8. Floating-point Numbers II

Floating-point Number Systems; IEEE Standard; Limits of Floating-point Arithmetics; Floating-point Guidelines; Harmonic Numbers

Floating-point Number Systems

A Floating-point number system is defined by the four natural numbers:

- $\beta \geq 2$, the base,
- $p \geq 1$, the precision (number of places),
- e_{min}, the smallest possible exponent,
- e_{max}, the largest possible exponent.

Notation:

$$F(\beta, p, e_{\text{min}}, e_{\text{max}})$$

Floating-point Number Systems

$F(\beta, p, e_{\text{min}}, e_{\text{max}})$ contains the numbers

$$\pm \sum_{i=0}^{p-1} d_i \beta^{-i} \cdot \beta^e,$$

$$d_i \in \{0, \ldots, \beta - 1\}, \quad e \in \{e_{\text{min}}, \ldots, e_{\text{max}}\}.$$

represented in base β:

$$\pm d_0 \cdot d_1 \ldots d_{p-1} \times \beta^e,$$

Floating-point Number Systems

Representations of the decimal number 0.1 (with $\beta = 10$):

$$1.0 \cdot 10^{-1}, \quad 0.1 \cdot 10^0, \quad 0.01 \cdot 10^1, \quad \ldots$$

Different representations due to choice of exponent
Normalized representation

Normalized number:

\[\pm d_0 \cdot d_1 \ldots d_{p-1} \times \beta^e, \quad d_0 \neq 0 \]

Remark 1
The normalized representation is unique and therefore preferred.

Remark 2
The number 0, as well as all numbers smaller than \(\beta^{e_{\text{min}}} \), have no normalized representation (we will come back to this later)

Set of Normalized Numbers

\[F^*(\beta, p, e_{\text{min}}, e_{\text{max}}) \]

Normalized Representation

Example \(F^*(2, 3, -2, 2) \) (only positive numbers)

| \(d_0 \cdot d_1 \cdot d_2 \) | \(e = -2 \) | \(e = -1 \) | \(e = 0 \) | \(e = 1 \) | \(e = 2 \) |
|---|---|---|---|---|
| 1.002 | 0.25 | 0.5 | 1 | 2 | 4 |
| 1.012 | 0.3125 | 0.625 | 1.25 | 2.5 | 3 |
| 1.102 | 0.375 | 0.75 | 1.5 | 3 | 6 |
| 1.112 | 0.4375 | 0.875 | 1.75 | 3.5 | 7 |

Binary and Decimal Systems

- Internally the computer computes with \(\beta = 2 \) (binary system)
- Literals and inputs have \(\beta = 10 \) (decimal system)
- Inputs have to be converted!
Conversion Decimal → Binary

Assume, \(0 < x < 2\).

Binary representation:

\[
x = \sum_{i=-\infty}^{0} b_i 2^i = b_0 + \sum_{i=-\infty}^{-1} b_i 2^i \]

\[
= b_0 + \sum_{i=-\infty}^{-1} b_i 2^i = b_0 + \sum_{i=-\infty}^{0} b_{i-1} 2^{i-1}
\]

\[
= b_0 + \left(\sum_{i=-\infty}^{0} b_{i-1} 2^{i} \right) / 2
\]

\[
x' = b_{-1} \cdot b_{-2} \cdot b_{-3} \cdot b_{-4} \ldots
\]

Binary representation of \(1.1_{10}\)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(b_i)</th>
<th>(x - b_i)</th>
<th>(2(x - b_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>(b_0 = 1)</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>0.2</td>
<td>(b_1 = 0)</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>0.4</td>
<td>(b_2 = 0)</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>0.8</td>
<td>(b_3 = 0)</td>
<td>0.8</td>
<td>1.6</td>
</tr>
<tr>
<td>1.6</td>
<td>(b_4 = 1)</td>
<td>0.6</td>
<td>1.2</td>
</tr>
<tr>
<td>1.2</td>
<td>(b_5 = 1)</td>
<td>0.2</td>
<td>0.4</td>
</tr>
</tbody>
</table>

\[\Rightarrow 1.00011, \text{ periodic, not finite} \]

Conversion Decimal → Binary

Assume \(0 < x < 2\).

