ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

System Construction Course 2015,
Assignment 11

Felix Friedrich, ETH Zirich, 8.12.2015

Multicore Computing on FPGAs — Implementation of the Simon
Game.

~— Lessons to Learn N
e Understand the features and limits of a message passing architecture.

¢ Understand how software code is mapped to and inserted in a multicore architecture
on FPGA.

e Understand how configurable hardware can be adapted to satisfy software require-
ments.

Introduction

The Simon Game was a very simple electronic game popular in the
early 1980s. The objective of the player was to reproduce a se-
quence of light signals by pushing buttons in the order how they
were previously presented by the computer.

In the original game, the lighting of the buttons was accompanied
by audio signals, which significantly helped to memorize the order
of the sequence. As a side effect of this lab, you can implement the
game on a Spartan 3 FPGA, solely using buttons and LEDs.

We work with a message-passing architecture on an FPGA. The system consists of three pro-
cessors — Tiny Register Machines (TRMs ) — that are connected to each other over FIFOs. In
addition, the processors are wired to hardware signals such as clock, reset and interaction inter-
faces such as LEDs, a 7-digit LED display and buttons. We provide the following architecture for

this lab.
10

fifo > Digits
TRM STRM
fifo fifo
controller
TRM

You may wonder why there is a separate component for the 7-digit display. The reason is that
controlling the 7-digit display, on a first glance, is not so trivial, so we solved it with a little software



ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

System Construction Course 2015, 11 2

loop being implemented on TRMS, an even simpler variant of the Tiny Register Machine.

It is your task to implement a variant of the game that has been roughly described above. But first
and foremost, you are asked to solve some technical problems with the given implementation.

Preparation

1. Please update your repository in order to retrieve a version of A2 that contains the compiler
and an example module.

2. Windows users are required to

(@) Unzip the A2 system from ActiveCells/Windows/A2.zip.

(b) In order to be able to drive the hardware compilation from within A2, please make sure
that the Xilinx tools such as data2mem are available via (Windows) search path. Usu-
ally this means adding C:\Xilinx\14.7\ISE_DS\ISE\bin\nt64 to the environment
path variable.

3. Linux Aos Users are required to

(a) Install UnixAos rev 5500 found in ActiveCells/UnixAos/ and use the work folder
found in the same directory as your Aos work path.

(b) Compile the compiler. Please open file oc/linux.Fox.Tool and execute the compila-
tion command and restart A2.

(c) In order to patch the bit-stream and upload it to the Spartan3 board, a separate com-
mand has to be executed after the compilation took place.
The command TRMTools.BuildHardware does not yet work within LinuxAos. Please
execute the script Game.sh to patch and upload the stream.

4. Abuild file for the provided game skeleton can be found in Assignment11/Assignment.Tool.
It consists of a compilation command to generate hardware and patching scripts. For
WinAos users, hardware compilation requirements are automatically detected and resolved
by the execution of command TRMTools.BuildHardware: the tool-chain automatically patches
what is necessary in the hardware stream and uploads the bitstream to the FPGA.

5. Once uploaded to the FPGA, the program should give LED-feedback on button pushes and
should show the number of button pushes on the 7-digit display. Only the three buttons to
the right are active. The left most button serves as reset signal.

Tasks

1. You may have noticed that a single button push sometimes result in a bunch of signals
because of some jitter on the electrical contacts. It is the first task of this exercise to get
rid of this jitter. Please modify the code on the input core accordingly. Hint: Timer.Get (VAR
time: LONGINT) can be used in order to get timer ticks. Constant Timer.ms contains the
number of ticks per ms.

2. The 7-digit LED display is currently programmed with a software loop on a separate core.
When a digit is selected for output, all other digits currently switch off. This is due to the
mechanism how the digits are controlled. Please read Chapter 3 of the user manual of the
spartan board in order to understand how it works. Only the fact that it happens so often

TInterrupt handling, which we do not use here anyway, and multiplication engine has been stripped from TRMS. The
reason why we need this here is the very limited resources of our Spartan3 board.



ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

System Construction Course 2015, 11 3

(and potentially the luminescence of the digits) makes this invisible to a human. Modify
the hardware such that the 7-digit LED display does not have to be programmed with a
software loop. Then you can get rid of the separate TRMS component for this. This is what
programmable hardware is for, after all!

In order to try your modifications of the hardware code, we suggest you to provide a very
simple Cell to test and not use the Game module. The reason is the great amount of time
saving for synthesis and routing. Once you know it works, you can integrate the solution in
the game module and remove the digits Cell.

. Implement the game (optional)

(a) The game starts with one single ternary signal (left, middle or right) displayed on the
LEDs. Duration of signal display should be, say, 300ms.

(b) When a sequence of signals (alternating corresponding LEDs on and all LEDs off) has
been presented, the user is to repeat the sequence by button pushes.

(c) If the entered sequence has been entered correctly, the length of the sequence is
increased by one.

(d) The 7-digit display should show the length of the correctly entered signal sequence.

You are free in the choice of how to implement the game. The choice of interconnect is
motivated by the minimal requirements of this game. To add more channels between the
cores is not possible because of the very limited resources of the exercise Spartan3 board.
However, if required you can implement further logical channels in software, for example
from input to display core.

Try to make use of the fact that you have three independent cores. For example, you may
want to implement a protocol for processing whole sequences of signals on the display
core or to send a sequence of signals to the input core for which the button input is verified
autonomously.

Documents

e Spartan-3 Starter Kit Board User Guide. File S3BOARD_RM. pdf in folder

documents/DigilentSpartan3

e Active Cells - A Computing Model for Rapid Construction of On-Chip Multi-Core Systems.

File ActiveCells.pdf in folder documents/ActiveCells



