscon/2015/shared/documents/oberon/A2QuickStartGuide.pdf
http://lec.inf.ethz.ch/syscon/2015/slides/LSC15Slides0922.pdf
http://lec.inf.ethz.ch/syscon

	Introductory example
	Module unloading