- Hence: \(x' = b_{-1} \cdot b_{-2} \cdot b_{-3} \ldots = 2 \cdot (x - b_0)\)
- Step 1 (for \(x\)): Compute \(b_0\):

\[
b_0 = \begin{cases}
 1, & \text{if } x \geq 1 \\
 0, & \text{otherwise}
\end{cases}
\]

- Step 2 (for \(x\)): Compute \(b_{-1}, b_{-2}, \ldots\):

 Go to step 1 (for \(x' = 2 \cdot (x - b_0)\))

Binary Number Representations of \(1.1\) and \(0.1\)

- are not finite, hence there are errors when converting into a (finite) binary floating-point system.
- \(1.1f\) and \(0.1f\) do not equal \(1.1\) and \(0.1\), but are slightly inaccurate approximation of these numbers.
- In diff.cpp: \(1.1 - 1.0 \neq 0.1\)
Binary Number Representations of 1.1 and 0.1

on my computer:

1.1 = 1.1000000000000000888178...
1.1f = 1.100000238418...

Computing with Floating-point Numbers

Example (\(\beta = 2, p = 4\)):

\[
\begin{align*}
1.111 \cdot 2^{-2} + 1.011 \cdot 2^{-1} &= 1.001 \cdot 2^0 \\
&= 1.001
\end{align*}
\]

1. adjust exponents by denormalizing one number
2. binary addition of the significands
3. renormalize
4. round to \(p\) significant places, if necessary

The IEEE Standard 754

- defines floating-point number systems and their rounding behavior
- is used nearly everywhere
- Single precision (float) numbers:
 \(F^*(2, 24, -126, 127)\) (32 bit) plus 0, ∞, ...
- Double precision (double) numbers:
 \(F^*(2, 53, -1022, 1023)\) (64 bit) plus 0, ∞, ...
- All arithmetic operations round the exact result to the next representable number

Why \(F^*(2, 24, -126, 127)\)?

- 1 sign bit
- 23 bit for the significand (leading bit is 1 and is not stored)
- 8 bit for the exponent (256 possible values) (254 possible exponents, 2 special values: 0, ∞,...)

\(\Rightarrow 32\) bit in total.
The IEEE Standard 754

Why

F∗(2, 53, −1022, 1023)?

- 1 sign bit
- 52 bit for the significand (leading bit is 1 and is not stored)
- 11 bit for the exponent (2046 possible exponents, 2 special values: 0, ∞, . . .)

⇒ 64 bit in total.

Example: 32-bit Representation of a Floating Point Number

± Exponent

Mantisse

1.00000000000000000000000...
1.11111111111111111111111

Floating-point Rules

Rule 1

Do not test rounded floating-point numbers for equality.

for (float i = 0.1; i != 1.0; i += 0.1)
 std::cout << i << "\n";

endless loop because i never becomes exactly 1

Floating-point Rules

Rule 2

Do not add two numbers of very different orders of magnitude!

1.000 · 2^5
+1.000 · 2^0
= 1.00001 · 2^5

“=” 1.000 · 2^5 (Rounding on 4 places)

Addition of 1 does not have any effect!
Harmonic Numbers

Rule 2

- The n-the harmonic number is
 \[H_n = \sum_{i=1}^{n} \frac{1}{i} \approx \ln n. \]

- This sum can be computed in forward or backward direction, which is mathematically clearly equivalent.

Results:

- Compute H_n for $n = 10000000$
 Forward sum = 15.4037
 Backward sum = 16.686

- Compute H_n for $n = 100000000$
 Forward sum = 15.4037
 Backward sum = 18.8079

Observation:

- The forward sum stops growing at some point and is “really” wrong.
- The backward sum approximates H_n well.

Explanation:

- For $1 + 1/2 + 1/3 + \cdots$, later terms are too small to actually contribute.
- Problem similar to $2^5 + 1 = 2^5$
Floating-point Guidelines

Rule 3

Rule 4

Do not subtract two numbers with a very similar value.

Cancellation problems, cf. lecture notes.

Literature

9. Functions I

Defining and Calling Functions, Evaluation of Function Calls, the Type void

- encapsulate functionality that is frequently used (e.g. computing powers) and make it easily accessible
- structure a program: partitioning into small sub-tasks, each of which is implemented as a function

⇒ Procedural programming; procedure: a different word for function.
Example: Computing Powers

double a;
int n;
std::cin >> a; // Eingabe a
std::cin >> n; // Eingabe n

double result = 1.0;
if (n < 0) {
 a = 1.0/a;
 n = -n;
}
for (int i = 0; i < n; ++i)
 result *= a;
std::cout << a << "^" << n << " = " << resultpow(a,n) << "\n";

Function to Compute Powers

// PRE: e >= 0 || b != 0.0
// POST: return value is b^e
double pow(double b, int e)
{
 double result = 1.0;
 if (e < 0) {
 b = 1.0/b;
 e = -e;
 }
 for (int i = 0; i < e; ++i)
 result *= b;
 return result;
}

Function Definitions

T fname (T_1 p_name_1, T_2 p_name_2, ..., T_N p_name_N)
return type
temporary arguments
body
Defining Functions

- may not occur *locally*, i.e. not in blocks, not in other functions and not within control statements
- can be written consecutively without separator in a program

```c
double pow (double b, int e)
{
    ...
}

int main ()
{
    ...
}
```

Example: Xor

```c
// post: returns l XOR r
bool Xor(bool l, bool r)
{
    return l && !r || !l && r;
}
```

Example: Harmonic

```c
// PRE: n >= 0
// POST: returns nth harmonic number
// computed with backward sum
float Harmonic(int n)
{
    float res = 0;
    for (unsigned int i = n; i >= 1; --i)
        res += 1.0f / i;
    return res;
}
```

Example: min

```c
// POST: returns the minimum of a and b
int min(int a, int b)
{
    if (a<b)
        return a;
    else
        return b;
}
```
Function Calls

\[\text{fname (expression}_1, \text{ expression}_2, \ldots, \text{ expression}_N \) \]

- All call arguments must be convertible to the respective formal argument types.
- The function call is an expression of the return type of the function. Value and effect as given in the postcondition of the function \(\text{fname} \).

Example: \(\text{pow(a,n)} \): Expression of type double

Evaluation of a Function Call

- Evaluation of the call arguments
- Initialization of the formal arguments with the resulting values
- Execution of the function body: formal arguments behave like local variables
- Execution ends with \(\text{return expression} \);

Return value yields the value of the function call.

Example: Evaluation Function Call

```c
double pow(double b, int e){
    assert (e >= 0 || b != 0);
    double result = 1.0;
    if (e<0) {
        // b^e = (1/b)^(-e)
        b = 1.0/b;
        e = -e;
    }
    for (int i = 0; i < e ; ++i)
        result *= b;
    return result;
}
```

Call of \(\text{pow(2.0, -2)} \)
Sometimes, formal arguments

- Declarative region: function definition
- Are invisible outside the function definition
- Are allocated for each call of the function (automatic storage duration)
- Modifications of their value do not have an effect to the values of the call arguments (call arguments are R-values)

Scope of Formal Arguments

```cpp
double pow(double b, int e){
    double r = 1.0;
    if (e<0) {
        b = 1.0/b;
        e = -e;
    }
    for (int i = 0; i < e ; ++i)
        r *= b;
    return r;
}
```

```cpp
int main(){
    double b = 2.0;
    int e = -2;
    double z = pow(b, e);
    std::cout << z; // 0.25
    std::cout << b; // 2
    std::cout << e; // -2
    return 0;
}
```

Not the formal arguments b and e of pow but the variables defined here locally in the body of main

The type `void`

```cpp
// POST: "(i, j)" has been written to standard output
void print_pair(int i, int j) {
    std::cout << "(" << i << " \ " << j << "\n"
;
}

int main() {
    print_pair(3,4); // outputs (3, 4)
    return 0;
}
```

- Fundamental type with empty value range
- Usage as a return type for functions that do only provide an effect
void-Functions

- do not require return.
- execution ends when the end of the function body is reached or if
 - return; is reached
 or
 - return expression; is reached.

Expression with type void (e.g. a call of a function with return type void)